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Abstract: The three most commonly used methods for diagnosing non-dermatophyte mold (NDM)
onychomycosis are culture, polymerase chain reaction (PCR), and histopathology. Toenail samples
from 512 patients (1 sample/patient) with suspected onychomycosis were examined using all three
diagnostic tests. A statistically significant association was found between PCR and histopathology
results, as well as between fungal culture and histopathology results. All PCR-positive and culture-
positive dermatophyte samples were confirmed by histopathology. However, 15/116 (12.9%) of
culture-positive NDM samples had negative histopathology results, while all PCR-positive NDM
samples were confirmed by histopathology. The overall rate of dermatophyte detection was higher
using PCR compared to culture (38.9% vs. 11.7%); the lower rate of NDM detection by PCR (11.7% vs.
38.9%) could be attributed to the restriction of the assay design to seven pre-selected targets. When
repeat sampling in the clinic is not possible, a combination of NDM detection by PCR and positive
histopathology of hyphae may be a proxy for NDM infection, particularly where the NDM occurs
without a concomitant dermatophyte. There was a high degree of correlation between negative PCR
and negative histopathology. A negative PCR result with negative histopathology findings may be a
reliable proxy for the diagnosis of non-fungal dystrophy.

Keywords: non-dermatophyte mold; dermatophyte; onychomycosis; diagnosis; polymerase chain
reaction; PAS staining; molecular biology; histopathology

1. Introduction

Onychomycosis is the most prevalent nail infection associated predominantly with
dermatophyte fungi (Trichophyton spp., Microsporum spp., and Epidermophyton spp.) [1,2].
The diagnosis of onychomycosis is difficult, with microscopy and culture methods being the
traditional techniques used for fungal detection [3]. These methods are readily available and
relatively cheap for laboratories. However, both light microscopy (potassium hydroxide
examination [KOH]) and culture show variable sensitivities for fungal detection. Culture
in particular shows high rates of false negative detection and may require many weeks for
fungal growth, which is required for genus/species identification [4]. For these reasons,
KOH and culture have limited ability to provide an accurate and timely diagnosis for
patients awaiting treatment.

Histopathology provides an in situ review of the nail plate and subungual keratin for
fungal elements, providing direct evidence of fungal invasion that is not visible in a simpler
light microscopic exam. Histopathology is associated with good accuracy in the diagnosis
of onychomycosis but lacks the ability to provide genus-/species-level identification of the
invading organism [4]. The utility of histopathology is therefore reduced for clinicians, as
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fungal organism identification is often preferred for the selection of the optimum treatment
based on the etiologic agent detected.

Polymerase chain reaction (PCR) and other molecular diagnostic methods are recog-
nized as having a more rapid and sensitive identification than culture for the detection of
dermatophytes, but adoption of these methods has not been widespread [5,6]. The cost
of these methodologies is higher than culture, and the lack of automated, standardized
techniques has held back commercial use of molecular diagnostics in this realm. Interpreta-
tion of PCR results is complicated by the problem of determining contaminant/commensal
organisms from possible pathologic organisms and a lack of demonstrated viability of
the detected organism. This is a particular problem for non-dermatophyte mold (NDM)
species found in toenails, which are usually dismissed as environmental contaminants [7].
Traditionally, detection in repeated samples taken at sequential time points without growth
of concomitant dermatophytes is the standard for diagnosing NDM nail infection by PCR
or culture [8]. However, repeat sampling is usually impractical, rarely achieved, and can
significantly delay patient treatment if pursued.

In this study, we retrospectively assessed the data from 512 diagnostic samples col-
lected from patients suspected of onychomycosis. Each sample was subjected to histopathol-
ogy assessment, PCR testing, and fungal culture. We hypothesized that nail plate or subun-
gual keratin showing fungal invasion by hyphae represented true disease, so a PCR-positive
NDM in conjunction with histopathological evidence of hyphae presence could identify a
significant pathogen. On the other hand, when the PCR was positive without a positive
histopathology finding, this was more likely to be a contaminant, and repeat sampling
would be advisable.

If these histopathology-positive species found by PCR also grew in culture, it can be
presumed that the PCR finding represents a viable fungal species that may have a role in
the continuing nail dystrophy.

The dataset presented in the study provides valuable information on how well
histopathology correlates with PCR findings and how often positive PCR results may
reflect viable fungi, and as such, may be a good proxy for determining when NDMs are
‘true’ agents of onychomycosis where repeat sampling cannot be obtained.

2. Materials and Methods

Between 4 August and 26 September 2022, nail samples were collected from patients
with suspected onychomycosis attending podiatry and dermatology offices in the United
States and sent to the laboratory for routine diagnosis (one sample per nail per person).
Sample selection required sufficiently large portions of the nail to allow for all of the desired
diagnostic procedures. Performed diagnostic procedures included a histopathological
exam (using both a periodic acid–Schiff [PAS] reaction and a Grocott methenamine silver
[GMS] stain examination when included in physician orders) and molecular diagnostic
testing (PCR) for the identification of possible dermatophytes, saprophytes, yeasts, and
bacteria. Standard mycologic culture was performed on the residual sample following case
completion/reporting and subjected to de-identification of patient information. All samples
were provided as part of a non-interventional standard-of-care diagnostic procedure by
a qualified medical diagnostic laboratory and/or de-identified patient information, and
as such, they do not represent a clinical trial for which an ethics overview and informed
consent are required.

2.1. Histopathology Assessment

The collected nail samples were subjected to a histological examination via PAS or
GMS staining when requested. All slides were reviewed by a dermatopathologist for
diagnosis. Diagnostic information included the (a) presence or absence of fungal hyphae
or yeast, (b) estimation of the quantity of fungal elements present, (c) pattern of nail
involvement, and (d) additional pathologic findings. Visual assessment of the quantity
of fungal growth within the examined tissue was categorized as follows: rare elements,
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minimal growth (<10%), moderate growth (10–80%), and florid growth (>80%). The pattern
of infiltration of the nail unit keratin was also determined through direct visualization. Nail
involvement was subdivided into subungual, superficial, and total dystrophic patterns.
When the pattern of infiltration was unclear, an indeterminate designation was used.

2.2. Culture

Samples were cultured on potato dextrose agar (PDA) and mycobiotic media, then
incubated at 30 ◦C in ambient air for 2–4 weeks. Mass spectrometry (VITEK MS system) and
lactophenol blue staining were used, as appropriate, to aid in confirming the microorganism
present. The VITEK MS system utilizes matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) technology. Protein extraction was performed in accordance with
the protocol of a laboratory-developed test (LDT) approved by the College of American
Pathologists and the New York State Department of Health (NYS DOH) (Project ID: 27083,
PFI: 8490, approval date: 6 April 2012). Protein peaks were analyzed using the VITEK MS
software, and organisms were identified using a U.S. Food and Drug Administration (FDA)
approved database.

2.3. Sample Homogenization and DNA Extraction

Specimens were transferred into bead tubes (Omni International, Kennesaw, GA, USA),
followed by the addition of 1 mL of lysis buffer. Homogenization was performed first using
a bead ruptor (Omni International, Kennesaw, GA, USA) for 5 minutes, followed by a 10 min
incubation step at 90 ◦C in a dry bath, and a 2.5 min centrifugation step at 12,500 rpm [9,10].
Automated DNA extraction was carried out using the Mag-Bind Plant DNA DS Kit (Omega
Biotek, Norcross, GA, USA) on a Hamilton Microlab STAR workstation.

2.4. PCR Testing

DNA extracts from nail samples were tested using the BakoDx Onychodystrophy
Infectious Agent Detection (OIAD) assay, a multiplex real-time PCR assay utilizing Taq-
Man technology for the detection of a specific genetic target. This assay was designed
and validated in accordance with both Clinical Laboratory Improvement Amendments
(CLIA) and NYS DOH standards. Specifically, primers and probes were subjected to in
silico analysis and wet testing to ensure appropriate specificity; optimization of primers,
probes, and thermocycling conditions was performed by testing combinations of various
concentrations and annealing temperatures.

The OIAD assay consists of two sequential panels: detection and identification. The detec-
tion panel covers a broad range of targets in order to determine the presence, if any, of relevant
dermatophytic and/or saprophytic fungi groups, yeasts, and bacteria (Pseudomonas aerugi-
nosa). If a specimen produces a positive result for dermatophyte, saprophyte, and/or yeast,
it is subsequently tested in a separate identification multiplex panel to help determine the
species present.

Targeted dermatophytic fungi species in the identification panel include the Trichophy-
ton mentagrophytes complex (T. interdigitale, T. tonsurans, and T. mentagrophytes), the T. rubrum
complex (T. violaceum and T. rubrum), Microsporum canis, M. gypseum, and Epidermophy-
ton floccosum. Targeted NDM genera (saprophytic fungi) include Acremonium, Alternaria,
Aspergillus, Curvularia, Fusarium, Scopulariopsis, and Neoscytalidium. Targeted yeast species
include Candida albicans, C. guilliermondii, C. parapsilosis complex (C. metapsilosis, C. orthopsilo-
sis, and C. parapsilosis), C. tropicalis, Cryptococcus spp., Malassezia spp., and Trichosporon spp.

2.5. Data Compilation and Analysis

Upon the completion of all diagnostic procedures, PCR testing and correlating fungal
culture provided the identification of the following organism groups: dermatophytes, sapro-
phytes, dermatophyte plus saprophytes, yeasts, and Pseudomonas (as the single bacterial
agent reported). PCR and fungal culture findings were cross-referenced against histopathol-
ogy outcomes of ‘Positive’ or ‘Negative’; ‘Positive’ histopathology was further subdivided
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into ‘Hyphae Positive’ or ‘Hyphae Negative’, where ‘Hyphae Negative’ indicated yeast or
other non-hyphal histological findings.

Data was tabulated using IBM SPSS Statistics package version 29.0.0.0 (241). Distribu-
tions of fungal group identifications versus histopathology outcomes were assessed using
the Pearson Chi-square Test of Association, and Cramer’s V for degree of association when
Chi-square was significant.

3. Results

Results of the PCR testing versus histopathology are shown in Table 1. Dermatophytes
were found alone and in conjunction with saprophytes (NDM), in 38.9% (199/512) and
5.3% (27/512) of samples, respectively, by PCR. PCR detected dermatophytes at a three-fold
higher rate than culture ([199/512] 38.9% versus 11.7% [60/512]) (Figure 1).

Table 1. Detection rates of organism groups by PCR and histopathology.

PCR
Histopathology 1,2

Row Total
Any Positive Positive for Hyphae Negative

Negative (N = 170) 24/170 (14.1%) 24/24 (100%) 146/170 (85.9%) 170/512 (33.2%)
Dermatophyte (N = 199) 199/199 (100%) 199/199 (100%) 0 199/512 (38.9%)
NDM (N = 71) 71/71 (100%) 71/71 (100%) 0 71/512 (13.9%)
Dermatophyte + NDM (N = 27) 27/27 (100%) 27/27 (100%) 0 27/512 (5.3%)
Yeast (N = 26) 26/26 (100%) 9/26 (34.6%) 0 26/512 (5.1%)
Pseudomonas (N = 19) 2/19 (10.5%) 2/2 (100%) 17/19 (89.5%) 19/512 (3.7%)

Total 349/512 (68.2%) 332/512 (64.8%) 163/512 (31.8%) Total N = 512
1 Significant positive association of histopathology with PCR group detection: Chi-square test of association
408.772, df = 5, Sig p < 0.001; Cramer’s V 0.894 p < 0.001. 2 Significant positive association of hyphae with
PCR group detection: Chi-square test of association 87.921, df = 5, Sig p < 0.001; Cramer’s V 0.870, p < 0.001.
NDM = non-dermatophyte mold; PCR = polymerase chain reaction.
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Chi-square tests showed a significant association between PCR detection and histopathol-
ogy detection, as well as culture detection and histopathology detection (Tables 1 and 2). All
PCR dermatophyte-positive and NDM-positive samples were histopathology positive, and
furthermore, they were all indicated as hyphae-positive (Table 1). Examples of histopatho-
logical findings demonstrating the presence of hyphae in NDM-positive samples are shown
in Figures 2 and 3. The high rate of association between PCR and histopathology-positive
detection gives strength to the hypothesis that detection of dermatophytes or NDMs by
PCR is reflective of the true fungal nail presence of the detected species. Interestingly, where
PCR results were negative, 85.9% (146/170) of samples were also histopathology-negative,
and no significant fungal species were found for any histopathology-negative samples
(17 Pseudomonas detections considered likely nail contaminants) (Table 1). Nail dystrophy
may lead to secondary infections and associated discoloration. In contrast to positive PCR
findings suggesting true nail invasion, cases of negative histopathology with negative PCR
may provide a good proxy for likely non-fungal nail dystrophy.

Table 2. Detection rates of organism groups by culture and histopathology.

Culture
Histopathology 1,2

Row Total
Any Positive Positive for Hyphae Negative

Negative (N = 282) 145/282 (51.4%) 138/145 (95.2%) 137/282 (48.6%) 282/512 (55.1%)
Dermatophyte (N = 60) 60/60 (100%) 60/60 (100%) 0 60/512 (11.7%) 3

NDM (N = 116) 101/116 (87.1%) 99/101 (98.0%) 15/116 (12.9%) 116/512 (22.7%)
Dermatophyte + NDM (N = 11) 11/11 (100%) 11/11 (100%) 0 11/512 (2.1%) 3

Yeast (N = 27) 22/27 (81.5%) 14/22 (63.6%) 5/27 (18.5%) 27/512 (5.3%)
Pseudomonas (N = 16) 10/16 (62.5%) 10/10 (100%) 6/16 (37.5%) 16/512 (3.1%)

Total 349/512 (68.2%) 332/512 (64.8%) 163/512 (31.8%) Total N = 512
1 Significant association of histopathology with culture group detection: Chi-square test of association 91.148,
df = 5, p < 0.001; Cramer’s V 0.422 p < 0.001. 2 Significant association of hyphae with culture group detection:
Chi-square test of association 93.221, df = 5, Sig p < 0.001; Cramer’s V 0.427, p < 0.001. 3 All dermatophyte cultures
were also PCR-positive for dermatophytes. NDM = non-dermatophyte mold.

Culture detection also showed a statistically significant association with histopathol-
ogy results. All positive dermatophyte cultures were histopathology positive for hyphae
(60/60), but the low overall rate of positive detection of dermatophytes by culture (11.7%
[60/512] versus 38.9% by PCR [199/512]) limits the utility of culture to identify dermato-
phytes over PCR (Tables 1 and 2). The negative outcome associations are much lower
for culture versus PCR as well, with only 48.6% (137/282) of negative cultures showing
negative histopathology (Table 2). The reduced value of culture detection compared to PCR
likely reflects the increased risk of contaminant detection, decreased sensitivity, different
growth requirements for dermatophytes compared to NDMs/yeasts, and possible culture
overgrowth of NDMs/yeasts, which prevents efficient detection of dermatophytes.

Both PCR and culture detection results showed a relatively low prevalence of yeasts
(5.1% [26/512] and 5.3% [27/512]) and Pseudomonas (3.7% [19/512] and 3.1% [16/512])
(Tables 1 and 2). The detection of hyphae in these samples by histopathology can likely
be attributed to sampling artifacts, since only a portion of the submitted patient sample is
subjected to each of the three diagnostic tests. Additionally, the restriction of PCR testing to
pre-selected targets, especially in the case of NDMs where seven genera are incorporated
into the assay design, may have led to the misidentification of specimens. Although
Candida spp. has exhibited the ability to grow hyphae, the morphological transition from
the yeast form to the hyphal form requires specific microenvironmental conditions such as
hypoxemia and the presence of serum [11]. Given that these conditions are unlikely to be
found on the epidermis or the nail plate, further studies are warranted to elucidate their
pathogenic potential in onychomycosis.
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Figure 2. Histopathology assessment of NDM-positive mycotic toenail samples using PAS staining.
(A,C) Moderate fungal growth detected with infiltrating hyphae in the subungual keratin ((A) PAS,
original magnification ×20; (C) PAS, original magnification ×40). (B,D) In the case of onycholysis,
rare fungal growth and bacterial colonization were observed in the subungual keratin ((B) PAS,
original magnification ×20; (D) PAS, original magnification ×40).

Considering NDM detection by PCR and culture without concomitant dermatophytes,
culture had a higher rate of detection (22.7% [116/512] versus PCR (13.9% [71/512]), which
likely reflects that species detectable by culture had no limit, whereas PCR was limited to
the pre-selected seven NDM genera in the validated PCR protocols (Acremonium, Alternaria,
Aspergillus, Curvularia, Fusarium, Scopulariopsis, and Neoscytalidium) (Tables 1 and 2). As
for the possibility of environmental contaminants, we were particularly interested in the
finding that 100% [71/71] of the NDMs detected by PCR without an associated dermato-
phyte were also found to be histologically positive (Table 1). Of the 98 NDM-positive PCR
findings (NDM alone [N = 71] or with a dermatophyte [N = 27]), 60 samples were also
culture-positive for NDMs (61.2% [60/98], Table 3), but only 45 culture samples (45.9%
[45/98]) showed the same NDM genus in both PCR and culture. These 45 cultures confirm
the viability of NDMs detected by PCR and provide some confidence that PCR-identified
organisms with positive histopathology often represent ‘clinically significant’ fungi. As the
PCR detection range of NDMs is restricted to seven genera, the ability of PCR to provide
agreement with culture is also restricted, and this agreement rate is likely an underestimate
of the utility of PCR for NDM detection.
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Figure 3. Histopathology assessment of NDM-positive mycotic toenail samples using GMS staining.
(A,C) Minimal fungal growth detection ((A) GMS, original magnification ×20; (C) GMS, original
magnification ×40). (B,D) Florid fungal growth detection ((B) GMS, original magnification ×20;
(D) GMS, original magnification ×40).

Table 3. Non-dermatophyte mold detection by PCR versus culture.

Culture
PCR

Row Total
Positive (N = 98) 1 Negative (N = 414)

Positive (N = 127) 60/98 (61.2%) 2,3

45/98 (45.9%) 2,4 67/414 (16.2%) 127/512 (24.8%)

Negative (N = 385) 38/98 (38.8%) 347/414 (83.8%) 385/512 (75.2%)

Total 98 414 Total N = 512
1 Includes NDM-positive and mixed NDM/dermatophyte positive samples. 2 100% of positive samples were also
positive for histopathology. 3 Matching NDM organism-level detection per culture and PCR results. 4 Matching
NDM genus-level detection per culture and PCR results. NDM = non-dermatophyte mold.

‘Clinically significant’ also does not necessarily indicate ‘causative’, but the positive
infiltration of nail keratin observed by histopathology would seem to indicate that NDMs
are a live presence within the nail keratin, which may be contributing to ongoing nail
dystrophy (Figure 2). Of the 45 agreements, 35 of them (77.8%) occur as solo NDM
PCR organism detections, and these include the strains previously reported as potential
pathogens in onychomycosis: Fusarium, Scopulariopsis, and Neoscytalidium. (Table 4) [12–14].
Where agreement occurs in samples with combination dermatophyte/NDM detection, the
species are those most frequently considered environmental contaminants that may be
present secondary to the primary dermatophyte infection (Alternaria and Curvularia).
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Table 4. Identification of NDMs in histopathology-positive samples confirmed by PCR and culture
results (N = 45 *).

NDM Genus Total
Mixed Detection

NDM Only NDM + Dermatophyte

Acremonium 0/45 (0%) - -
Alternaria 6/45 (13.3%) 2/6 (33.3%) 4/6 (66.7%)
Aspergillus 17/45 (37.8%) 16/17 (94.1%) 1/17 (5.9%)
Curvularia 11/45 (24.4%) 6/11 (54.5%) 5/11 (45.5%)
Fusarium 9/45 (20%) 9/9 (100%) -
Scopulariopsis 2/45 (4.4%) 2/2 (100%) -
Neoscytalidium 3/45 (6.7%) 3/3 (100%) -

* Of the histopathology-positive samples, NDM detection was positive in 60 samples by PCR and culture; of these
60 samples, detection of the same NDM genus was observed in 45 samples (48 total genus-level agreements).

The identification of PCR- or culture-positive dermatophyte isolates is presented in
Table 5. All dermatophytes detected by PCR (N = 199) and culture (N = 60) were also
positive for hyphae by histopathology (Tables 1 and 2), further confirming their clinical
significance in onychomycosis. Consistent with previous studies, T. rubrum appears to
be the most prevalent dermatophyte species in North America, followed by T. mentagro-
phytes [15,16]. Two cases of possible mixed infections were detected by PCR, whereas none
were detected by culture. Competitive outgrowth of one infecting organism over another
may contribute to the lack of sensitivity of the culture method [15]. Four samples were
not speciated, likely due to the etiological agent not being one of the pre-selected targets
in the identification panel (i.e., T. mentagrophytes complex, T. rubrum complex, M. canis,
M. gypseum, and E. floccosum).

Table 5. Identification of dermatophyte isolates detected by PCR or culture and confirmed by histopathology.

Dermatophytes PCR (N = 199) Culture (N = 60)

T. rubrum complex 172/199 (86.4%) 45/60 (75%)
T. mentagrophytes complex 18/199 (9.0%) 10/60 (16.7%)
Microsporum 1/199 (0.5%) -
Epidermophyton 2/199 (1.0%) 1/60 (1.7%)
Mixed detection
T. rubrum/T. mentagrophytes 1/199 (0.5%) -
T. mentagrophytes/Epidermophyton 1/199 (0.5%) -
Unidentified 4/199 (2.0%) 4/60 (6.7%)

4. Discussion

Traditionally, any dermatophyte detection, whether through PCR or culture, and
regardless of microscopy, has been considered the ‘causative pathogen’ for dermatophytosis
cases [17]. Per our data, we found dermatophyte detections by PCR were highly associated
with the detection of fungal hyphae in histopathology examination, providing strong
evidence that a single PCR detection of a dermatophyte is indeed detecting a pathogenic
organism (Table 1). Culture-positive detection also correlated with positive histopathology,
but overall detection rates were much lower than PCR, reducing the value of this correlation
for cultures (Table 2).

Our data corroborates other findings that PCR provides higher rates of detection of
dermatophytes versus culture [9,18]. Though rates of NDM detection appear lower with
PCR, this is likely due to the restrictions of PCR testing to seven NDM genera. NDMs
here are underestimated; per other studies, a much wider variety of species is likely
detectable in toenails [19–22]. Broader molecular detection of NDM species in correlation
with histopathology would provide a better determination of the utility of single NDM
detection for predicting the positive presence of NDMs in nail samples.
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The limitations of culture detection prevent widespread investigation of the full spec-
trum of organisms in both normal and infected toenails [23]. Instead, a wide variety of
molecular tools are now providing information on the nail mycobiome and the relationship
of fungi to other organisms in healthy and diseased states. There is evidence to suggest
that fungi exist in conjunction with bacteria as a ‘balanced’ commensal microbiome in
many areas of the body, with bacteria aiding the fungi in avoiding host immunity and
pharmaceutical treatment through biofilms [18,19,23–25]. This study had limited NDM and
bacterial detection and therefore cannot support any suggestion of bacterial co-existence
with fungi. However, based on medical literature, we may expect to detect a wider variety
of fungi and bacterial species in nails than has been reported by culture methods. Wider in-
vestigation by molecular methods is necessary to improve the understanding of organismal
presence/interactions in onychomycosis pathology and response to treatment [19].

To determine a significant NDM nail infection, repeat sampling has been deemed
necessary, but obtaining multiple samples can be difficult and significantly delay diagnosis.
Single PCR NDM detections have been criticized for being possible contaminations rather
than causative agents. In this study, we proposed that a positive PCR result for NDMs found
in conjunction with positive histopathology without any dermatophyte detection represents
a ‘clinically significant’ organism in the nail, and we found that all PCR-positive NDM
species in this data met the ‘clinically significant’ criteria (Table 1). It is important to note
that these two methods are complementary and not mutually exclusive, as histopathology
alone cannot provide genus- or species-level identification, while PCR detection alone
cannot indicate the viability of the organism [3]. When repeat sampling is not possible, a
combination of PCR NDM detection and positive histopathological detection of hyphae
may be a suitable proxy for possible NDM infection, particularly where the NDM occurs
without a concomitant dermatophyte.

Though the focus of detection is on finding possible infectious organisms, this data
shows a high correlation between negative PCR and negative histopathology. It is well
known that only 50% of toenail dystrophies have been linked to a fungal infection [26].
The low reliability of culture diagnosis complicates the determination of fungal versus
non-fungal dystrophy. Our data suggests that a negative PCR may be a reliable proxy
for the diagnosis of non-fungal dystrophy when histopathology is also negative. These
findings complement other diagnostic data, which noted that negative PCR was a better
proxy for onychomycosis cure after topical treatment than negative culture [5].

In the midst of an ongoing antifungal resistance epidemic associated with superficial
fungal infections, it has become increasingly important to perform a timely and accurate di-
agnosis prior to the initiation of treatment [10,27]. A recent survey conducted in the United
States found that only 15.3% of physicians perform confirmatory lab testing for patients
suspected of onychomycosis; the rate was higher for dermatologists (31%), compared to
podiatrists (16.9%) and general practitioners (5.2%), with the most common testing method
being histopathology (12%), followed by culture (2.8%) and PCR (2.1%) [28]. Concurrently,
the antifungal resistance epidemic has reached countries outside of its initial outbreak
location, including Canada, Greece, and Japan [27]. A recent study had reported two initial
cases inside the U.S. (December 2021 to March 2023); treatment failure had occurred in
both cases following use of oral terbinafine, and one case was suspected to be the result of
local transmissions [29]. In the same period, we detected mutations conferring decreased
terbinafine susceptibility in the toenail samples of U.S. onychomycosis patients [10]. As
terbinafine is currently the most commonly prescribed antifungal agent due to its low cost,
the spread of resistance development to this agent has the potential to incur significant
healthcare burdens [28]. Faced with this impending challenge, healthcare professionals
may benefit by adopting the practice of antifungal stewardship and incorporating routine
confirmatory testing into their practice [30]. With the exception of patients presenting
with pre-existing mechanical damages to the nail matrix, appropriate antifungal treatment
will increase the likelihood of clinical improvements and patient satisfaction, in addi-
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tion to minimizing unnecessary antifungal exposure leading to the selection of resistance
mutations [31].

Limitations to the use of molecular diagnostics include the use of pre-selected detec-
tion targets, contamination, a lack of viability indication, as well as general availability and
cost [3]. The utility of molecular techniques in onychomycosis is supported by the demon-
strated superiority of the technology over traditional fungal culture [9,18]. Several elements
may dictate the cost profile of a given test, including utilization profiles, automation, and, as
is the current case with onychomycosis, conscientious assay design [32]. As with any newer
technology, increased adoption over time tends to lead to reduced production costs and
improved cost effectiveness of specific components. While PCR technologies are relatively
well automated currently, multiplex assay designs and continual assay improvements
act in conjunction to lower the overall cost burden of this technology while improving
diagnostic capabilities. The current assay design includes fungal organisms most likely to
be pathogenic but does not include a complete coverage of organisms found in the nail
mycobiome, as the latter would be cost prohibitive. With the increasingly recognized role
of other potential pathogenic organisms in onychomycosis and the need for expansion of
detection targets to optimize treatment, newer technologies can be employed by physicians
to maintain an acceptable cost profile with improved diagnostic accuracy.

Another limitation of the current data set is the possible bias associated with sample
selection. Analyzed samples were based on the physician’s ordering patterns, which
included histochemical examination and PCR evaluation. The larger size of toenail samples
required for completion of all diagnostic procedures (PCR, culture, and histopathology)
could potentially overrepresent patients with higher disease severity, although the degree
of any impact on the conclusions drawn is uncertain. The aim of this study was to interpret
the diagnostic testing methods through both direct comparisons and cross-referencing with
histopathology; therefore, we feel that any potential bias would have minimal impact and
represent a form of ever-present sampling bias.

5. Conclusions

Despite its higher cost, PCR diagnosis of onychomycosis has demonstrated improved
utility over fungal culture, particularly when used in conjunction with histopathological
evaluation of the nail plate and subungual keratin. The current data demonstrates that
when repeat sampling is not possible, a combination of PCR NDM detection and positive
histopathological detection of hyphae may be a suitable proxy for possible NDM infection,
particularly where the NDM occurs without a concomitant dermatophyte. A negative PCR
may be a reliable proxy for the diagnosis of non-fungal dystrophy when histopathology
is also negative. More access to molecular methods is needed to widen clinicians’ ability
to diagnose onychomycosis, both prior to and following treatment. Improved diagnosis
is also essential for expanding our knowledge of the nail mycobiome and our clinical
understanding of onychomycosis pathology.
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