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Abstract: Soil fungal community characteristics of alpine timberlines are unclear. In this study, soil
fungal communities in five vegetation zones across timberlines on the south and north slopes of Sejila
Mountain in Tibet, China were investigated. The results show that the alpha diversity of soil fungi
was not different between the north- and south-facing timberlines or among the five vegetation zones.
Archaeorhizomyces (Ascomycota) was a dominant genus at the south-facing timberline, whereas the
ectomycorrhizal genus Russula (Basidiomycota) decreased with decreasing Abies georgei coverage and
density at the north-facing timberline. Saprotrophic soil fungi were dominant, but their relative abun-
dance changed little among the vegetation zones at the south timberline, whereas ectomycorrhizal
fungi decreased with tree hosts at the north timberline. Soil fungal community characteristics were
related to coverage and density, soil pH and ammonium nitrogen at the north timberline, whereas
they had no associations with the vegetation and soil factors at the south timberline. In conclusion,
timberline and A. georgei presence exerted apparent influences on the soil fungal community structure
and function in this study. The findings may enhance our understanding of the distribution of soil
fungal communities at the timberlines of Sejila Mountain.

Keywords: soil fungal diversity; fungal community structure; functional composition; tree density;
timberline ecotone

1. Introduction

Alpine timberline, an ecological transition zone from forest to alpine krummholz, is
one of the most important climate-driven ecological boundaries [1]. In ecotones, mountain
forests gradually transition to scrubland or grassland habitats with an increase in altitude.
Global warming is conducive to the regeneration and growth of high-altitude forests and
has led to the upward climb of timberlines [2,3]. Concomitantly, the tree size, density and
coverage at timberlines also change [2,3].

At timberlines, tree distribution results in various habitat patches with different
climate [4,5], hydrology [6], soil and biological characteristics [7], providing a diverse
microenvironment available for soil microorganisms. Soil–vegetation interactions of tim-
berlines are strongly closed to soil fungal taxa with diverse ecological functions [8]. Tree
species may also mediate the soil fungal community [9]; for example, dominant tree species
at timberlines are cold-resistant coniferous trees, most of which are ectomycorrhizal. Ec-
tomycorrhizal fungi promote nutrient absorption [10,11], the stress resistance [12,13] of
trees and the establishment of seedlings [14,15] at timberlines. Ectomycorrhizal fungi rely
on their hosts to spread, and a decrease in their richness with a rise in elevation can be
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observed at timberlines [8], but the decreased species richness is not necessarily linked to
the decreased ectomycorrhizal symbiosis; for example, there is no host effect on ectomycor-
rhizal fungal richness, and even an increase in species richness with a host decrease can
also be observed [16]. Therefore, the ectomycorrhizal species richness is not contrary to the
presented important role of ectomycorrhizal symbiosis for certain tree species. While the
ectomycorrhizal abundance increases with the host density, the dominant role of certain
ectomycorrhizal taxa may result in a decrease in ectomycorrhizal species richness. Certainly,
other potential factors also act on the richness of ectomycorrhizal fungi, such as the soil
C/N [16] or pH of the timberlines [17]. Suillus, Tomentella and Cortinarius of Basidiomycota
and Cenococcum of Ascomycota are dominant genera of ectomycorrhizal fungi at several
timberlines all over the world [16,18–20].

Saprophytic fungi are devoted to the decomposition of soil organic matter for promot-
ing the soil nutrient cycle [21]. Soil saprotrophic fungi are usually more abundant under
forests than shrubs at timberlines; for instance, Mucoromycota [22]. Saprotrophic fungi
from Basidiomycota, Ascomycota and Zygomycota also occur frequently in soils from
timberline forests, which are rich in wooden substrates [20]. These saprophytic fungi are
believed to promote the turnover of soil organic matter in these harsh ecosystems together
with ectomycorrhizal fungi [22].

At present, reports on the soil fungi of timberlines are very limited. We know that the
changes in the soil fungal community occur along the elevation gradient due to the tree
height [8], but tree species and obvious transitional differences in the number and spatial
distribution of trees at different timberline zones with different vegetation characteristics
also result in soil environmental heterogeneity [8,23]. For instance, in the Shenlongjia
timberline ecotone, the shrubbery has a considerable amount of total and available phos-
phorus in the soil compared to the coniferous forest, but the soil pH and humidity levels
are reversed [20]. Furthermore, in Changbai Mountains, the soil in the tree islands within
the birch timberline ecotone has a significantly higher water content, total carbon and
total nitrogen than open areas at equal elevation [23]. These soil heterogeneity effects
related to timberline vegetation on the soil fungi community of timberlines need to be
further explored.

Sejila Mountain is located in southeast Tibet, China, and is characterized by natural
alpine timberlines (an altitude of over 4000 m). As the received solar radiation at the
timberline on the south slope of Sejila Mountain is six times as much as that on the north
slope, the heliophile Sabina saltuaria and shade-tolerant Abies georgei are the dominant
tree species at the timberlines on the south and north slopes, respectively. Studies have
confirmed the ectomycorrhizae associations between A. georgei and Basidiomycetes (e.g.,
Russulaceae, Cortinariaceae and Amanitaceae) [24,25], whereas no evidence for a symbiotic
relationship between S. saltuaria or genus Sabina and fungi has been found so far, and
even the distribution of soil saprotrophic fungi remains unknown at the timberlines of
Sejila Mountain. It is urgent to note that the timberline in southeast Tibet has risen 69 m
in the past 100 years [3]. Therefore, this research investigated the soil fungal community
characteristics at the north- and south-facing timberlines of Sejila Mountain to describe soil
fungal community characteristics at the timberlines and clarify the relationship between soil
fungal communities and vegetation and soil factors. The fundings will provide important
reference value for accurately understanding the role of soil fungi in the changing timberline
ecosystems under climate change. Because dominant plants have a great impact on soil
fungal community assembly [8,9], we assumed that the mycorrhizal fungi are mainly
affected by host distribution, and therefore the diversity, composition and function of
mycorrhizal fungi is expected to change with the decrease in mycorrhizal host species.

2. Materials and Methods
2.1. Study Site

This study was conducted at the Sejila Mountain (29◦10′–30◦15′ N, 93◦12′–95◦35′ E,
2200 m–5400 m a.s.l.), located in Nyingchi, Tibet, China [26]. The mountain comprises
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part of the dark coniferous forest in southeast Tibet. The Sejila Mountain is located in the
transition zone between semi-humid and humid areas in southeast Tibet. The mountain
extends from northwest to southeast, forming a large range of east–west slope. This region
is characterized by sub-alpine temperate semi-humid climate, warm winter, cool summer
and distinctive dry and wet seasons. The region has an annual average temperature of
2.0 ◦C–4.5 ◦C. The highest and lowest monthly average temperatures of the region are
11.1 ◦C (July) and −14.0 ◦C (January), respectively [27]. The region has an average annual
relative humidity of 78.8% and average annual evaporation of 544 mm, accounting for
48.0% of the average annual precipitation (1134 mm). The precipitation in spring and
summer accounts for 79.4% of the annual precipitation [27]. The soil in the region is mainly
mountain brown soil and acid brown soil (pH = 4–6) [26].

The investigated timberlines of Sejila Mountain were divided into the timberline on
the south slope (hereinafter referred to as south timberline) and the timberline on the north
slope (hereinafter referred to as north timberline). In general, timberline ecotones consist
of forest line, tree line and tree species line [28,29]. The forest line is the upper limit of
the closed forest, with a canopy density ≤ 0.2. The tree line is the altitude at which the
tree height is less than 5 m. The tree species line is the highest altitude of tree growth and
comprises the upper limit for growth of isolated dwarf, curved trees. The closed forest is
below the forest line and the scrubland is above the tree species line [30]. According to
this, five vegetation zones along elevational gradients (<200 m) at the two timberlines were
sampled: closed forest (F), forest line (FL), tree line (TL), tree species line (TSL) and shrub
(S) [31]. In this study, the closed forests mainly consisted of Sabina saltuaria at the south
timberline and Abies georgei at the north timberline. The alpine shrubs were dominated by
Rhododendron tanastylum. This is a shrub widely spread under the tree canopies and the
open areas of the timberlines, occurring together with Rhododendron aganniphum. The tree
coverage and density of S. saltuaria and A. georgei significantly decreased from the closed
forests to the shrubs, whereas the coverage of R. tanastylum increased. The geographical
location of the study areas is shown in Figure 1. Information on the study sites is shown in
Table 1.
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Table 1. Environmental characteristics of study sites.

Timberline Sites a Vegetation Zones Altitude (m) Slope Degree (◦) Dominant Vegetation

South F 4280–4287 18~28 S. saltuaria, R. aganniphum, R. nyingchiens
FL 4335–4360 11~17 S. saltuaria, R. aganniphum, R. nyingchiens
TL 4354–4380 10~25 R. aganniphum, R. nyingchiense, S. saltuaria

TSL 4384–4390 6~18 R. aganniphum, R. nyingchiense
S 4390–4416 1~7 R. aganniphum

North F 4223–4250 18–23 A. georgei, R. aganniphum, R. nyingchiense
FL 4321–4339 8~18 A. georgei, R. aganniphum, R. nyingchiense
TL 4353–4370 11~15 R. aganniphum, R. nyingchiense, A. georgei

TSL 4387–4392 13~18 R. aganniphum, R. nyingchiense
S 4403–4412 12~21 R. aganniphum

a F, forest; FL, forest line; TL, tree line; TSL, tree species line; S, shrub; S. saltuaria, Sabina saltuaria; A. georgei, Abies
georgei; R. aganniphum, Rhododendron aganniphum; R. nyingchiense, Rhododendron tanastylum.

2.2. Plot Setting and Vegetation Survey

In mid-August 2019, three 20 m × 20 m plots were set up at each of the five vegetation
zones at each timberline. The replicate plots were placed at least 50 m apart perpendicular
to the elevational gradient. A total of thirty plots were established in this study. Species
and coverage of trees and shrubs in each plot were recorded. Tree individual numbers were
also recorded.

2.3. Sample Collection

Soils were sampled in each plot in an S-shape manner to cover the entire plot [32].
After removing litter and organic layers, a soil drill (diameter, 50 mm) was used to collect
15 soil cores (0–20 cm) from each plot to increase sample representativeness [32]. The soil
samples were sealed in sterilized bags, marked and transported to the laboratory. The soils
were sieved through a 2 mm sieve to remove gravels and roots. The soils with same fresh
weight were taken from the soil samples of the same plot and then evenly pooled to form
1 composite soil sample. A total of 30 composite soil samples (2 slope aspects× 5 vegetation
zones × 3 repeat plots) were obtained. The composite samples were then divided into
two parts: one part was stored at −80 ◦C for subsequent microbiological analysis and the
other part was air-dried to analyze soil chemical characteristics. A volumetric soil sampler
(100 cm3) was used to collect an extra soil sample from each plot at a depth of 10 cm to
analyze the soil physical characteristics.

2.4. Determination of Soil Physical and Chemical Properties

Soil porosity, soil bulk density and field holding water capacity were analyzed using
the volumetric soil samplers following the methods described by State Forestry Adminis-
tration [33]. The air-dried soil samples were sieved using a 0.15 mm sieve and then used
for the analysis of soil pH, soil organic carbon, total nitrogen, total phosphorus, ammonium
nitrogen and available phosphorus. The determination of these soil chemical indexes
followed Lu’s experimental manual [32]. An electrode method with a 1:5 soil:water ratio
was used to determine soil pH using a pH meter (PHSJ-5, Leici, Shanghai, China). Soil
organic carbon and total nitrogen contents were determined via the potassium dichromate
oxidation and Kjeldahl methods. Total phosphorus and available phosphorus contents were
determined via the molybdenum antimony ascorbic acid colorimetry method, whereas
ammonium nitrogen content was determined via the indigo blue colorimetry method.

2.5. High-Throughput Sequencing of Soil Fungi
2.5.1. Soil Fungal Genomic DNA Extraction and PCR Amplification

PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) was used
to extract soil fungal genomic DNA from 0.5 g fresh soil sample following the manu-
facturer’s protocol. The quality of genomic DNA was determined via electrophoresis
using 1.2% agarose gel. The fungal ITS1 region was amplified using the universal primers
ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′, coverage 89.8%) [34,35] and ITS2R (5′-
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GCTGCGTTCTTCATCGATGC-3′, coverage 93.7%) [35,36]. The PCR reaction system con-
tained 4 µL of 5 × Fastpfu buffer, 2 µL of 2.5 mmol/L dNTPs, 0.8 µL of forward primer
(5 mol/L), 0.8 µL of reverse primer (5 mol/L), 0.4 µL FastPfu Polymerase, 0.2 µL BSA and
10 ng template DNA, and was then supplemented with ddH2O to 20 µL. The PCR reaction
conditions were: pre-denaturation at 95 ◦C for 3 min, 35 cycles × (denaturation at 95 ◦C
for 30 s, renaturation at 55 ◦C for 30 s, extension at 72 ◦C for 45 s), extension at 72 ◦C for
10 min and incubation at 10 ◦C before sequencing. Each sample was run in triplicates. The
PCR amplicons of different soil samples were homogenized to 10 nmol/L and mixed in
equal volume for library construction.

2.5.2. Library Construction and Sequencing

The library was constructed using TruSeq® DNA PCR-Free Sample Preparation Kit.
The library was then quantified using qubit and Q-PCR methods. Library sequencing was
conducted using Illumina NovaSeq 6000. Each sample was tagged based on the barcode
sequence and PCR-amplified primer sequence. Reads of each sample were flashed (V1.2.11,
http://ccb.jhu.edu/software/FLASH/ (accessed on 20 May 2023)) [37] and spliced after
the interception of the barcode and primer sequence. The spliced sequence represented
raw tags, which were filtered [38] to obtain high-quality tags (clean tags). Quality control
for the tags was conducted using QIIME (V1.9.1, http://qiime.org/scripts/split_libraries_
fastq.html (accessed on 20 May 2023)) [39]. The process was as follows: (1) tag interception:
raw tags were cut from the first low-quality base site with continuous low-quality value
(default quality threshold < 19) and the base number reached the set length (default length
value, 3); (2) length filtering of tags: the data set of tags obtained by intercepting tags
was further filtered to obtain a continuous high-quality base length less than 75% of the
tags length. Tag sequences obtained after quality control were compared with the species
annotation database to detect chimeric sequences (https://github.com/torognes/vsearch/
(accessed on 20 May 2023)) [40]. The final effective tags were obtained by removing chimeric
sequences [41]. The details for specific data preprocessing and quality control are shown
in Supplementary Table S1. The sequenced raw data were uploaded on the NCBI SRA
(accession number; PRJNA785564) (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA785
564 (accessed on 20 May 2023)).

2.5.3. OTU Clustering and Taxonomic Annotation

High-quality sequences were clustered using UPARSE (V11, http://www.drive5
.com/uparse/ (accessed on 20 May 2023)) [42] into OTUs (operational taxonomic units)
with 97% similarity threshold. The sequence with the highest frequency in an OTU was
selected as the representative sequence of that OTU. The blast method in QIIME (V1.9.1)
(http://qiime.org/scripts/assign_taxonomy.html (accessed on 20 May 2023)) [39] and
UNITE (V8.3) databases (https://unite.ut.ee/ (accessed on 20 May 2023)) [43] were used to
annotate OTUs taxonomically (kingdom, phylum, class, order, family and genus, species).
Multiple sequence alignment was conducted using MUSCLE (V5, http://www.drive5.com/
muscle/ (accessed on 20 May 2023)) [44] to explore the phylogenetic relationship among
all OTU representative sequences. The data for each sample were rarefied to the number
of sequence reads obtained in the sample with the least amount of data (48,579 reads).
After this, all the samples had saturating species accumulation curves (Supplementary
Figure S1), indicating that the sequencing depth was sufficient and that fungal diversity
in the soil samples was effectively covered by sequencing. Thus, subsequent fungal
diversity and community structure analyses were conducted based on the rarefied data.
The workflow for sequencing, quality control and OTU annotation is shown in Figure 2.
FUNGuild is a functional annotation tool used to predict the functional composition of soil
fungal communities of fungal amplicons obtained through high-throughput sequencing
and other methods. However, it can only annotate information of fungal species on
trophic-mode levels (pathotroph, symbiotroph and saprotroph). The modes can be further
subdivided into multiple guides. Each guide comprises the species with similar absorption
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and utilization of environmental resources [45]. Herein, the ecological function of soil fungi
was described based on the mode and guild levels.
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2.6. Data Analysis

In order to determine differences between the two timberlines in soil fungi, the north
and south timberlines were indicated by “1” and “2”, respectively. Rarefaction curves were
generated using R (V3.6.3) [46]. Venn diagrams were drawn using the R and VennDiagram
(V1.7.1) package to show the quantitative distribution of soil fungal OTUs of different tim-
berlines and vegetation zones [47]. The data were tested for homogeneity of variance before
alpha diversity analysis. Levene’s test was conducted using R and car (V3.0.12) to check
whether the data variances of timberlines and vegetation zones were equal (p > 0.05) [48]. If
necessary, the data were log-transformed to obtain equal variances. Two-way ANOVA was
used to test differences in vegetation and soil factors, soil fungal diversity indices between
the two timberlines and the five vegetation zones using R. The tested alpha diversity indices
were: observed species, Shannon entropy of counts (Shannon), Simpson’s index (Simpson),
Chao1 richness estimator (Chao1), abundance-based coverage estimator (ACE), Faith’s
phylogenetic diversity metric (PD) and Good’s coverage of counts (Goods_coverage). An
alpha diversity package of the scikit-bio development team (http://scikit-bio.org/docs/
latest/generated/skbio.diversity.alpha.html#module-skbio.diversity.alpha (accessed on 20
May 2023)) was used to calculate the indices. The data are expressed as mean ± standard
deviation (SD).

The R and ggplot2 (V3.3.5) package [49] were used to show the accumulative bar
diagrams, representing the relative abundance of soil fungal phyla and predicted fungal
modes of each vegetation zone. Heat maps were generated using the R and pheatmap
(V1.0.12) package [50] to show the relative abundance of the top 10 fungal genera and
fungal guilds of each vegetation zone. The sample differences in species complexity were
evaluated using beta diversity analysis. Beta diversity of the weighted UniFrac distance was
calculated using QIIME (V1.9.1). PERMANOVA tests (permutation = 999) based on Bray–
Curtis distance were conducted using the R and vegan (V2.5.7) package to determine the
soil fungal community structure differences [51]. The similarity in soil fungal community
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structure of different timberlines and vegetation zones was analyzed using a principal
coordinate analysis (PCoA) in R and ggplot2 package.

The relationships among fungal, vegetative and edaphic factors were assessed using
redundancy analysis (RDA) and Pearson correlation. The data were standardized using z-
score for data uniformity before RDA analysis. Multicollinearity factors (variance inflation
factor > 10) for vegetation and soil were excluded from analysis. RDA (permutation = 999)
was conducted based on the standardized data. Canoco (V5.0) was used for RDA analy-
sis [52]. Pearson correlation was performed in R (V3.6.3) [46].

3. Results
3.1. Vegetation and Soil Characteristics
3.1.1. Vegetation

The two-way ANOVA (Table 2) showed that tree density (F = 5.21, p = 0.03) at the
north timberline was significantly higher than that at the south timberline. Shrub coverage
(F = 11.72, p < 0.01) in the shrublands surpassed that in the forests and forest lines. Moreover,
tree coverage (F = 111.73, p < 0.01) and density (F = 25.14, p < 0.01) were considerably
greater in the forests and lower in the shrublands compared to the other four vegetation
zones, respectively. The interaction between the timberline site and vegetation zone had a
significant effect on shrub coverage (F = 3.18, p = 0.04). Specifically, at the south timberline,
shrub coverage in the forest was lower than that in the other vegetation zones, and increased
gradually from forest to shrubland. Tree coverage and density, however, were highest in
the forest compared to other zones, exhibiting a decline from forest to shrubland. The trend
on the north timberline was similar, but shrub coverage in the shrubland was significantly
higher than that in the forest and forest line. Nonetheless, tree coverage and density were
substantially greater in the forest than in the other vegetation zones.

Table 2. Vegetation factors at the south and north timberlines of Sejila Mountain.

Timberline
Sites

Vegetation
Zones

Vegetation Factors a

SC (%) TC (%) TD (Trees/hm2)

South F 56.67 ± 16.07 b 65.00 ± 5.00 a 341.67 ± 160.73 a
FL 81.67 ± 2.89 a 46.67 ± 7.64 b 175.00 ± 66.14 b
TL 85.00 ± 5.00 a 30.00 ± 5.00 c 58.33 ± 14.43 bc

TSL 91.67 ± 5.77 a 13.33 ± 2.89 d 41.67 ± 14.43 bc
S 91.67 ± 5.77 a 0.00 ± 0.00 e 0.00 ± 0.00 c

Mean 81.33 ± 15.17 31.00 ± 24.29 123.33 ± 144.07
North F 78.33 ± 7.64 b 65.00 ± 13.23 a 400.00 ± 125.00 a

FL 80.00 ± 5.00 b 43.33 ± 5.77 b 308.33 ± 62.92 a
TL 86.67 ± 2.89 ab 36.67 ± 2.89 b 166.67 ± 62.92 b

TSL 86.67 ± 7.64 ab 18.33 ± 2.89 c 50.00 ± 25.00 bc
S 95.00 ± 0.00 a 0.00 ± 0.00 d 0.00 ± 0.00 c

Mean 85.33 ± 7.67 32.67 ± 23.59 185.00 ± 167.12
FTimberline 2.36 0.61 5.21
PTimberline 0.14 0.44 0.03

FZone 11.72 111.73 25.14
PZone 0.00 0.00 0.00

FTimberline×Zone 3.18 0.73 0.96
PTimberline×Zone 0.04 0.58 0.45

a Lowercase letters indicate significant differences between different vegetation zones at the same timberline. SC,
shrub coverage; TC, tree coverage; TD, tree density; F, forest; FL, forest line; TL, tree line; TSL, tree species line;
S, shrub.

3.1.2. Soil

The two-way ANOVA (Table 3) indicated that the soil field water-holding capacity
(F = 6.14, p = 0.02) at the north timberline was significantly higher than that at the south
timberline, while the soil bulk density (F = 3.16, p = 0.04) in the forests and tree lines
was significantly higher than that in the tree species lines. There was also a significant
interaction between the timberline site and vegetation zone regarding soil bulk density
(F = 4.00, p = 0.02). Specifically, the soil bulk density in the forest at the south timberline
displayed a notably higher value than that in other vegetation zones, while the soil field
water-holding capacity in the tree species line surpassed both the forest and shrubland by a
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significant margin. At the north timberline, only the tree line’s soil bulk density displayed
a significant elevation from other vegetation zones.

The soil pH (F = 45.21, p < 0.01) and available phosphorus content (F = 27.80, p < 0.01)
were significantly higher at the south timberline when compared to the north timberline,
whereas the soil ammonium nitrogen content (F = 13.84, p < 0.01) was significantly higher
at the north timberline (Table 3). The available phosphorus content (F = 3.56, p = 0.02) was
significantly higher in the forests than in the other three vegetation zones, except for tree
lines. Moreover, the interaction between the timberline site and vegetation zone had a
significant effect on soil pH (F = 16.30, p < 0.01), total phosphorus (F = 5.04, p = 0.01) and
ammonium nitrogen (F = 3.83, p = 0.02). The pH levels in the south timberline’s forest and
forest line were notably distinct from other vegetation zones, while the soil organic carbon
concentration in the shrubland was considerably higher than that in the forest. Furthermore,
the total phosphorus content of the tree line was significantly greater than shrub. On the
other hand, the north timberline exhibited lower soil pH and available phosphorus levels
in the forest compared to other vegetation zones. Additionally, the forest and tree line had
a significantly higher soil ammonium nitrogen content than the tree species line and shrub.

The soil C/N (F = 87.27, p < 0.01) was significantly higher at the north timberline
than at the south timberline, while shrublands had a significantly higher C/N (F = 36.02,
p < 0.01) than the other vegetation zones (Table 3). Additionally, soil C/N (F = 17.68,
p < 0.01) and C/P (F = 3.63, p = 0.02) were significantly affected by the interaction between
the timberline site and vegetation zone. Notably, the C/N and C/P of shrub at the south
timberline were significantly higher than those of other vegetation zones, while the N/P
of shrub was significantly higher than that of the forest and tree line. Finally, the C/N of
shrub at the north timberline was significantly higher than that of other vegetation zones,
except for the forest line.

3.2. Overview of High-Throughput Sequencing

A total of 2,718,759 raw paired-end (PE) reads were obtained from all samples. Samples
had 77,454–99,866 reads (average: 90,625). A total of 1,952,609 effective reads were obtained
after filtering steps. The samples had average effective reads of 65,087 (range: 49,412–69,415).

3.3. Soil Fungal Diversity

Alpha diversity indices were not significantly different between the timberlines and
vegetation zones, and there was no interaction between these factors (F = 1.333–3.568,
p = 0.073–0.262, Table 4, Figure S1).
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Table 3. Soil factors at the south and north timberlines of Sejila Mountain.

Timberline
Sites

Vegetation
Zones

Soil Factors a

SP SBD FWHC pH SOC TP TN AN AP C/N C/P N/P(%) (g/cm3) (%) (g/kg) (g/kg) (g/kg) (mg/kg) (mg/kg)

South

F 60.00 ± 2.91 a 0.97 ± 0.21 a 55.44 ± 11.05 b 5.58 ± 0.02 a 72.98 ± 17.77 b 0.75 ± 0.03 ab 3.40 ± 0.65 a 47.50 ± 9.66 a 2.14 ± 0.04 a 21.27 ± 1.41 c 97.11 ± 21.52 b 4.54 ± 0.79 b
FL 98.15 ± 54.11 a 0.49 ± 0.28 b 102.55 ± 30.52 ab 5.36 ± 0.17 a 104.58 ± 17.03 ab 0.75 ± 0.10 ab 5.00 ± 1.40 a 60.08 ± 1.91 a 1.79 ± 0.14 a 21.38 ± 2.55 c 139.39 ± 6.40 b 6.61 ± 1.16 ab
TL 73.16 ± 2.94 a 0.52 ± 0.24 b 120.83 ± 62.71 ab 5.02 ± 0.18 b 131.09 ± 29.51 ab 0.81 ± 0.06 a 4.99 ± 1.17 a 77.50 ± 20.91 a 2.74 ± 1.08 a 26.31 ± 0.28 b 162.51 ± 40.89 b 6.19 ± 1.62 b

TSL 74.62 ± 2.95 a 0.36 ± 0.15 b 138.39 ± 31.62 a 4.90 ± 0.17 b 138.54 ± 30.23 ab 0.66 ± 0.05 bc 5.02 ± 0.99 a 68.25 ± 12.73 a 1.97 ± 0.48 a 27.55 ± 0.68 b 211.13 ± 40.73 ab 7.64 ± 1.29 ab
S 74.33 ± 5.32 a 0.54 ± 0.06 b 109.52 ± 4.82 ab 4.86 ± 0.05 b 182.22 ± 79.28 a 0.57 ± 0.06 c 5.85 ± 2.45 a 76.75 ± 43.37 a 1.54 ± 1.57 a 30.99 ± 0.62 a 319.26 ± 125.41 a 10.26 ± 3.86 a

Mean 76.05 ± 24.26 0.58 ± 0.27 105.35 ± 41.02 4.86 ± 0.31 125.88 ± 51.54 0.71 ± 0.10 4.85 ± 1.49 66.02 ± 22.43 2.03 ± 0.85 25.50 ± 4.04 185.88 ± 94.93 7.05 ± 2.62

North

F 65.43 ± 4.36 a 0.23 ± 0.10 b 165.69 ± 87.40 a 4.26 ± 0.15 b 139.47 ± 14.82 a 0.62 ± 0.06 a 5.20 ± 0.54 a 127.08 ± 14.13 a 2.22 ± 0.35 a 26.83 ± 0.50 d 223.37 ± 12.49 a 8.33 ± 0.59 a
FL 67.53 ± 3.71 a 0.26 ± 0.16 b 168.39 ± 58.68 a 4.71 ± 0.19 a 161.81 ± 96.66 a 0.60 ± 0.06 a 5.32 ± 3.12 a 106.25 ± 46.90 ab 0.35 ± 0.15 b 30.26 ± 0.43 ab 262.84 ± 131.61 a 8.65 ± 4.23 a
TL 67.12 ± 7.82 a 0.53 ± 0.22 a 96.90 ± 18.80 a 4.93 ± 0.25 a 154.84 ± 35.05 a 0.70 ± 0.06 a 5.45 ± 1.15 a 119.75 ± 15.08 a 0.52 ± 0.23 b 28.36 ± 0.43 c 221.52 ± 49.41 a 7.80 ± 1.61 a

TSL 73.79 ± 8.50 a 0.20 ± 0.05 b 184.94 ± 70.43 a 4.82 ± 0.14 a 126.46 ± 8.77 a 0.65 ± 0.06 a 4.31 ± 0.23 a 63.25 ± 6.95 b 0.50 ± 0.08 b 29.33 ± 1.04 bc 194.46 ± 24.18 a 6.64 ± 0.87 a
S 63.69 ± 7.35 a 0.29 ± 0.10 ab 130.75 ± 34.92 a 4.89 ± 0.26 a 151.23 ± 46.05 a 0.71 ± 0.10 a 4.92 ± 1.51 a 70.25 ± 7.65 b 0.40 ± 0.15 b 30.72 ± 0.20 a 209.58 ± 39.71 a 6.82 ± 1.31 a

Mean 67.51 ± 6.63 0.30 ± 0.17 149.33 ± 59.89 4.72 ± 0.30 151.23 ± 46.05 0.66 ± 0.08 5.04 ± 1.46 97.32 ± 33.33 0.80 ± 0.76 29.10 ± 1.53 222.35 ± 60.89 7.65 ± 2.00
FTimberline 1.71 19.20 6.14 45.21 1.51 3.83 0.11 13.84 27.8 87.27 2.4 0.6
PTimberline 0.21 2.88 0.02 0.00 0.23 0.06 0.74 0.00 0.00 0.00 0.14 0.45

FZone 1.03 3.16 1.22 1.05 1.31 2.71 0.50 1.81 3.56 36.02 2.06 0.85
PZone 0.41 0.04 0.33 0.40 0.30 0.06 0.74 0.17 0.02 0.00 0.12 0.51

FTimberline×Zone 0.88 4.00 1.59 16.3 1.24 5.04 0.73 3.83 2.57 17.68 3.63 2.71
PTimberline×Zone 0.49 0.02 0.22 0.00 0.32 0.01 0.58 0.02 0.07 0.00 0.02 0.06

a Lowercase letters indicate significant differences between different vegetation zones at the same timberline. F, forest; FL, forest line; TL, tree line; TSL, tree species line; S, shrub; SC,
shrub coverage; TC, tree coverage; TD, tree density; SP, soil porosity; SBD, soil bulk density; FWHC, field water-holding capacity; SOC, soil organic carbon; TN, total nitrogen; TP, total
phosphorus; AN, ammonium nitrogen; AP, available phosphorus; C/N, carbon-to-nitrogen ratio; C/P, carbon-to-phosphorus ratio; N/P, nitrogen-to-phosphorus ratio.

Table 4. Soil fungal diversity at the south and north timberlines of Sejila Mountain.

Timberline
Sites Vegetation Zones OS ACE Chao1 Shannon Simpson Goods_Coverage PD

South F 744 ± 109 a 870.534 ± 122.140 a 831.879 ± 125.155 a 5.665 ± 0.570 a 0.943 ± 0.023 a 0.997 ± 0.001 a 209.136 ± 33.325 a
FL 665 ± 121 a 800.677 ± 123.711 a 764.611 ± 121.938 a 5.413 ± 0.472 a 0.943 ± 0.015 a 0.997 ± 0.001 a 181.342 ± 30.852 a
TL 676 ± 204 a 807.454 ± 230.070 a 766.311 ± 231.254 a 5.425 ± 1.257 a 0.929 ± 0.066 a 0.997 ± 0.001 a 186.111 ± 66.182 a

TSL 657 ± 52 a 790.033 ± 65.099 a 759.933 ± 70.602 a 5.676 ± 0.326 a 0.953 ± 0.011 a 0.997 ± 0.001 a 179.771 ± 14.494 a
S 714 ± 32 a 867.160 ± 47.436 a 823.505 ± 33.026 a 5.307 ± 0.510 a 0.922 ± 0.044 a 0.996 ± 0.001 a 188.148 ± 18.947 a

Mean 691 ± 107 827.172 ± 118.663 789.248 ± 118.057 5.497 ± 0.616 0.938 ± 0.034 0.997 ± 0.001 188.902 ± 33.486
North F 603 ± 46 a 751.066 ± 124.208 a 718.568 ± 105.106 a 4.542 ± 0.130 a 0.869 ± 0.019 a 0.997 ± 0.001 a 167.133 ± 27.693 a

FL 586 ± 70 a 693.782 ± 95.361 a 660.492 ± 76.691 a 5.000 ± 0.799 a 0.916 ± 0.062 a 0.997 ± 0.001 a 156.946 ± 31.501 a
TL 712 ± 153 a 871.145 ± 173.517 a 823.665 ± 169.359 a 4.983 ± 0.976 a 0.877 ± 0.108 a 0.997 ± 0.001 a 190.444 ± 47.168 a

TSL 609 ± 22 a 722.291 ± 32.316 a 694.143 ± 18.849 a 5.173 ± 0.545 a 0.922 ± 0.034 a 0.997 ± 0.000 a 165.631 ± 7.974 a
S 655 ± 111 a 767.896 ± 121.008 a 739.167 ± 124.540 a 5.456 ± 0.416 a 0.941 ± 0.019 a 0.997 ± 0.000 a 172.730 ± 35.279 a

Mean 633 ± 92 761.236 ± 118.176 727.207 ± 109.594 5.031 ± 0.626 0.905 ± 0.057 0.997 ± 0.001 170.577 ± 29.819
FTimberline 2.229 2.038 1.905 3.568 3.304 1.333 2.047
PTimberline 0.151 0.169 0.183 0.073 0.084 0.262 0.168

FZone 0.499 0.610 0.518 0.237 0.619 0.292 0.373
PZone 0.736 0.660 0.723 0.914 0.654 0.880 0.825

FTimberline × Zone 0.532 0.527 0.474 0.668 0.725 1.125 0.347
PTimberline × Zone 0.714 0.717 0.754 0.622 0.585 0.373 0.843

a Lowercase letters indicate significant differences between different vegetation zones at the same timberline. F, forest; FL, forest line; TL, tree line; TSL, tree species line; S, shrub; OS,
observed species; Shannon, Shannon entropy of counts; Simpson, Simpson’s index; Chao1, Chao1 richness estimator; ACE, abundance-based coverage estimator; Goods_coverage,
Good’s coverage of counts; PD, Faith’s phylogenetic diversity metric; Timberline, timberline site; Zone, vegetation zone.
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3.4. Soil Fungal Community Composition
3.4.1. Relative Abundance of Soil Fungal Phyla and Genera

Soil fungi were classified into 12 phyla, 43 classes, 104 orders, 201 families, 343 genera
and 311 species. Notably, soil fungal communities of the two timberlines were dominated
by Basidiomycota (12–80%) and Ascomycota (10–57%) (Figure 3). An obvious change in
relative abundance from Basidiomycota to Ascomycota was observed with higher elevation
at the north timberline. The relative abundance of Basidiomycota significantly decreased
from forest (71%) to shrub (19%). On the contrary, the relative abundance of Ascomycota
increased from forest (16%) to shrub (53%) (Figure 3). The relative abundance of Ascomy-
cota was higher compared with that of Basidiomycota at all vegetation zones of the south
timberline. Across all vegetation zones, the relative abundance of Mortierellomycota was
also rather high (7–25%), especially at the south timberline.
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north timberlines of Sejila Mountain. F, forest; FL, forest line; TL, tree line; TSL, tree species line;
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The soil fungal communities at the two timberlines comprised different dominant
fungal genera (Figure 4). Archaeorhizomyces (8–30%) of Ascomycota was the most dom-
inant genus across all vegetation zones and was more abundant in the south timberline
ecotone. The relative abundance of Russula of Basidiomycota ranged from 8% to 30% at the
north timberline (except in the shrub zone (0.43%)), but only from 0.18% to 0.34% at the
south timberline.
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3.4.2. Soil Fungal Community Similarity

The PERMANOVA showed significant differences in soil fungal community composi-
tion (based on OTUs) between the two timberlines (R2 = 0.109, F = 3.441, p = 0.001) and
among the vegetation zones (R2 = 0.082, F = 2.488, p = 0.002). These differences were verified
through the PCoA explaining 41.22% of the total variation (Figure 5). The soil fungal com-
munities were distinguished by the PC1 axis (27.23%) based on timberline (Figure 5). The
fungal community compositions in the closed forest, forest line and tree line at the north
timberline (all with a dominance of A. georgei) were similar, clustering at the left of the axis,
whereas fungal communities at the south timberline were more similar to vegetation types
with few or no A. georgei (tree species line and shrub) at the north timberline, clustering at
the right of the axis. PC2 (13.99%) indicated the difference in fungal communities across
the vegetation zones at the southern timberline. The fungal communities of forest and
shrub at the south timberline were similar and were mainly distributed in the lower half of
PC2, the fungal communities at the tree species line clustered in the middle and similar
communities from other vegetation zones at the south timberline were scattered across PC2.
However, the soil fungal communities of the forest, forest line and tree line at the north
timberline mainly clustered in the middle of PC2.
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3.5. Ecological Function of Soil Fungi

The Saprotroph mode (25–36%) and Soil_Saprotroph guild (16–30%) dominated at the
south timberline, with little variation across the vegetation zones, whereas the Symbiotroph
mode and Ectomycorrhizal guild were characteristic of the north timberline together with
the Saprotroph mode and Soil_Saprotroph guild (Figures 6 and 7). The relative abundance
of the Symbiotroph mode (56–3%) and Ectomycorrhizal guild (41–1%) decreased across the
vegetation zones at the north timberline, whereas the relative abundance of the Saprotroph
mode (11–35%) and Soil_Saprotroph guild (8–30%) increased across the vegetation zones
(Figures 6 and 7).
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Figure 7. Heatmap for relative abundance of soil fungal guilds at the south and north timberlines of
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3.6. Relationship between Soil Fungal Community Characteristics and Vegetation and Soil Factors

The first two axes of the RDA explain 25.95% of the total variation (16.80% for the first
axis and 9.15% for the second axis) (Figure 8 and Table 5). The observed species richness,
Chao1, ACE and PD were negatively correlated with the vegetation zone (altitude), shrub
coverage, soil field holding-water capacity, ammonium nitrogen and C/N, but were posi-
tively associated with the soil pH and bulk density. Negative correlations of the timberline
site with the Shannon and Simpson indexes were observed. Ascomycetes, saprophytic and
soil saprophytic fungi were negatively correlated with the timberline site, tree factors and
soil ammonium nitrogen, and positively correlated with the soil pH, whereas the opposite
was the case for Basidiomycetes, symbiotic and ectomycorrhizal fungi.
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Figure 8. RDA for relationship between soil fungal diversity, community structure, mode, guild
and vegetation and soil factors at the south and north timberlines of Sejila Mountain. F, forest;
FL, forest line; TL, tree line; TSL, tree species line; S, shrub; TC, tree coverage; TD, tree density;
TS, timberline site; SC, shrub coverage; SBD, soil bulk density; FWHC, field water-holding capac-
ity; AN, ammonium nitrogen; C/N, carbon-to-nitrogen ratio of soil; OS, observed species; Shan-
non, Shannon entropy of counts; Simpson, Simpson’s index; Chao1, Chao1 richness estimator;
ACE, abundance-based coverage estimator; PD, Faith’s phylogenetic diversity metric; Bas, Basidiomy-
cota; Asc, Ascomycota; Chy, Chytridiomycota; Sap, Saprotroph; Sym, Symbiotroph; Una, unassigned;
Sap-Sym, Saprotroph–Symbiotroph; Soil_Sap, Soil_Saprotroph; Ect, Ectomycorrhizal.

However, Pearson correlation analysis further showed that the observed species rich-
ness, PD and Shannon and Simpson indexes were significantly positively associated with
soil pH, but the Shannon and Simpson indexes were obviously negatively associated with
soil ammonium nitrogen (Figure 9C,F). At the north timberline, the coverage and den-
sity of trees were significantly negatively related to Ascomycetes, saprophytic and soil
saprophytic fungi, and significantly positively related to Basidiomycetes, symbiotic and
ectomycorrhizal fungi (Figure 9A). The shrub coverage had contrary linkages compared
with the tree factors. Therefore, the composition and function of soil fungal communities
at the north timberline changed with the tree and shrub coverage and tree density. At the
north timberline, the soil C/N and pH were negatively correlated with Basidiomycetes,
symbiotic and ectomycorrhizal fungi, whereas ammonium nitrogen was positively corre-
lated; the opposite was the case for Ascomycetes, saprophytic and soil saprophytic fungi,
especially regarding soil C/N (Figure 9D). Unlike the north timberline, there was no sig-
nificant correlation between soil fungi, vegetation and soil factors at the south timberline
(Figure 9B,E). The Pearson correlation also indicated that the Chytridiomycota relative
abundance significantly negatively responded to shrub coverage, soil field water-holding
capacity, C/N and ammonium nitrogen, but significantly positively responded to soil bulk
density and pH (Figures 8 and 9F).
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Table 5. RDA result for vegetation, soil and fungi factors at the south and north timberlines of
Sejila Mountain.

Factors a RDA1 RDA2 r2 p

SC 0.143641 −0.98963 0.496922 0.001
TC 0.351797 0.936076 0.436142 0.001
TD 0.632203 0.774803 0.357184 0.002
TS 0.966325 −0.25733 0.619121 0.001

SBD −0.61957 0.784943 0.520066 0.001
FWHC 0.796237 −0.60498 0.319073 0.006

pH −0.88802 0.459812 0.716007 0.001
C/N 0.531154 −0.84728 0.603805 0.001
AN 0.998002 −0.06318 0.470154 0.001
OS −0.69521 0.718802 0.236768 0.025

Shannon −0.99978 0.020968 0.26829 0.015
Simpson −0.99411 −0.10838 0.265634 0.016

ACE −0.62356 0.781778 0.199583 0.045
Chao1 −0.62749 0.778628 0.199686 0.043

PD −0.52077 0.853696 0.27333 0.016
Asc −0.83238 −0.55421 0.727328 0.001
Bas 0.98076 0.195217 0.808387 0.001
Chy −0.49419 0.869353 0.54539 0.002

Others −0.99535 0.096355 0.33698 0.005
Sap −0.96414 −0.26541 0.659629 0.001
Sym 0.99291 0.118865 0.754456 0.001

Soil_Sap −0.8569 −0.51549 0.548047 0.001
Ect 0.982745 0.184964 0.835384 0.001
Una −0.99994 −0.0111 0.251452 0.022

a SC, shrub coverage; TC, tree coverage; TD, tree density; TS, timberline site; SBD, soil bulk density; FWHC,
field water-holding capacity; AN, ammonium nitrogen; C/N, carbon-to-nitrogen ratio of soil; OS, observed
species; Shannon, Shannon entropy of counts; Simpson, Simpson’s index; Chao1, Chao1 richness estima-
tor; ACE, abundance-based coverage estimator; PD, Faith’s phylogenetic diversity metric; Asc, Ascomycota;
Bas, Basidiomycota; Chy, Chytridiomycota; Sap, Saprotroph; Sym, Symbiotroph; Soil_Sap, Soil_Saprotroph; Ect,
Ectomycorrhizal; Una, unassigned.
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vegetation at (A) the north timberline, (B) the south timberline and (C) the two timberlines. Cor-
relations between soil fungal community composition, function and vegetation at (D) the north
timberline, (E) the south timberline and (F) the two timberlines. The significance level is shown by
* (p < 0.05). TC, tree coverage; TD, tree density; TS, timberline site; SC, shrub coverage; SBD, soil bulk
density; FWHC, field water-holding capacity; AN, ammonium nitrogen; C/N, carbon-to-nitrogen
ratio of soil; OS, observed species; Shannon, Shannon entropy of counts; Simpson, Simpson’s index;
Chao1, Chao1 richness estimator; ACE, abundance-based coverage estimator; PD, Faith’s phyloge-
netic diversity metric; Bas, Basidiomycota; Asc, Ascomycota; Chy, Chytridiomycota; Sap, Saprotroph;
Sym, Symbiotroph; Una, unassigned; Sap-Sym, Saprotroph–Symbiotroph; Soil_Sap, Soil_Saprotroph;
Ect, Ectomycorrhizal.

4. Discussion

The findings of the present study show that the composition and function of soil fungal
communities between the north and south timberlines of Sejila Mountain had a strong
site effect. The soil fungal community characteristics at the north timberline regularly
changed with the tree coverage and density, but the tree species line and shrub were more
similar to the vegetation zones of the south timberline regarding their traits. This indicates
that the A. georgei presence also had an impact on the soil fungal community composition
and function.

4.1. Distribution of Mycorrhizal Fungi and Its Relationship with Vegetation

The distribution of ectomycorrhizal fungi is strongly influenced by the tree species
and their distribution [53]. In this study, A. georgei is a prominent species at the northern
timberline ecosystem due to its preference for shade and moisture [54]. The ectomycor-
rhizal fungi predominantly occurred at the northern timberline and their abundance had a
positive correlation with the density and coverage of A. georgei. The family Russulaceae is
the dominant group of ectomycorrhizal fungi. Russula is the type genus of Russulaceae
under Basidiomycetes. Its members can form ectomycorrhizae with trees of Larix, Picea,
Pinus, Fagaceae, Salicaceae and Tiliaceae [55]. A study on Russulaceae fungi along the altitude
gradient of 2600–4500 m in Sejila Mountain also showed that 70% of Russulaceae species
are distributed under A. georgei forest, but they rarely appear in the high-altitude Rhodo-
dendron shrubs [24,25]. Several research studies have confirmed that Russula can form an
ectomycorrhizal symbiosis with tree species of the Abies genus, such as Abies lasiocarpa [56],
Abies balsamea [57], Abies koreana [58] and Abies firma [59]. This supports the notion that A.
georgei is their potential host too. The number of A. georgei individuals has a great effect
on the root density in soil, further affecting the relative abundance of ectomycorrhizal
fungi [60]. This is the reason for the positive synergistic change in the relative abundance of
Basidiomycetes, Russula, symbiotic and ectomycorrhizal groups with the tree coverage and
density of A. georgei. This is basically consistent with our hypothesis of the host effect. Four
species in Russula genus were identified in this study, but their relative abundances were
extremely low. This implies that the high relative abundance of Russula was due to the
presence of other unidentified species. The significantly negative correlation between the
Shannon index and tree density at the north timberline indicates that the ectomycorrhizal
fungi may inhibit other groups of fungi at the timberline. Owing to their remarkable cold
tolerance, ectomycorrhizal fungi are considered to be crucial for seedling establishment, nu-
trient absorption and the distribution expansion of A. georgei [61]. In summary, the presence
of A. georgei led to systematic changes in the soil fungal community characteristics.

4.2. Distribution of Saprophytic Fungi and Its Relationship with Vegetation

Soil saprotrophic fungal communities at the timberlines of Sejila Mountains are largely
populated by the Archaeorhizomyces fungi. In this study, regarding the symbiosis relation-
ship between S. saltuaria and mycorrhizal fungi, which has not been reported previously,
here, it was also found that the low relative abundance of mycorrhizal fungi at the south
timberline was dominated by S. saltuaria. However, there were plenty of Archaeorhizomyces
belonging to the class Archaeorhizomycetes of Ascomycetes at the south timberline [62].
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It is not clear enough whether the taxonomic status and ecological function of Archaeorhi-
zomyces are a result of difficulties in isolation and culture. Only two species have been
systematically described: Archaeorhizomyces finlayi [63] and Archaeorhizomyces borealis [62].
Archaeorhizomyces are non-mycorrhizal rhizosphere-associated fungi with saprotrophic
activity. For example, in culture, A. finlayi grows slowly on both glucose and cellulose as
a sole carbon source, indicating that it may be involved in decomposition [63]. At alpine
timberlines and in other stressful ecosystems [22,64–66], Archaeorhizomyces is a common
fungal group, similar to our study. Archaeorhizomyces also often dominate soils of rainfor-
est [67], temperature forests [68], boreal forests [69] and arctic tundra [70]. This explains
the strongly positive associations among Ascomycetes, Archaeorhizomyces, saprophytic and
soil saprophytic groups in this study (Figure S3C).

At the north timberline, Archaeorhizomyces were negatively correlated with Basid-
iomycetes, Russula, symbiotic and ectomycorrhizal groups and A. georgei coverage and
density, but positively correlated with shrub coverage (Figure S3A). This may be related
to the alleviative competition with Russula with the decrease in A. georgei hosts at the
north timberline. Although the precise ecological niches of Archaeorhizomyces remain un-
known [63], the higher relative abundance of Archaeorhizomyces within the ecotone implies
that fungi of Archaeorhizomyces are more suitable for this transitional habitat lacking tree
cover. One species of Archaeorhizomyces was identified in the current study, and the relative
abundance was low. This also indicates that the high relative abundance of Archaeorhi-
zomyces is attributed to the presence of other unidentified species. Overall, it is highly
probable that Archaeorhizomyces collaborate with ectomycorrhizal fungi to facilitate the
circulation of materials and energy at the timberlines of Sejila Mountain.

4.3. Relationship between Fungal Distribution and Soil Factors

In this study, timberlines on different slopes and diverse vegetation zones at varying
altitudes show considerable variations in both physical and chemical properties of the
soil [71,72]. These variations play a significant role in shaping the traits of soil fungal
communities, together with timberline vegetation [73]. At the north timberline, due to a
deficiency in base cations in the litters, A. georgei litters may lead to soil acidification [74],
resulting in a significant negative correlation between soil pH and tree density, coverage
and ectomycorrhizal fungi. Previous studies have confirmed that ammonium nitrogen
promotes the symbiosis between ectomycorrhizal fungi and trees [75–77]. The soil total
nitrogen pool at the vegetation zones with more trees at the north timberline ensured
a continuous supply of ammonium nitrogen. A decrease in the relative abundance of
ectomycorrhizae at the tree species line and shrub may be related to a significant reduction
in N pool supply, in addition to a reduction in host density. The soil stoichiometric ratios
indicate the mineralization capacity for soil carbon, nitrogen and phosphorus [78,79]. The
soil C/N at the north timberline increased with a decrease in tree coverage and density,
whereas N/P decreased. This indicates that soil nitrogen tended to be mineralized at
the vegetation zones with more trees, which is conducive for the accumulation of soil
ammonium nitrogen [80]. On the contrary, soil nitrogen mineralization weakened at
the tree species line and shrub, and ammonium nitrogen accumulation was low. It is
noteworthy that, at the south timberline, there is no obvious correlation between soil fungal
community characteristics and vegetation and soil factors. We speculate that there may be
other potential factors that play an important role in regulating soil fungal communities,
which needs further investigation.

5. Conclusions

In the present study, the soil fungal diversity, community structure and ecological
function of the north and south timberlines of the Sejila Mountain in China’s southeastern
Tibet along a 200 m elevation gradient were explored. The findings show that the site
effect of timberlines and A. georgei presence exerted apparent influences on the soil fungal
community structure and function at the two timberlines. These soil fungal community
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traits were related to coverage and density, soil pH and ammonium nitrogen at the north
timberline, whereas they had no associations with the vegetation and soil factors at the
south timberline.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof9050596/s1. Figure S1: Rarefaction curves for soil fungal communities at
the south and north timberlines of Sejila Mountain; Figure S2: Venn diagrams for soil fungal OTUs at
the south and north timberline of Sejila Mountain; Figure S3: Pearson correlation between vegetation
factors and main fungal genera, phyla, modes and guilds at the timberlines of Sejila Mountain. Table
S1: Results for data preprocessing and quality control.
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