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Abstract: Trichoderma hamatum is a filamentous fungus that serves as a biological control agent for
multiple phytopathogens and as an important resource promising for fungicides. However, the lack
of adequate knockout technologies has hindered gene function and biocontrol mechanism research
of this species. This study obtained a genome assembly of T. hamatum T21, with a 41.4 Mb genome
sequence comprising 8170 genes. Based on genomic information, we established a CRISPR/Cas9
system with dual sgRNAs targets and dual screening markers. CRISPR/Cas9 plasmid and donor
DNA recombinant plasmid were constructed for disruption of the Thpyr4 and Thpks1 genes. The
result indicates the consistency between phenotypic characterization and molecular identification
of the knockout strains. The knockout efficiencies of Thpyr4 and Thpks1 were 100% and 89.1%,
respectively. Moreover, sequencing revealed fragment deletions between dual sgRNA target sites
or GFP gene insertions presented in knockout strains. The situations were caused by different
DNA repair mechanisms, nonhomologous end joining (NHEJ), and homologous recombination
(HR). Overall, we have successfully constructed an efficient and convenient CRISPR/Cas9 system in
T. hamatum for the first time, which has important scientific significance and application value for
studies on functional genomics of Trichoderma and other filamentous fungi.

Keywords: Trichoderma hamatum; homologous recombination; CRISPR/Cas9; knockout efficiency

1. Introduction

Trichoderma is a class of filamentous fungi widely distributed in the plant rhizosphere
ecosystem. It has biocontrol effects on many phytopathogens due to its competitive
capacity, toxicity, mycoparasitic activity, antagonism, induced resistance, and growth
promotion [1–3]. Some studies have reported that Trichoderma exhibited broad-spectrum
inhibitory abilities against phytopathogens, including Rhizoctonia solani [4], Fusarium verti-
cillioides [5], F. oxysporum [6], Phytophthora infestans [7], root-knot nematode [8,9] and cyst
nematode [10]. Trichoderma also has obvious growth-promoting effects on tomatoes [11],
cucumbers [12], and corn [13]. In addition, Trichoderma can improve seed germination rates
and induce greater tolerance of the plant to stresses [14,15]. Secondary metabolites and
spores are considered major factors that contribute to the biological control effects of Tri-
choderma in agricultural production [16]. At present, spore powder is the main component
in commercial products of Trichoderma, but its control effect is susceptible depending on
the environment in the field. Therefore, it is especially important to explore the mech-
anisms of Trichoderma in different environments to promote the efficient application of
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Trichoderma, such as induced systemic resistance (ISR). Secondary metabolites of Trichoderma
are significant elicitors in ISR [16]. The volatile substances produced by T. harzianum and
T. asperellum act as elicitors to stimulate the upregulation of Arabidopsis thaliana-induced
resistance-related transcription factor MYB72, which activates the plant jasmonic acid path-
way defense response [17]. Studholme et al. found that culture filtrates from T. hamatum
GD12 can elicit a strong ISR response in rice against Magnaporthae oryzae [18]. However,
the function identification, synthesis mechanism, and activation of silent gene clusters of
secondary metabolites lack systematic studies in T. hamatum.

Gene knockout technology is an indispensable tool for research on mechanisms and
secondary metabolites in filamentous fungi. The CRISPR/Cas9 system is based on RNA-
mediated endonuclease to introduce DNA strand gaps at specific target sites in the genome,
which can stimulate the host defense mechanisms to repair gaps and has already been
implemented in multi-species [19,20]. With the help of the CRISPR/Cas9 system, the effi-
ciency of homologous recombination has been improved, and the dependence on screening
markers has been reduced. The CRISPR/Cas9 system has been successfully applied in
various filamentous fungi in recent years, including Ganoderma lucidum [21], Aspergillus
niger [22], Penicillium chrysogenum [23], and Beauveria bassiana [24]. For Trichoderma spp., the
CRISPR/Cas9 system has only been successfully constructed in T. reesei and T. harzianum
up to now [25,26]. In previous studies, the author could not obtain orotidine glycoside
5′-phosphate decarboxylase (pyr4) and pigment genes (pks1) knockout mutants by tradi-
tional homology recombination and split-marker methods [27] in T. hamatum. This may
be attributable to the fact that the strain employs KU70 or KU80 as the dominant repair
mechanism [28]. Therefore, the construction of an efficient CRISPR/Cas9 system is an
essential step for more intensive studies of T. hamatum in the future.

Screening markers are one of the most important characteristics of fungus knockout re-
search, including pyr4 and pigment genes. The advantage of using pyr4 and pigment genes
as screening markers for fungal transformation is that knockout mutants and wild-type
strains can be directly identified by phenotype. The pyr4 encodes orotidine 5′- phosphate
decarboxylase, which catalyzes the biosynthesis of uracil nucleotides and can convert
5-fluoro-orotic acid (5-FOA) into 5-fluorouracil (5-FU), interfering with RNA and DNA
functions, leading to the death of the cell [29]. The growth of pyr4 knockout mutants re-
quires the supplementation of exogenous uracil or uridine and can be grown on a medium
containing 5-FOA. Fungal spore pigments are mainly polyketides, mostly synthesized by
polyketide synthases (PKSs). Metarhizium robertsii cannot produce heptaketide pigments
after the MrPks1 gene knockout. MrPks1 is highly homologous with Pks1 and Pks2 in
T. reesei whereas there are few relevant studies at present [30,31]. In this study, the dis-
ruption of Thpyr4 and Thpks1 genes demonstrated the successful use of the CRISPR/Cas9
system in T. hamatum. An efficient, rapid, and convenient fungal knockout system was
established, which can lay the foundation for subsequent studies on the induced resistance
mechanism of T. hamatum. Thus, this is an important technique with application value in
Trichoderma-plant interactions, biocontrol mechanisms, and genetic manipulation.

2. Materials and Methods
2.1. Strain and Culture Conditions

T. hamatum T21 strain (CGMCC NO. 10923) was isolated, identified, and preserved by
the Disease Group Laboratory of the Institute of Vegetable and Flower Research, Chinese
Academy of Agricultural Sciences. T. hamatum T21 was cultured on potato dextrose agar
(PDA: 200.0 g potato, 20.0 g glucose, 18.0 g agar to 1 L distilled water) medium at 28 ◦C.
MOF medium (75.0 g mannitol, 15.0 g oat flour, 5.0 g yeast extract, 4.0 g glutamate, and
16.2 g MES to 1 L distilled water) was used as the non-pigment-producing culture to
screen for pigment genes. Potato dextrose broth (PDB: 24.0 g of PDB powder per liter,
BD-Pharmingen) medium was used for culturing T. hamatum T21 for fresh mycelium
collection and DNA extraction. T-Top (0.5 g KCl, 0.5 g MgSO4·7H2O, 1.0 g KH2PO4, 2.0 g
NaNO3, 200.0 g sucrose, 20.0 g glucose, and 10.0 g agar to 1 L distilled water) medium
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for protoplast regeneration. Luria Bertani (LB: 10.0 g peptone, 10.0 g NaCl, 5.0 g yeast
extract, and 20.0 g agar to 1 L distilled water) medium containing kanamycin (50 µg/mL)
or ampicillin (100 µg/mL) was used to culture Escherichia coli Trelief 5α (Tsingke, Beijing,
China) at 37 ◦C for vector construction. Screening of resistance concentrations of T. hamatum
T21 uses 5-FOA and Geneticin (G418).

2.2. Extraction of DNA and RNA

The total genomic DNA of T. hamatum T21 was extracted from mycelium grown on
PDA for 7 days using the Fungal Genomic DNA Rapid Extraction Kit (Biotech, Shanghai,
China). The total RNA was extracted from mycelium incubating on PDA and MOF after
7 days. RNA was extracted using FastPure Plant RNA (TianGen, Beijing, China) according
to the manufacturer’s protocol. Subsequently, cDNA was reverse transcribed from RNA
using the TIAN Script II RT kit (TianGen, Beijing, China).

2.3. Genome Assembly and Annotation

For single-molecule real-time (SMRT) sequencing, the polymerase reads were gener-
ated on the PacBio RSII platform, and the sequence quality was assessed according to the
manufacturer’s protocol (Pacific Biosciences, Menlo Park, CA, USA). Finally, only subreads
with a length of more than 500 bp and an RQ value higher than 0.75 were retained for future
analysis. The Canu (v1.6) assembler was used for de novo assembly [32]. The genome was
polished by three rounds of Pilon with the parameters-mindepth 10-changes-threads 4-fix
bases using the Illumina short reads [33]. Gene structure, function annotation, and repeat
annotation were carried out according to the operation manual [34].

2.4. Strain Identification

The genomic DNA of T. hamatum T21 was extracted as a template. The internal tran-
scribed spacer (ITS) regions, translation elongation factor 1α (tef1α), and RNA polymeraseII
(rpb2) gene fragments were amplified via PCR using the primers ITS1/ITS4, tef1α-f/tef1α-r,
and rpb2-f/rpb2-r [35,36]. Primer information is provided in Table S1. The PCR program
was as follows: 94 ◦C for 3 min, 34 cycles of 94 ◦C for 15 s, 56 ◦C for 15 s, and 72 ◦C
for 15 s, with the final extension at 72 ◦C for 5 min. The phylogenetic trees were con-
structed by the maximum-likelihood method using MEGA 11.0 with default parameters
and 1000 bootstrapping replicates.

2.5. Antibiotic Resistance Screening

T. hamatum T21 mycelium was inoculated into PDA medium containing different
concentrations of 5-FOA at 0.5, 1.0, 2.0, and 3.0 mg/mL and cultured at 28 ◦C for 7 days to
observe the growth status.

T. hamatum T21 mycelium was picked onto PDA medium containing different con-
centrations of G418 at 50.0, 100.0, 150.0, 200.0, and 250.0 µg/mL and cultured at 28 ◦C for
7 days to observe the growth status.

2.6. Evolutionary Analyses of Thpyr4 and Thpks1 Genes

Based on the function, we found all the sequences that have similarities to the Thpyr4
and Thpks1 genes in the NCBI database, and compared them with the T. hamatum T21
genomic sequences to determine the target gene sequences. The protein sequence of PKS1
(GenBank accession number XP_007823934.2) was used to search for homologous genes
through an online tblastn search (http://www.ncbi.nlm.nih.gov/BLAST (accessed on 10
October 2022)) in the T. hamatum T21 genome [31]. The phylogenetic trees were constructed
by the maximum likelihood method using MEGA 11.0 with 1000 bootstrap replicates.
Prediction of functional domains of PKSs for each protein sequence using the PKS/NRPS
analysis website (http://nrps.igs.umaryland.edu/ (accessed on 26 October 2022)) and the
National Center Biotechnology Information (NCBI, Bethesda, MD, USA) database.

http://www.ncbi.nlm.nih.gov/BLAST
http://nrps.igs.umaryland.edu/
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2.7. qRT-PCR Analysis

A 20 µL system was prepared using cDNA as a template with SYBR Premix Ex Taq
II master mix (Takara, Shiga, Japan), and a BIO-RAD CFX96 (BIO-RAD, Hercules, CA,
USA) instrument was used to analyze the relative expression levels. The primers are
listed in Table S1. Three putative candidate pigment genes were compared, and actin was
selected as an internal reference for standardized measurement of gene expression. All
quantitative real-time PCR reactions were repeated with at least three biological replicates
and three technical replicates per reaction. The relative expression level was measured
using the 2−∆∆Ct method [37].

2.8. Construction of CRISPR/Cas9 Plasmid

CRISPR/Cas9 plasmid was obtained from the PUC-Cas9-neo-gRNA plasmid in our
laboratory [38]. The target sequences of Thpyr4 and Thpks1 of the target genes were
designed through the chop-chop (http://chopchop.cbu.uib.no/ (accessed on 5 November
2022)) website and two high-scoring candidate targets near the N-terminal region were
selected [39,40]. The target RNAs of Thpyr4 were 5′-TCCGTGCGAGGTGAAGACAT-3′ and
5′-ATGAGGAGACCTCGGTTCAG-3′. The target RNAs of pigment gene Thpks1 were 5′-
GGATTTGGAACCGGAATCTG-3′and 5′-TTAGAGCTAAACGTTGGCCA-3′. The seamless
cloning primers are shown in Table S1. Hammerhead (HH), sgRNA, and liver hepatic
delta virus (HDV) ribozymes that sequentially form the sgRNA expression cassette were
synthesized at Liuhe BGI Tech Solutions Co., Limited (Beijing, China). The linear fragments
of the gpda promoter, trpc terminator, and sgRNA expression cassette were amplified by PCR
and recovered by gel extraction and electrophoresis. The PUC-Cas9-neo-gRNA plasmid
was digested with EcoRV and BglII (New England Biolabs, Ipswich, MA, USA) to recover
the linear fragment. The Fast Pure Gel DNA Extraction Mini Kit (Vayzme, Nanjing, China)
was employed to recover the PCR products for gel extraction. The four fragments (Pgpda,
Ttrpc, sgRNA expression cassette and PUC-Cas9-neo) were assembled using Clon Express
MultiS One Step Cloning Kit (Vayzme, Nanjing, China). The recombination products were
transformed into E. coli Trelief 5α and cultured on an LB plate containing 100 µg/mL
ampicillin at 37 ◦C for 12–16 h. Single colonies were picked for sequencing identification.
Plasmid DNA was extracted using Plasmid Mini KitI (OMEGA, Norcross, GA, USA).

2.9. Construction of Homologous Recombinant Plasmid

The PUC19 plasmids were digested with the restriction endoenzymes EcoRI and
HindIII (New England Biolabs, Ipswich, MA, USA) as the vector backbone, and all primers
were designed using a seamless cloning strategy (Table S1). The upstream homology arm
and downstream homology arm sequences were amplified using T. hamatum T21 genomic
DNA as a template. The screening marker GFP fragment was amplified using the plasmid
pch-sGFP as a template. The Clon Express MultiS One Step Cloning Kit (Vayzme, Nanjing,
China) was used to ligate three fragments (upstream homology arm, GFP, and downstream
homology) with overlapping sequences and insert them into the EcoRI and HindIII sites of
the PUC19 backbone. E. coli Trelief 5α transformation and vector identification methods
were the same as above. The up-f/down-r primers were used to linearize fragments as
exogenous DNA using the recombinant plasmids as a template. The Fast Pure Gel DNA
Extraction Mini Kit (Vayzme, Nanjing, China) was used to purify the PCR products for
subsequent use.

2.10. Preparation of Protoplasts

T. hamatum T21 was incubated on PDA medium for 7 days. Conidia were collected
by filtration and added to 200 mL PDB with shaking at 200 rpm, 28 ◦C for 14 h. The
fresh mycelium was harvested by filtering through filter paper, and the PDB medium
was removed by rinsing the mycelium with 0.7 mol/L NaCl 4–5 times. The mycelium
was treated with 20 mg/mL driselase (Sigma, St. Louis, MO, USA) dissolved in STC
buffer (58.3 g Sorbitol, 2.944 g CaCl2·2H2O, 0.6306 g Tris-HCl to 400 mL distilled water) at

http://chopchop.cbu.uib.no/
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28 ◦C, 140 rpm, for 3–4 h. The protoplasts were collected by filtration and centrifugation.
The supernatant was discarded, and the concentration of protoplasts was adjusted to
1 × 106 cells/mL with STC buffer. A 100 µL protoplast suspension was aspirated per
transformation.

2.11. Co-Transformation of gRNA with Donor DNA

The transformation procedure was modified from the method of Purpureocillium
lilacinum [38]. To a centrifuge tube containing 1 µmol of aurintricarboxylic acid, 2.5 µg
of PUC-Cas9-gRNA plasmid and 2.5 µg of donor DNA repair template were added, the
total volume was adjusted to 60 µL with TEC (0.3152 g Tris-HCl, 0.0585 g EDTA, 1.1762 g
CaCl2·2H2O to 200 mL distilled water), and mixed well on ice for 20 min. Then, the mixture
was centrifuged at 12,000 rpm for 2 min at 4 ◦C and the supernatant was removed by
aspiration and mixed with 100 µL of protoplast suspension on ice for 20 min. To the above
system, 160 µL of 60% PEG 4000 (120.0 g PEG 4000, 25.1 g MOPS to 200 mL distilled water)
was added and mixed well at room temperature for 15 min. We added 1 mL of STC buffer,
which was mixed well and centrifuged at 4000 rpm for 5 min at 4 ◦C. The supernatant was
discarded, and the precipitation was resuspended in 200 µL of STC buffer. Finally, the total
system was mixed with 25 mL T-Top medium and spread on 5 PDA plates homogeneously.
For the Thpyr4 gene treatment group, the T-Top medium contains 0.5 mg/mL uridine.
The culture was incubated at 28 ◦C for 13–15 h. Then, 10 mL of screening T-TOP was
added to each Petri dish. For the Thpyr4 gene treatment group, T-Top contains 1.0 mg/mL
5-FOA and 0.5 mg/mL uridine. For the Thpks1 treated group, T-Top contains 250 mg/mL
G418. After incubation at 28 ◦C for 3–5 days, the growth status of the transformants was
monitored daily and transferred to new PDA plates with corresponding antibiotics.

2.12. Identification of Transformant

The Thpyr4 and Thpks1 transformants were picked with toothpicks and placed into
PDA Petri dishes with corresponding antibiotics. Pick the mycelium of transformants onto
a slide and observe the green fluorescence under a fluorescence microscope (Olympus
IX53, Tokyo, Japan). Then, Thpyr4 and Thpks1 transformants were collected after 15–20 h of
incubation at 28 ◦C and 200 rpm for extraction of the genomic DNA. Positive transformants
were identified by PCR, and the information on primers is listed in Table S1.

2.13. RT-PCR Identification for Cas9 Expression

Three ∆Thpyr4 mutants were randomly selected to extract RNA and make cDNA. A
pair of primers were designed for the Cas9 amplified fragment of 1113 bp for identification
(Table S1), and cDNA was used as a template for PCR. The PCR program was as follows:
94 ◦C for 3 min, 34 cycles of 94 ◦C for 15 s, 56 ◦C for 15 s, and 72 ◦C for 30 s, and a final step
at 72 ◦C for 5 min.

2.14. Knockout Efficiency Statistics

The Thpks1 knockout transformants were selected by G418 antibiotic and GFP mark-
ers cultured in 24-well cell culture plates, and knockdown efficiency was calculated in
combination with phenotypic and molecular identification.

The calculations are presented in the following formula:

Knockdown efficiency (%) = (number of ∆Thpks1/total number of transformers)× 100%

3. Results
3.1. Strain Identification and Genome Annotation

The PCR products were approximately 600, 321, and 948 bp for the ITS, tef1α, and rpb2,
respectively (Figure S1A). The result of sequencing and the BLAST search showed the ITS,
tef1α, and rpb2 shared a sequence identity of over 99% with T. hamatum. For the phylogenetic
tree analysis, the dataset comprised 16 taxa, including Escovopsis clavata as the outgroup
(Figure S1B,D). Based on the ITS, tef1α, and rpb2 sequences, the T21 strain and T. hamatum
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were clustered with each other, with 100% bootstrap support in three phylogenetic trees
(Figure S1B,D).

T. hamatum T21 genome data has been deposited at the National Genomics Data
Center under accession number GWHBWEF00000000. The T. hamatum T21 genome size
was estimated to be 41.4 Mb based on the k-mer statistics from an Illumina paired-end
library with an insert size of 380 bp. We obtained 3.84 Gb (~92×) of long reads using
the PacBio SMART platform for T. hamatum T21. The PacBio subreads were assembled
into contigs, and a total of 251 contigs were obtained for T. hamatum T21, with an N50 of
2.04 Mb (Figure 1). To assess the assembly accuracy, we remapped the raw reads of the
paired-end library to the assembled T. hamatum T21 genome. The reads covered 98.64% of
the genome, with a 94.25% mapping rate and 78× average sequence depth, which implied
that the current T. hamatum T21 assembly covered almost all unique genomic regions. The
genome of T. hamatum T21 contained 16.17 Mb repeat sequences, accounting for 38.45%
of the genome size. A total of 8170 protein-coding genes were predicted for T. hamatum
T21. BUSCO assessment of the T. hamatum T21 genome showed that 1325 (94.85%) of the
gene models were complete (Table S2), suggesting that the assemblies included most of the
T. hamatum T21 gene space.
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3.2. Screening of Resistance Concentration of T. hamatum T21 to 5-FOA and G418

The results of the responses of T. hamatum T21 to antibiotics are shown in Figure 2.
T. hamatum T21 grew normally on PDA plates without 5-FOA, and growth was inhibited
on PDA plates with 5-FOA concentrations of 0.5, 1.0, 2.0, and 3.0 mg/mL. The growth
inhibition effect of 5-FOA on T. hamatum T21 was limited to a concentration of 0.5 mg/mL,
so 1.0 mg/mL was used as the screening concentration (Figure 2A).
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T. hamatum T21 grew normally on PDA plates without G418, while growth was
inhibited on PDA plates with G418 concentrations of 200 and 250 µg/mL. The growth of
colonies was less inhibited at a concentration of 200 µg/mL. Therefore, 250 µg/mL was
used as the G418 screening concentration for transformation in this project (Figure 2B).

3.3. Thpks1 Candidate Genes and qRT-PCR Analysis

By comparing the pigment genes of M. robergii, g3839, g4143, and g6889 in T. hamatum
T21 were selected as candidate genes with high homology. T. hamatum T21 produced green
pigment on PDA, but could not produce it on MOF medium (Figure S2A,B). Thus, the
expression levels of the three candidate genes were measured by qRT-PCR on the two
mediums. These results showed that the expression of g4143 was significantly upregulated
2216-fold in the PDA medium compared to the MOF medium, and we named g4143 as
Thpks1 by sequence analysis (Figure S2C). The open reading frame (ORF) of Thpks1 consists
of 2454 bp and encodes an 817 amino acid protein. Phylogenetic analyses of the protein se-
quences of Thpks1 and other PKS suggested that Thpks1 clustered with the conidial pigment
biosynthesis polyketide synthase of M. robertsii ARSEF23 (Genebank accession E9F646.2).
Thpks1 encoded a highly reducing PKS (NR-PKS) containing ketosynthase (KS), acyltrans-
ferase (AT), product template domain (PT), acyl carrier protein (ACP), and thioesterase
(Te) domains, and was homologous to other known functions of NR-PKS (Figure 3), such
as PKS-melA (Genebank accession A0A0A2KT65.1) in P. expansum, which encodes a PKS
responsible for yellow pigment formation, and PKSA (Genebank accession M2XHZ5.1)
in Dothistroma septosporum, which encodes dothistromin with structural similarity to the
aflatoxin precursor versicolorin B [41,42].

3.4. Thpyr4 and Thpks1 Gene Knockout Vector Construction

BLAST analysis of protein sequences from the NCBI database indicates that the oroti-
dine 5′-phosphate decarboxylase gene of T. gamsii shares a higher sequence identity with
g1974 of the T. hamatum T21 genome (96.83%) (Figure S3). Thus, g1974 was determined to
be a target gene and named Thpyr4.

In the previous phase, the target gene could not be knocked out by homologous
recombination or split-tagging using conventional knockout methods. CRISPR/Cas9
and homologous recombinant vectors using Thpyr4 and Thpks1 genes as targets were
constructed to establish an efficient, convenient gene knockout system. The CRISPR/Cas9
system was optimized based on the previous study in our laboratory [38]. The fragments of
Pgpda, sgRNA expression cassette, and Ttrpc were inserted into the EcoRV and BglII sites
of the PUC-Cas9-neo plasmid to constitute a CRISPR/Cas9 knockout cassette (Figure 4).
The above vector has only one effective screening marker, G418, and Cas9 can cleave the
gene target to form a double-strand break. The cleavage sites can be repaired by HR or
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NHEJ. Therefore, a homologous recombinant plasmid was constructed in which the GFP
was a selection marker for the alternative target gene (Figure 4).
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Figure 4. Schematic representation of knockout genes by a CRISPR/Cas9-mediated homologous
recombination strategy. CRISPR/Cas9 system releases generate functional sgRNAs and direct Cas9
cleavage to complementary sites in the genome. Primary sgRNA transcripts contain HDV and
HH ribozymes, which are self-cleaved to release functional sgRNAs that direct Cas9 cleavage to
complementary sites in the genome. The black scissors indicate the cleavage sites. The target gene cut
site is cut by a gRNA/Cas9 complex, and a double-strand break will be formed, activating cellular
repair mechanisms. Cas9 cutting sites are indicated with blue scissors. Homologous recombination
(HR) and nonhomologous end-joining (NHEJ) are two major pathways of DNA double-strand break
repair, leading to loss of gene capacity and achieving gene knockout.
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3.5. Thpyr4 Knockout and Identification

The Thpyr4-up-f/Thpyr4-down-r primers were selected to linearize fragments using
homologous recombinant plasmids as templates and mixed with CRISPR/Cas9 plasmids
for PEG-mediated fungal transformation. The transformant mycelium showed green
fluorescence under fluorescence microscopy, indicating the successful transformation of
GFP (Figure 5A,B). The transformants were identified with Thpyr4-f/Thpyr4-r and Thpks1-
f/Thpks1-r, followed by genomic DNA extraction. Thpyr4-f/Thpyr4-r amplified 0 bp
(lanes 3 and 4) and 603 bp (lanes 1, 2, and 5) from the knockout strain, but 872 bp from T21
wild type (Figure 5D). The Thpks1-f/Thpks1-r primers amplified an 816 bp (lanes 8 to 12)
fragment from the knockout strain, and T21 wild type suggested the high quality of the
DNA template (Figure 5D).
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Figure 5. Phenotypes and molecular identification of ∆Thpyr4 mutants and analysis of Cas9 protein
expression. (A,B) Fluorescent images and bright field of the Thpyr4 knockout strain. (C) Growth
phenotypes of mutants on medium containing uridine, uridine + 5-fluoroorotic acid. (D) Molecular
identification of the ∆Thpyr4 mutant. M, Marker. Lanes 1 to 5, amplification of five knockout
strains. Lane 6, positive control, amplification of the T21 wild-type strain. Lane 7, negative control,
amplification of water. Lanes 8 to 14, template validation, templates same with 1–7 amplified by
Thpks1-f and Thpks1-r. (E) RT-PCR analysis confirming Cas9 expression in the ∆Thpyr4 mutants. M,
Marker. Lane 1, T21 wild type. Lanes 2 to 4, ∆Thpyr4 mutants. Lane 5, positive control, amplification
of the CRISPR/Cas9 plasmid. Lane 6, negative control.

Sequencing and alignment results indicated that the transformants 1, 2, and 5 (lanes
1, 2, and 5, Figure 5D) were successfully cut by Cas9 between the dual sgRNA targets
(Figure S4). Additionally, for transformants 3 and 4 (lanes 3 and 4, Figure 5D), Thpyr4 was
partly replaced by an inserted GFP marker at the shear site. The ∆Thpyr4 strains were
unable to grow on PDA medium without extra uridine or uracil. The ∆Thpyr4 can grow
on PDA medium with uridine or uridine and 5-FOA. Additionally, it grew fastest on PDA
medium containing only uridine. The consistency between the phenotype and molecular
identification of ∆Thpyr4 indicates successful knockout of the Thpyr4 gene (Figure 5C).
The ∆Thpyr4 mutants grew well after six subcultures. After subculture, the fluorescence
intensity of the mutants showed no change, indicating that the GFP gene was stably
inherited in T. hamatum T21. Furthermore, RT-cas9-f and RT-cas9-r amplified 1113 bp DNA
fragment from the ∆Thpyr4 mutants but 0 bp from T21 wild type, which indicated that
the Cas9 protein was successfully expressed in ∆Thpyr4 (Figure 5E). Thus, through the
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CRISPR/Cas9 gene knockout technique, uridine/uracil auxotrophic strains of T. hamatum
T21 were obtained.

3.6. Thpks1 Knockout and Identification

Homologous recombinant plasmids served as templates, and Thpks1-up-f/Thpks1-
down-r primers were used to amplify homologous recombinant fragments. After PCR
purification, the linearized fragments were mixed with CRISPR/Cas9 plasmids for PEG-
mediated fungal transformation. The transformant mycelium and conidia appeared green
under fluorescence microscopy, which indicated the successful insertion of GFP (Fig-
ure 6A,B). Five transformants were randomly selected, and genomic DNA was extracted.
The Thpks1-f/Thpks1-r amplified 0 bp (lanes 1 to 4) and a 512 bp (lane 5) DNA fragment
from the knockout strain but 816 bp (lane 6) from T21 wild type (Figure 6E). The Thpyr4-
f/Thpyr4-r primers amplify 872 bp (lanes 8 to 13) DNA fragment from the knockout strain
and T21 wild type, indicating the high quality of the DNA template (Figure 6E).
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Figure 6. Phenotypic characterization and molecular identification of the ∆Thpks1 strain.
(A,B) Microscopy fluorescent and bright field images of the ∆Thpks1 strain. (C,D) Phenotypic char-
acteristics of T21 wild type and ∆Thpks1 strains under the same culture conditions. (E) Molecular
identification of the ∆Thpks1 strain. M, Marker. Lanes 1 to 5, amplification of five knockout strains.
Lane 6, positive control, amplification of the T21 wild type. Lane 7, negative control, amplification
of water. Lanes 8 to 14, template validation, templates same with 1–7 amplified by Thpyr4-f and
Thpyr4-r. (F) Verification of homologous recombination of the GFP marker gene at cleavage sites.
M, Marker. Lanes 1 to 7 are amplified by Thpks1-f and Thpks1-r. Lanes 1 to 5, amplification of five
knockout strains. Lane 6, positive control, amplification of the T21 wild type. Lane 7, negative control,
amplification of water.

The sequencing and alignment results indicated that the Thpks1 of transformant 5
(lane 5, Figure 6E) was successfully cut off by the Cas9 protein between the dual targets
(Figure S5A). The ∆Thpks1 mutants showed white colonies absent of green pigment, which
is a significant phenotypic difference compared to the wild type and consistent with molec-
ular identification (Figure 6C,D). Transformant genomic DNA with green fluorescence was
extracted. After extending the elongation time of PCR, amplified with Thpks1-f/Thpks1-r
primers, the products were 3982 bp from the knockout strain (lanes 1 to 5) but 816 bp
(lane 6) from the T21 wild type (Figure 6F). The above result indicated that Thpks1 was
partly replaced at the shear sites by the insertion of the GFP marker gene.



J. Fungi 2023, 9, 595 11 of 16

3.7. Knockout Efficiency Statistics

After screening by G418, 242 transformants were acquired, 175 of which had green
fluorescence observed under the fluorescence microscope. All the transformants with
green fluorescence were transferred to 24-well cell plates for phenotypic observations and
molecular identification. Results are presented in Figure 7. Thpks1-f/Thpks1-r amplified
an 816 bp (lanes 14, 18, 19, and 21) DNA fragment from the transformer of the green
phenotype aligned to T21 wild type. The white phenotype transformers were successfully
knocked out of the pigment gene Thpks1, which corresponds to the molecular identification
results. Additionally, the Thpks1-f/Thpks1-r amplified a 512 bp (lanes 4, 10, 11, and 17)
fragment from knockout mutants (Figure 7B), and sequence alignment of lane 4 and lane 11
indicated that this phenomenon was due to NHEJ between the dual targets (Figure S5B,C).
Based on phenotype and molecular identification, 156 transformers were successfully
knocked out with Thpks1, of which 27 knockout mutants were due to Cas9 nuclease
shearing, and 129 knockout mutants had successful insertion of the GFP at the dual target
site (Figure S6). Therefore, the simultaneous transfer of CRISPR/Cas9 plasmids and the
homologous recombinant fragment was able to significantly improve the knockdown
efficiency by 89.1%.
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4. Discussion

Trichoderma spp. is not only a parasitic fungus against many plant pathogens but
also an important biocontrol resource for developing microbial fungicides [43]. The appli-
cation and mechanistic studies of Trichoderma spp. biocontrol have become increasingly
important in plant disease control [44,45]. Recent studies showed that T. hamatum has
high biocontrol activity against a variety of plant pathogens, as well as stimulating plant
growth and defense responses [18,46]. Therefore, T. hamatum has been used in biological
preparations for biological control. In this way, gene knockout is an important means
for the improvement of T. hamatum strains and biocontrol studies. In our previous study,
neither homologous recombination nor split marker methods could successfully knock
out the genes of T. hamatum T21. For this, we have successfully constructed an efficient,
convenient, and versatile CRISPR/Cas9 system in T. hamatum for the first time, which is
critical to investigating the mechanism of biocontrol. In this system, the Cas9 protein will
induce DSBs in the target gene. DSBs can be repaired by NHEJ or HR to create genomic
alterations, gene insertions, and gene knockouts (Figure 4). This is the main reason for
improving knockout efficiency in the T. hamatum T21 genome. This technology also lays
the foundation for further studies on genetic improvement and gene function, not only in
T. hamatum but also in other Trichoderma species.

The genetic background of filamentous fungi is complicated. The homologous recom-
bination technique has been gradually replaced by CRISPR/Cas9 technology due to its low
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efficiency, high off-target rates, and heavy workload [47]. For a wide variety of fungi, the
paucity of screening markers is an extreme limitation to the knockout of multiple genes.
GFP is a fluorescent tag that has been applied in many ways. The recombinant expression
of GFP that was inserted into the target expression vector made it possible to evaluate the
effect of the vector protein expression visually. After the transformation of GFP, bright
green fluorescence was observed in the Trichoderma mycelium under 488 nm excitation
light. Thus, the exogenous donor DNA plasmid PUC19-eGFP was co-transformed with the
CRISPR/Cas9 plasmid to increase knockdown efficiency in this work, and its knockout
rate of the Thpyr4 gene reached 100%. In this study, the simultaneous transformation of
two plasmids (CRISPR/Cas9 and PUC19-GFP) could significantly improve the knock-
out efficiency (89.1%). 17.3% of mutants belonged to Cas9 nuclease sheared between the
dual sgRNA, indicating that GFP inserts randomly in the T. hamatum T21 genome. The
CRISPR/Cas9 system illustrated feasibility, practicability, and stability combined with the
phenotypic characterization and molecular identification of ∆Thpyr4 and ∆Thpks1 mutants.
In addition, with the advantage of counterselection using 5-FOA, Thpyr4 could be utilized
as a bidirectional selection marker to resolve the antibiotic screening marker deficiency and
achieve continuous multigene knockout in the fungus [48].

Compared with conventional knockout methods, the CRISPR/Cas9 system had the ad-
vantages of simple construction, a specific target, and high knockout efficiency. The primary
factors affecting knockout efficiency included fungal individual characteristics, promoter
strength, transformation approaches, the length of the homology arms, the sgRNA target
sequence C/G content, and gRNA expression [49–57]. Knockout efficiency varied with dif-
ferent genes and targets using the CRISPR/Cas9 system in the same strain. Katayama et al.
chose the U6 promoter in the CRISPR/Cas9 system with an editing efficiency of 10–20%,
10%, and 100% for WA, pyrG, and yA genes, respectively, in A. oryzae [58]. Gabriel et al.
designed two different sgRNA targets for the same gene in Thermoascus aurantiacus and
showed that the knockout efficiency of the two targets was 10% and 35%, respectively [59].
The number of target genes also affected the knockout efficiency. In T. reesei, the double
knockout rate was 43%, and only 4.2% of the simultaneous knockout efficiency of triple
genes [25]. The dual sgRNA system has been used to delete target DNA fragments in
G. lucidum; the knockdown efficiency of URA3 was 36.7%, which was significantly different
from our study [60]. In our study, the length of the homologous arm was designed to
be 2000 bp, and each gene was targeted with two specific gRNAs, which significantly
increased the efficiency of homologous recombination. There was a significant difference in
the number of ∆Thpyr4 and ∆Thpks1, with 13 and 242, respectively, which may be due to
the toxic effects of 5-FOA on protoplasts.

The fungal conidial pigments are essential components for the formation of the fun-
gal cell wall, which plays a very important role during the growth and development
of fungi [61]. Conidia pigments affect fungal conidia development, UV tolerance, and
pathogenicity. Carotenoid pigments produced in fungi protect against oxidative stress
and visible light or UV irradiation [62]. The pigment aspmelanin in A. terreus is resistant
to UV irradiation, and asparasone in A. flavus is crucial for sclerotial survival [63]. The
melanin in Pestalotiopsis microspora has a negative effect on conidia but is also important for
maintaining cell integrity and viability [64]. The above studies enrich our understanding
of the importance of fungal pigments. In our work, based on the bioinformatics analysis
of known fungal conidia pigment synthesis genes, we predicted the homologous gene
Thpks1 for conidia pigment synthesis genes in T. hamatum. Thpks1 showed homology and
conservation with other proteins related to pigment syntheses, such as the alb1 protein
in A. fumigatus, the pksA protein in D. septosporum, the melA protein in P. expansum, and
the pks protein in M. robertsii (Figure 3). The Thpks1 knockout mutants were obtained
by the CRISPR/Cas9 system and confirmed that Thpks1 was a key gene of the conidia
green pigment synthesis in T. hamatum. Herein, we report Thpks1 as the major green pig-
ment synthesis gene of T. hamatum for the first time and provide a screening marker for
genetic manipulation of Trichoderma. Combining phenotypic and molecular identification
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demonstrated the feasibility and accuracy of the CRISPR/Cas9 system. For the moment,
the biosynthesis of green pigments is more complex in Trichoderma, and the biosynthetic
pathway and regulatory mechanisms require further investigation in the future.

5. Conclusions

In this study, we obtained the genome assembly for T. hamatum T21. Based on
the CRISPR/Cas9 system, a dual sgRNA efficient knockout method was established in
T. hamatum T21 successfully. The adoption of dual sgRNA and dual screening marker
strategies has notable strengths in gene knockout of T. hamatum, having advantages of
simplicity, convenience, and high efficiency. This strategy performed quickly and facilitated
the knockout of individual genes in the T. hamatum genome. The establishment of this
genome editing system will provide an efficient tool to intensively investigate the mecha-
nism of induced resistance and elucidate the secondary metabolite synthesis pathways in
T. hamatum. Furthermore, our results will bring breakthroughs for further investigations
on the functional analysis of biocontrol genes, as well as the elucidation of molecular
mechanisms behind the agricultural applications of filamentous fungi.
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