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Abstract: Autophagy is a conserved mechanism for the turnover of intracellular components. Among
the ‘core’ autophagy-related genes (ATGs), the cysteine protease Atg4 plays an important role in the
activation of Atg8 by exposing the glycine residue at its extreme carboxyl terminus. In the insect
fungal pathogen Beauveria bassiana, a yeast ortholog of Atg4 was identified and functionally analyzed.
Ablation of the BbATG4 gene blocks the autophagic process during fungal growth under aerial and
submerged conditions. Gene loss did not affect fungal radial growth on various nutrients, but ∆Bbatg4
exhibited an impaired ability to accumulate biomass. The mutant displayed increased sensitivity to
stress caused by menadione and hydrogen peroxide. ∆Bbatg4 generated abnormal conidiophores
with reduced production of conidia. Additionally, fungal dimorphism was significantly attenuated
in gene disruption mutants. Disruption of BbATG4 resulted in significantly weakened virulence
in topical and intrahemocoel injection assays. Our study indicates that BbAtg4 contributes to the
lifecycle of B. bassiana via its autophagic roles.

Keywords: autophagy-related gene 4; conidiation; dimorphism; stress tolerance; virulence;
Beauveria bassiana

1. Introduction

Beauveria bassiana is a natural enemy of various arthropod species by causing white
muscardine disease and has been considered a potential alternative to chemical insecticides
in pest management programs [1,2]. In the natural environment, B. bassiana produces coni-
dia as infectious cells. Conidia germinate on the host cuticle via mobilization of endogenous
reserves and develop into invasive hyphae [3,4]. The invasive hyphae penetrate through
the host cuticle and proliferate in the host hemocoel via dimorphic change, generating
yeast-like hyphal bodies (in vivo blastospore) [5,6]. After killing the hosts, B. bassiana effi-
ciently utilizes the insect cadaver to support the saprotrophic growth and conidiation [7]. In
eukaryotes, autophagy is an essential mechanism to regulate cellular homeostasis through
degrading superfluous or damaged macromolecules and organelles [8]. This cellular
degradation pathway is involved in the entire lifecycle of B. bassiana [9].

The autophagic process involves a set of autophagy-related genes (ATGs), in which the
‘core’ ATG genes are indispensable for all autophagy-related processes and conserved in
eukaryotes [10]. Atg1 (a serine/threonine protein kinase) forms an induction complex that
initiates nucleation and phagophore formation. Autophagosome formation is complicated
and involves Atg8-phosphatidylethanolamine (PE) conjugate as a major structural com-
ponent. The formation of Atg8-PE is dependent on the ubiquitin-like conjugation system
(ULCS), in which the cysteine protease Atg4 exposes the glycine residue at the extreme C
terminus [11]. The biological functions of Atg4 homologs have been increasingly character-
ized in filamentous fungi. In Aspergillus oryzae, Atg4 is indispensable for autophagosome
formation and is involved in the development of aerial hyphae into conidia [12]. In
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Botrytis cinerea (a plant pathogenic fungus), gene disruption of ATG4 significantly com-
promises mycelial growth, conidiation, and virulence [13]. Fusarium graminearum is the
causal agent of Fusarium head blight, and its Atg4 contributes to fungal development,
deoxynivalenol production, and virulence [14]. In rice blast fungus Magnaporthe oryzae,
the ATG4 gene contributes to appressorial maturation and, ultimately, to fungal patho-
genesis [15]. In Metarhizium robertsii (an insect pathogenic fungus), deletion of ATG4 does
not block appressorial formation but significantly impairs fungal lipid accumulation and
virulence [16]. These investigations indicate that Atg4 homologs exhibit divergent roles in
fungal physiology. However, the roles of Atg4 remain unknown in B. bassiana.

In the present study, we identified and characterized a cysteine protease Atg4 in
B. bassiana and determined its roles in the fungal lifecycle. The results demonstrated that
the BbATG4 loss resulted in attenuated phenotypes in autophagic process, development,
stress response and virulence.

2. Materials and Methods
2.1. Strains, Media and Growth Conditions

The wild type of B. bassiana ARSEF2860 (Bb2860) was obtained from the U.S. Depart-
ment of Agriculture Entomopathogenic Fungus Collection (Ithaca, NY, USA) [17]. The wild
type (WT) and its derivative strains were maintained on SDAY (4% glucose, 1% peptone,
and 1.5% agar plus 1% yeast extract) at 25 ◦C. Escherichia coli DH5α (Invitrogen, Waltham,
MA, USA) was cultured in a Luria–Bertani medium with necessary antibiotics for plasmid
construction. Agrobacterium tumefaciens AGL-1 for fungal transformation was cultured in
YEB broth (w/v: 0.5% sucrose, 1% peptone, 0.1% yeast extract, and 0.05% MgSO4). Czapek-
Dox agar (CzA) (3% glucose, 0.3% NaNO3, 0.1% K2HPO4, 0.05% KCl, 0.05% MgSO4, and
0.001% FeSO4 plus 1.5% agar) was used as the chemically defined medium in following
experiments.

2.2. Bioinformatic Analysis of BbAtg4

Basic Local Alignment Search Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/blast.
cgi (accessed on 1 March 2023)) was used to identify BbAtg4 protein through the NCBI
databases using S. cerevisiae Atg4 (P53867) as a query. The Atg4 orthologs were downloaded
from NCBI databases, and their domain architectures were analyzed through the online
portal SMART (http://smart.embl-heidelberg.de (accessed on 1 March 2023)). The Atg4
homologs in yeasts and filamentous fungi were clustered using the maximum likelihood
method through the online program MEGA7 (http://www.megasoftware.net/ (accessed
on 1 March 2023)).

2.3. Targeted Gene Disruption and Complementation

A disruption mutant of BbATG4 was generated using a method of homologous replace-
ment coupled with a fluorescence reporter [18]. All primers are included in Table S1. The
primer pairs P1/P2 and P3/P4 were used to amplify 5′- and 3′-fragments of BbATG4, respec-
tively. The resulting fragments were cloned into the restriction enzyme sites (XmaI/BamHI
and XbaI/HpaI) in p0380-bar using the ClonExpress II One Step Cloning Kit (Vazyme
Biotech, Nanjing, China), generating gene disruption vector (p0380-bar-BbAtg4). The
full-length gene of BbATG4 was amplified with the primer pair P5/P6 and inserted into the
plasmid pPK2-NTC-GFP [19], generating the complementation vector (pPK2-BbAtg4-NTC-
GFP). The resulting vector was transformed into fungal strains with the Agrobacterium-
based transformation method. Putative gene disruption and complementation strains were
screened by phosphinothricin (200 µg/mL) and nourseothricin (50 µg/mL), respectively,
and identified via PCR analyses withprimer pair P7/P8.

2.4. Visualizing Autophagic Flux in Fungal Strains

Fusion protein GFP-Atg8 (GA8) was used as a marker to track the autophagic pro-
cess [9]. Plasmid p0380-GA8-sur was integrated into the wild type and eight gene disrup-
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tion mutant strains. To visualize autophagy in the aerial mycelia, conidia of the indicated
strain were inoculated on SDAY plates and cultured at 25 ◦C. The aerial mycelia were
sampled at 3.5 d post-incubation. To obtain the submerged mycelia, the conidia were
inoculated into SDB (SDAY without agar) and cultured for 2 d at 25 ◦C. The mycelial
samples were stained with CMAC and examined under a fluorescent microscope.

2.5. Phenotypic Assays

Effects of the gene loss on fungal phenotypes, including conidial germination, veg-
etative growth, stress response and development, were evaluated among the wild-type,
gene disruption and complemented mutant strains as described previously [20,21]. All
experiments were repeated three times.

Conidial germination: Conidial germination was examined on GA (sucrose-peptone
agar) and WA (water-ager) plates. The conidial suspension (100 µL, 5 × 107 conidia/mL)
was inoculated on the indicated plates. The germination levels on these two media were
measured at 10 h and 24 h post-incubation, respectively. The morphology of fungal cells
was recorded using microscopy.

Vegetative growth: Mycelial growth was assayed on the CzA plates modified with var-
ious carbon and nitrogen sources. Carbon sources (final concentration, w/v) included glu-
cose (3%), sucrose (3%), fructose (3%), trehalose (3%), olive oil (0.5%) and oleic acid (0.2%).
Nitrogen sources (final concentration, w/v) included NH4NO3 (0.5%) and urea (0.5%). The
radial growth rate was tested by dripping conidial suspension (1 µL, 106 conidia/mL) on
the plate, and colony diameter was examined at 7 d post-incubation at 25 ◦C. To determine
biomass, conidial suspension (100 µL, 1 × 106 conidia/mL) was smeared on the cellophane
attached tothe indicated plate. After the 7d incubation at 25 ◦C, biomass was determined
after drying.

Stress responses: Fungal responses to oxidative stress were determined on a CzA plate
supplemented with 0.02 mM menadione and 2 mM H2O2. A droplet (1 µL) of conidial
suspension (106 conidia/mL) was placed on the plate and incubated at 25 ◦C. The colony
diameter was measured at 7 d post-incubation. CzA plates without stress chemicals were
used as control.

Fungal development: Conidial production was determined on SDAY plates. Aliquots
(100 µL of 107 conidia/mL) were inoculated on SDAY plates and cultured for 7 d at 25 ◦C.
Mycelial discs (5 mm in diameter) were suspended in 0.02% Tween-80 solution. Conidial
concentration in suspension was quantified and used to calculate conidial yield (conidial
number per square centimeter). In addition, the mycelia of the wild-type and autophagy-
null mutants were sampled at 4 and 5 d post-incubation, respectively. The conidium-
producing structures were examined under a microscope. Fungal development under
submerged conditions was assayed in SDB medium (SDAY without agar). Conidia were
inoculated into SDB at the final concentration of 105 conidia/mL and incubated for 3 d at
25 ◦C on a shaker. The concentration of blastospores in broth was determined, and blas-
tospore yield was shown as the spore number per ml of culture.

2.6. Insect Bioassay with Two Methods in Preparing Conidial Suspensioi5n

To examine fungal virulence, the Galleria mellonella larvae were used as the bioassay
hosts, and each treatment included 30–35 larvae [22]. Fungal strains were cultured on
SDAY plates for 7 d at 25 ◦C, and the resultant conidia were used as infectious inocula. Two
methods were used in preparing conidial suspension. In method 1, mycelia and conidia
were harvested from the plate and suspended in 0.02% Tween 80 solution, followed by
violent votexing. The resultant mixture was filtered through the cotton column, and the
filtrate was used to infect the hosts. In method 2, the resultant filtrate from method 1
was filtered through the microporous membrane (40 µm in pore size) [23]. The resultant
suspension of two methods was used in two kinds of bioassay.I n the cuticle inoculation
assay, insects were immersed in conidial suspension (107 conidia/mL) for 10 s. In the
intrahemocoel injection assay, conidial suspension (5 µL, 105 conidia/mL) was injected into
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the host hemocoel. Tween-80 solution (0.02%) was used as a control. The daily-recorded
mortality was used to calculate the median lethal time (LT50) by Kaplan–Meier method
with a log-rank test for determining the difference between the paired survival trends.

In previous bioassays for autophagy-null mutants, the conidial suspension was pre-
pared with method 1. To increase the comparability of bioassay results, we re-examined all
autophagy-null mutants published in the past decade [4,9,24–26] with conidial suspension
prepared with method 2.

2.7. Statistical Analyses

All other phenotypic measurements for the wild-type, gene disruption and comple-
mentation strains were subjected to Student’s t-test, and the significance was determined
if p < 0.05. Statistical analyses were performed with the software of GraphPad Prism 8
(GraphPad Software, Boston, MA, USA).

3. Results
3.1. Characterization and Molecular Manipulation of BbAtg4

Based on the BLAST research with yeast Atg4 (Accession no. P53867) as a query,
a highly related homolog (Accession no. EJP61110) was identified in B. bassiana and
was designated as BbAtg4. The open reading frame (ORF) sequence of this gene was
1508 bp long, with three introns in the genomic sequence, and it coded a protein with
378 amino acids. Domain annotation analyses indicated that BbAtg4 contained a domain of
Peptidase_C54 (PF03416). As shown in Figure 1, BbAtg4 was much more closely related to
those of the filamentous fungi than to those of yeasts and showed more similarity to those
of entomopathogenic fungi.
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Figure 1. Sequence analyses for Atg4 protein in B. bassiana. Sequence analyses for Atg4 protein in
B. bassiana. Phylogenetic relationship of B. bassiana Atg4 with its homologs in fungi. Relationships
among different homologs were constructed by Neighbor-Joining analysis, and the numbers at each
node indicated the bootstrap values > 50% from 1000 replicate tests. Each gene is indicated with
GenBank accession number followed by the respective fungal species. Domain organization was
shown for each homolog.

To further unveil the role of BbAtg4, the gene disruption strain was successfully
constructed through the homologous recombination strategy (Supporting Information
Figure S1A). The candidate transformants were screened by a PCR reaction. As expected,
the 1.6 and 1.1 kbp fragments were amplified from the wild-type and gene disruption mu-
tant strains, respectively. However, both fragments were obtained from the complemented
strain (Supporting Information Figure S1B). All transformants were further confirmed
under LSCM.
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3.2. BbAtg4 Contributes to Vegetative Growth

To determine the roles of BbAtg4 in nutrient utilization, vegetative growth was evalu-
ated on different carbon or nitrogen sources (Figure 2A). After a 7-day incubation at 25 ◦C,
∆Bbatg4 showed no significant reduction in colony diameter. Only on the culture medium
using glucose and fructose as carbon sources, the colony diameter of ∆Bbatg4 decreased
slightly, with a reduction of 13.04% and 13.88%, respectively, when compared with that of
the wild-type strain. However, the colony biomass of ∆Bbatg4 mutant was significantly
less than that for the wild-type and complementation mutant strains (Figure 2B). On var-
ious nutrients, the mycelial biomass of ∆Bbatg4 decreased by 6.79 to 42.04%. These data
indicated that BbAtg4 contributes to fungal vegetative growth (Figure 2C).
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Figure 2. Effects of gene loss on fungal growth. Fungal strains were cultured on Sabouraud dex-
trose agar plates (SDAY) for conidiation. The conidia of indicated strain were inoculated on min-
imal medium supplemented with various carbon or nitrogen sources. After 7 d of incubation at
25 ◦C, colony morphologies were recorded (A), and diameters were examined (B). (C) To evaluate
fungal biomass, conidial suspension was inoculated on SDAY plates and cultured for 7 d at 25 ◦C.
The resultant mycelia were weighted after drying. Asterisks on the columns indicate a significant
difference between gene disruption mutant and the wild-type or complemented strains (Student’s
t-test; *, p <0.05). Error bars indicate the standard deviation from three replicates. Red bars: wild type;
blue bars: ∆Bbatg4; brown bars: ∆Bbatg4::Bbatg4.
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3.3. BbAtg4 Is Required for Conidial Germination under Nutrient-Limitation Condition

The conidial germination was assayed on GM and WA plates, which represented
nutrient and oligotrophic conditions, respectively (Figure 3A). On the GM plates (Figure 3B),
after an incubation of 10 h, ∆Bbatg4 did not exhibit a significant difference in the germination
level when compared with the wild-type strain. On the WA plates (Figure 3C), at 24 h post-
incubation, the germination levels for ∆Bbatg4 were 21.67 ± 2.49%, which was significantly
lower than that of the wild type (58.33 ± 3.30%) with a decrease of 79.03%. There was no
significant difference between the wild-type and complementation strain.
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Conidia were inoculated on germination agar (GA) and water agar (WA) plates and cultured at
25 ◦C for 10 and 24 h, respectively. (A) Images for germination tubes were recorded at the sampling
points. Germination level was quantified for conidia on GA (B) and WA (C). (D) Conidial production.
Conidial suspension was inoculated on SDAY plates and cultured for 7 d at 25 ◦C. (E) Blastospore
production. Conidial suspension was inoculated into SDB (SDAY without agar) and cultured for 3 d
at 25 ◦C. To examine fungal response to oxidative stress, menadione and H2O2 were individually
included in CzA plate, using plates without stressors as control (CK). Conidial suspension was
inoculated on plate and cultured at 25 ◦C. Seven days later, colony morphologies were recorded
(F), and their diameters were examined (G). Asterisks on the columns indicate a significant differ-
ence between gene disruption mutant and the wild-type or complemented strains (Student’s t-test;
*, p < 0.05). Error bars indicate the standard deviation from three replicates.

3.4. BbAtg4 Is Involved in Fungal Development

At 7 days post-incubation under aerial conditions (Figure 3D), the ∆Bbatg4 mutant
exhibited a significant decrease in conidial yield on SDAY plates. The conidial yield of
the mutant strain was 0.92 ± 0.44 × 108 conidia/cm2 (mean ± SD), decreased by 89.20%
when compared with the wild-type strain (8.54 ± 0.36 ×108 conidia/cm2). There was
no significant difference between the complementation strain and the wild type. Fungal
development under submerged conditions was evaluated in the SDB medium. As shown
in Figure 3E, blastospore concentration for ∆Bbatg4 was 0.41 ± 0.15 × 108 spores/mL
(mean ± SD), with a decrease of 70.35% in comparison to that of the wild-type strain
(1.39 ± 0.12 × 108 spores/mL). These results indicate that BbAtg4 plays an important role
in the formation of conidia and blastospores on aerial surfaces and in liquid, respectively.

3.5. BbAtg4 Contributes to Fungal Resistance to Oxidative Stress

As shown in Figure 3F,G, without stress, after a 7-day incubation at 25 ◦C, ∆Bbatg4
mutant showed no significant growth defects. On plates supplemented with menadione,
the colony diameter for the wild-type and ∆Bbatg4 mutant strains were 0.92 ± 0.08 and
0.50 ± 0.04 cm, respectively. Under H2O2 stress, the colony diameter for the wild-type and
∆Bbatg4 mutant strains were 0.60 ± 0.04 and 0.40 ± 0.04 cm, respectively. These results
indicated ∆Bbatg4 displayed an enhanced sensitivity to oxidative stress.

3.6. BbAtg4 Is Important to Fungal Virulence

Two types of bioassay methods were used to evaluate fungal virulence against
G. mellonella larvae. Firstly, we used the conidial suspension prepared with method 2
in bioassay (Figure 4A–F). In the intrahemocoel injection bioassay, the median lethal time
(LT50) value of ∆Bbatg4 was 4 days, delayed by 0.5 d when compared with that of the
wild type (3.5 d) (Figure 4B). Notably, disruption of ∆Bbatg4 led to a significant reduction
in the yield of in vivo hyphal bodies (Figure 4C). The ∆Bbatg4 mutant only produced
0.13 ± 0.09 × 106 spores/mL at 2 days post-injection, with a reduction of 96.55% when
compared with that of the wild-type strain (3.87 ± 0.25 × 106 spores/mL). The in vivo blas-
tospore yield of ∆Bbatg4 strain increased at 3 d post-infection but still displayed a reduction
of 91.30% when compared with that of the wild-type strain. In cuticle inoculation bioassay,
the LT50 for the ∆Bbatg4 mutant was 7.33 ± 0.47 d, significantly different from that of the
wild-type strain (4.83 ± 0.24 d), with a delay of 51.72% (Figure 4E). After 4 d post-infection,
the in vivo blastospore yield for ∆Bbatg4 is 0.87 ± 0.57 × 106 spores/mL and decreased by
81.69% when compared with that of the wild-type strain (4.73 ± 0.41 × 106 spores/mL).
The spore yield of the ∆Bbatg4 strain (3.87 ± 0.52 × 106 spores/mL) increased at 6 d
post-infection but still displayed a reduction of 59.72% when compared with that of the
wild-type strain (9.60 ± 0.49 × 106 spores/mL) (Figure 4F).
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Error bars indicate the standard deviation from three replicates. 

3.7. Autophagy Is Crucial for the Differentiation of Spore-Formation Structures 
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bassiana [4,9,24–26]. In this study, we examined the spore-producing structures in mutant 
deficient of the above ATGs. As shown in Figure 5, on the aerial surface, disruption of any 
one of the above ATGs resulted in significant impairment in fungal conidiophores. Mi-
croscopic examination indicated that the wild type produced abundant numbers of ‘bot-
tle’ shaped conidiophores at 4 days post-incubation (dpi). However, at 7dpi, the au-

Figure 4. Insect bioassay. Fungal strains were cultured on SDAY plate for conidiation. To prepare
conidial suspension, two filtration media were used, including cotton column and microporous
membrane. Survival trends were noted for the insect hosts challenged with conidial suspensions via
intrahemocoel injection (A,G) and topical application (D,I). Median lethal time (LT50) was calculated
for bioassays with infection methods of intrahemocoel injection (B,H) and topical application (E,J).
The in vivo blastospore production was examined in bioassays of intrahemocoel injection (C) and
topical application (F).The fungal virulence indicated by LT50 value was significantly impaired by
disruption of BbATG4. Asterisks on the columns indicate a significant difference between the ∆Bbatg4
mutant and the wild-type or complemented strains (Student’s t-test; *, p <0.05). Error bars indicate
the standard deviation from three replicates.

Then, we used the conidial suspension prepared with method 1 in bioassay. As shown
in Figure 4G–J, in the intrahemocoel injection bioassay, the LT50 value of ∆Bbatg4 was 3.5 d
and identical to that of the wild-type strain (3.5 d). In topical infection bioassay, the LT50
of ∆Bbatg4 was only delayed by 1.27 d when compared to that of the wild-type strain.
These results indicated that conidial suspension prepared with different methods displays
different effects on the outcome of bioassay.
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3.7. Autophagy Is Crucial for the Differentiation of Spore-Formation Structures

Previous studies have shown that the ‘core’ autophagic genes (BbAtg1, BbAtg3, BbAtg5,
BbAtg7, BbAtg8, BbAtg12 and BbAtg16) are essential for spore formation in B. bassiana [4,9,24–26].
In this study, we examined the spore-producing structures in mutant deficient of the above
ATGs. As shown in Figure 5, on the aerial surface, disruption of any one of the above ATGs
resulted in significant impairment in fungal conidiophores. Microscopic examination indicated
that the wild type produced abundant numbers of ‘bottle’ shaped conidiophores at 4 days
post-incubation (dpi). However, at 7dpi, the autophagy-null strains produced the elongated
and emaciated conidiophores, and very few conidia were observed.
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Figure 5. Microscopic view of conidium-producing structures. The wild type (WT) and its autophagy-
null strains were cultured on SDAY plates at 25 ◦C. Five days later, mycelia/conidiophores were
sampled and stained with calcofluor white. Images were taken under a fluorescent microscope. In all
autophagy-null strains, conidiophores were significantly compromised, and very few conidia were
observed. Bars: 5 µm.

During conidiation, autophagic flux was indicated with the fusion protein GFP-
Atg8 [25–27]. Green signals were consistent with blue signals from the vacuole-specific
dye (CMAC) in the wild-type strain. In ∆Bbatg1, ∆Bbatg3, ∆Bbatg4, ∆Bbatg5 and ∆Bbatg10
mutant strains, the GFP signals persisted in the cytoplasm. Notably, in gene disruption mu-
tants, cytoplasmic BbAtg8 proteins aggregate into punctate aggregates, and more punctate
signals were observed in ∆Bbatg4 (Figure 6). Autophagy is also crucial for the differ-
entiation of blastospores [27]. During the period of blastospore production, autophagic
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flow also exhibits the same trend as that involved in the period of conidia production
(Figure S2).
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Figure 6. The autophagic process in aerial mycelia of B. bassiana. Fusion gene GFP-ATG8 was
transformed into the wild type (WT) and its autophagy-null strains. Conidial suspension of the
indicated transformant was inoculated on SDAY plate and cultured for 3.5 d at 25 ◦C. The resultant
mycelia were stained with CMAC (for vacuole), and autophagic process was examined under a
fluorescent microscope. Autophagic signals were observed in the vacuoles of WT (yellow arrow), and
Atg8 aggregates were only seen in cytosol of autophagy-null strains. BF: bright field; OL: overlapped.
Scale bars: 10 µm.

3.8. Re-Examine the Virulence of Autophagy-Null Mutants

For autophagy-null strains, their conidia yield is very low, and it is hard to remove
hyphal fragments from conidia. In this study, we introduced the method of membrane
filtration in preparing conidial suspension and re-examined the virulence of autophagy-null
mutants that have been published (Figure 7).
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Figure 7. Re-examine conidial virulence. The wild type (WT) and its autophagy-null strains were
cultured on SDAY plate for conidiation. To prepare conidial suspension, the mycelia were removed by
filtering through microporous membrane. Survival trends were noted for the insect hosts challenged
with conidial suspensions via intrahemocoel injection (A) and topical application (C). Median lethal
time (LT50) was calculated for bioassays with infection methods of intrahemocoel injection (B) and
topical application (D). Asterisks indicate a significant difference between the autophagy-null and
the wild-type strains (Student’s t-test; ****, p < 0.0001). Error bars indicate the standard deviation
from three replicates.

In the intrahemocoel injection bioassay (Figure 7A), all disruptants killed all bioassay
insects, and all survival trends caused by autophagy-null mutants showed significant
differences from that of the wild-type strain. In addition, there was a significant difference
in the survival curve (Table 1) between the wild-type and individual mutant strains. As
shown in Figure 7B, the median lethal time (LT50) value of the wild type was 3.5 d. The LT50
values of ∆Bbatg1, ∆Bbatg3, ∆Bbatg4, ∆Bbatg5, ∆Bbatg7, ∆Bbatg10, ∆Bbatg12 and ∆Bbatg16
were delayed to 4 d, while LT50 of ∆BbAtg8 was delayed to 4.5 d. In topical application
bioassay (Figure 7C), the wild type killed all tested hosts and exhibited a host survival
curve that was significantly different from those caused by gene disruption mutants. As
shown in Figure 7D, LT50 for the wild-type strain was 4.83 ± 0.24 d. Whereas, the LT50
values of ∆Bbatg1, ∆Bbatg3, ∆Bbatg4, ∆Bbatg5, ∆Bbatg7, ∆Bbatg8, ∆Bbatg10, ∆Bbatg12 and
∆Bbatg16 were 8.00, 7.00, 7.33, 6.67, 6.17, 8.87, 7.67, 6.83 and 7.00 d, respectively.

Table 1. Log-rank tests were performed between the wild-type and individual mutant strains.

Strains
Injection Infection Topical Infection

χ2 Value p Value χ2 Value p Value

∆Bbatg1 57.38 <0.0001 61.33 <0.0001
∆Bbatg3 49.93 <0.0001 29.54 <0.0001
∆Bbatg4 44.54 <0.0001 44.02 <0.0001
∆Bbatg5 49.62 <0.0001 29.24 <0.0001
∆Bbatg7 40.10 <0.0001 18.75 <0.0001
∆Bbatg8 74.79 <0.0001 99.63 <0.0001

∆Bbatg10 47.54 <0.0001 60.45 <0.0001
∆Bbatg12 31.18 <0.0001 36.15 <0.0001
∆Bbatg16 37.12 <0.0001 23.89 <0.0001



J. Fungi 2023, 9, 543 12 of 15

4. Discussion

In filamentous fungi, autophagy plays important roles in many physiological pro-
cesses, including vegetative growth, development, lifespan and pathogenicity [21,28].
During the autophagic process, the ‘core’ ATG genes are indispensable for autophagy
initiation and development, which are conserved in eukaryotes [29,30]. Autophagy has
been linked to the whole lifecycle of B. bassiana [31]. In the present study, a homolog of
yeast Atg4 was functionally analyzed in B. bassiana. The results demonstrated that BbAtg4
is required for the autophagic process and is involved in fungal growth, stress response,
development and virulence.

In B. bassiana, there exists a single Atg4 through sequence alignment analysis. Domain
annotation uncovered that Atg4 contains a domain of Peptidase_C54 which is prevalent in
Atg4 homologs from other fungal species. This finding reinforces that Atg4 is evolutionarily
conserved in fungal species with different lifestyles [32]. As expected, BbAtg4 is required
for autophagy in B. bassiana. Similarly, A. oryzae Atg4 is indispensable for autophagosome
formation [12]. In B. bassiana, disruption of BbATG4 significantly impairs conidial ger-
mination under starvation induction. This result is consistent with the BbATG8 role in
autophagy [31]. During autophagy, the cysteine protease Atg4 exposes the glycine residue
at the extreme C-terminus of Atg8, and finally, Atg8 is activated through conjugation with
PE [11]. The tripeptide at the C-terminus of BbAtg8 is essential for autophagy but not
indispensable for its interaction with other proteins [21]. More BbAtg8 aggregates are
present in the ∆Bbatg4 strain than in other autophagy-null strains. This attributes to the
Atg4 roles in the processing of Atg8 for maturation. Therefore, BbAtg4 acts as a functional
ortholog of yeast Atg4 in B. bassiana autophagy.

In B. bassiana, autophagy is associated with the whole lifecycle of the fungus [21,31].
Conidial germination is a critical step for successful infection by B. bassiana [4]. Similar
to other ATG genes, BbATG4 is required for conidial germination under oligotrophic
conditions but not for germination under nutrient-replete conditions. BbAtg4 contributes
to fungal growth, and its loss impairs the accumulation of biomass but does not affect
radial growth. As for ∆Bbatg4, the LT50 in the topical infection assay showed a significant
delay when compared to that in the intrahemocoel injection bioassay. This suggests that
BbAtg4 links autophagy to nutrient supply, which is critical for conidial germination on the
host cuticle and follow-up invasive growth. Autophagy mediates the recycling of cellular
nutrients during fungal growth and differentiation [30]. As a key regulator in autophagy,
BbAtg7 contributes to fungal radial growth on chitin [25]. This result suggests that Atg
proteins perform different roles in fungal growth with possible non-autophagic roles.

In host hemocoel, the B. bassiana undergoes dimorphic transition and combat with
different stresses caused by insect immune defense [33]. Like other ATG genes (e.g., ATG1,
ATG5 and ATG8) [4,31], BbAtg4 contributes to dimorphic change in B. bassiana. Additionally,
BbAtg4 significantly contributes to the resistance of B. bassiana to oxidative stress, which is
observed for other ATG genes (e.g., ATG8 and ATG11) [31,33]. Thus, the reduced virulence
of B. bassiana in intrahemocoel bioassay might be the combined defects of dimorphism and
oxidation tolerance. In addition, BbAtg4 plays a more important role in fungal virulence
through cuticle infection. This observation is also noted for other autophagy-related genes,
which reinforces that autophagy is critical for the establishment of fungal infection on the
host cuticle owing to autophagic roles in the mobilization of the endogenous reserve during
conidial germination [31]. Two methods for conidial suspension preparation resulted in
different results in bioassay. This might be due to the lower efficiency of the cotton column
in removing the fragmented hyphae than the microporous membrane. In this study, we
improved and standardized the methods used in preparing conidial suspension with a
microporous membrane, which increase the comparability of bioassay data. In B. cinerea,
Atg4 significantly contributes to virulence [13]. In F. graminearum, Atg4 contributes to
fungal development, deoxynivalenol production and virulence [14]. In M. oryzae, Atg4
mediates appressorial maturation and pathogenesis [15]. In M. robertsii, Atg4 mediates
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lipid metabolism and virulence [16]. These results suggest that autophagy and its related
genes mediate divergent mechanisms involved in fungal pathogenesis.

A well-known role of ATGs in filamentous fungi is their involvement in conidia-
tion [28]. All tested ATG genes have a convergent role in maintaining the conidiophore
morphology, which is due to their autophagic roles. BbAtg4 contributes to approximately
90% of conidial capacity in B. bassiana, which is similar to that noted for BbAtg1 [31]. For
aerial conidiation, BbAtg3, BbAtg5, BbAtg7 and BbAtg11 have similar roles. Their dis-
ruption mutants display a reduction of approximately 70% in conidial yield [4,9,24,25,33].
BbAtg12 and BbAtg16 have more important roles in conidiation, and their losses result
in approximately 80% reduction in conidial yield [26]. As for B. bassiana, the conidiation
process is critical for fungal survival and subsequent infection cycles [21]. From this perspec-
tive, Atg4, together with other ATGs, is significantly involved in maintaining the infection
cycle of B. bassiana. Increasing evidence suggests that ATG genes perform a variety of
non-autophagic roles [34]. In addition, Bbatg5 contributes to maintaining conidial size [4].
Thus, these findings reinforce that B. bassiana ATG genes might mediate the divergent
pathways in fungal differentiation beyond their common roles in autophagy.

5. Conclusions

In summary, BbAtg4 is indispensable for the fungal autophagic process during de-
velopment. This gene contributes to stress response (starvation and oxidation), spore
production and virulence in B. bassiana. This study provides more understanding of the
effects of autophagy on physiology in filamentous fungi.
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Primers used in this study.
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