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Abstract: Phallus rubrovolvatus is a unique mushroom used for medicinal and dietary purposes in
China. In recent years, however, the rot disease of P. rubrovolvatus has seriously affected its yield and
quality, becoming an economically important threat. In this study, samples of symptomatic tissues
were collected, isolated, and identified from five major P. rubrovolvatus production regions in Guizhou
Province, China. Based on combined analyses of phylogenies (ITS and EF1-α), morphological
characteristics and Koch’s postulates, Trichoderma koningiopsis and Trichoderma koningii were identified
as the pathogenic fungal species. Among these, T. koningii exhibited stronger pathogenicity than
the other strains; thus, T. koningii was used as the test strain in the follow-up experiments. Upon
co-culturing T. koningii with P. rubrovolvatus, the hyphae of the two species were intertwined, and the
color of the P. rubrovolvatus hyphae changed from white to red. Moreover, T. koningii hyphae were
wrapped around P. rubrovolvatus hyphae, leading to their shortening and convolution and ultimately
inhibiting their growth due to wrinkling; T. koningii penetrated the entire basidiocarp tissue of
P. rubrovolvatus, causing serious damage to the host basidiocarp cells. Further analyses revealed that
T. koningii infection resulted in the swelling of basidiocarps and significantly enhanced the activity
of defense-related enzymes, such as malondialdehyde, manganese peroxidase, and polyphenol
oxidase. These findings offer theoretical support for further research on the infection mechanisms of
pathogenic fungi and the prevention of diseases caused by them.

Keywords: edible fungi; Trichoderma koningii; mycoparasitism; ROS level; rot disease

1. Introduction

Phallus rubrovolvatus (M. Zang, D. G. Ji and X. X. Liu) Kreisel typically grows beneath
bamboo forests. Its basal fungal cord is connected to the bamboo whip and dead bamboo
roots, and its delicate white mesh skirt is spread downward [1,2]. Owing to this very
unique morphology, it is known as the “flower of fungi” or “empress of fungi” in Chi-
nese [3,4]. Edible fungi rank as the fifth largest crop in China, playing an important role
in the agricultural economy, with broad development prospects and immense research
significance [5,6]. Phallus rubrovolvatus is a precious, large-scale, rare, medicinal, and edible

J. Fungi 2023, 9, 525. https://doi.org/10.3390/jof9050525 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof9050525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0001-8286-0044
https://doi.org/10.3390/jof9050525
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof9050525?type=check_update&version=2


J. Fungi 2023, 9, 525 2 of 20

mushroom in China, and its cultivation has paved a new way to overcome poverty among
local farmers [3,7]. This mushroom is rich in polysaccharides and amino acids and produces
beneficial effects such as anti-fungal activity, cancer prevention, lowering blood pressure,
and weight loss, implying its broad development [8–10].

One hundred and nineteen Phallus species have been reported worldwide [11]. Among
these, P. rubrovolvatus is popular and highly preferred by people. In China, the germplasm
resources of P. rubrovolvatus are relatively rich. In particular, Zhijin County in Guizhou
Province is popularly known as “the hometown of Chinese P. rubrovolvatus.” With Zhijin
County as the center, the cultivation trend of this mushroom has radiated throughout
Guizhou Province, becoming the most characteristic and advantageous edible fungus
industry in this region [3]. P. rubrovolvatus prefers moderate temperatures and high moisture
for growth. However, its unique warm and humid growth environment, characteristic odor,
and rich nutrients are conducive to the occurrence of diseases and pests [12]. In addition,
issues such as the availability of a single planting variety and strain degradation have
resulted in an increasing incidence of diseases and pests, resulting in yield reductions of up
to 60–70%, severely restricting the healthy development of the industry [7,13]. In addition,
there are issues such as the availability of monoculture varieties and strain degradation

Trichoderma species, as representative biocontrol fungi, cause devastating damage to
edible mushroom production, posing a serious threat to the development of this indus-
try [14–18]. Trichoderma oblongisporum, for instance, has been reported to cause mycelial
withering and death in Lentinula edodes due to its three to five times faster hyphal growth
rate and ability to produce extracellular enzymes to attack the host [19,20]. In addition,
Trichoderma species are more resilient to extreme temperature, humidity, and pH conditions
and adversities [21]. Furthermore, T. ganodermatigerum and T. koningiopsis have been re-
ported to cause green mold disease in Ganoderma sichuanense [22]. Moreover, T. aggressivum
f. aggressivum is one of the major fungal pathogens of Agaricus bisporus [23]. However, little
is known about the fungi that cause rot disease in P. rubrovolvatus. Recently, Chen et al.,
isolated T. koningiopsis of the Trichoderma species as a fungal pathogen causing green mold
in P. rubrovolvatus [13].

To prevent pathogen invasion, the host activates its own defense system, which
involves a series of responses [24]. For instance, phenylalanine ammonia-lyase (PAL) is
one of the key enzymes involved in defense reactions [25]. The host generates an immune
response to resist the invasion of pathogenic fungi. For instance, increased lignin production
can strengthen the cell wall and increase tissue lignification, forming a mechanical barrier
to pathogenic fungal invasion [26]. Ligninases include manganese peroxidase (MnP) and
laccase. Laccase is a polycopper oxidase that can prevent the destruction of host cells by
toxic compounds secreted by pathogenic fungi, and it has been reported to play a crucial
defensive role in preventing pathogenic fungal infection in Agaricus bisporus [27]. Upon
Aspergillus niger infection, basidiomycetes have been reported to enhance their defense
response by augmenting lignin biosynthesis through a 67-fold increase in MnP activity and
a 1.7-fold increase in laccase activity [28].

Despite extensive efforts in recent years to investigate, isolate, and control P. rubrovolvatus
rot, the precise mechanisms of the pathogenic fungus’s invasion and spread into the host
remain unknown; as a result, research on the interaction between P. rubrovolvatus and its
pathogenic hyperparasite remains in its early stages.

In the present study, the pathogenic fungi causes of rot disease on P. rubrovolvatus in
five planting regions in Guizhou Province, China, were isolated and identified. We aimed to
isolate and identify the pathogenic fungi, evaluate their pathogenicity, and investigate the
parasitism of pathogenic fungi on P. rubrovolvatus: (1) the morphological and ultrastructural
characteristics of the infected basidiocarps were observed; (2) we measured important
physiological and biochemical changes in the defense response; malondialdehyde (MDA),
laccase, MnP, polyphenol oxidase (PPO), and PAL, were examined; (3) finally, the patho-
genesis of rot disease and changes in the activities of the related defense enzymes were
analyzed.
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2. Materials and Methods
2.1. Field Investigation of Phallus rubrovolvatus Rot Disease

To determine the incidence of rot disease, samples were collected from five major pro-
duction regions in Guizhou Province, China, including Nayong, Qianxi, Guiding County,
Guiyang and Xingyi City. A hundred basidiocarps were chosen at random from each plant-
ing area. Three replicates were set up to count the number of rotting basidiocarps (counting
when brown spots appeared), and the incidence rate was calculated as follows [29]:

Disease Incidence = [Number of infected plant units/Total number of plant units
assessed] × 100

2.2. Isolation and Identification of Pathogenic Fungi and Evaluation of Their Pathogenicity

The samples of basidiocarps with rot disease were immersed in 0.1% HgCl for 3 min
for disinfection and then washed with sterilized water three to five times. The tissues
around the diseased spots were incised with a sterilized scalpel. Approximately a 2–3 mm2

portion at the junction of the diseased and healthy parts was sampled and inoculated on
potato dextrose agar (PDA; 1 L potato infusion with 20 g·L−1 glucose and 15 g·L−1 agar);
the plates were incubated at 25 ◦C for 3–5 days.

To test the pathogenicity of the isolated fungi, a sterile hole punch was used to
sample a 5 mm2 fungal block. The fungal block was inoculated on the surface of healthy
basidiocarps, six fungal basidiocarps were inoculated per strain, and three fungal blocks
were placed per fungal basidiocarp. The samples were incubated in a smart mushroom
fruiting chamber (LY-N7012, Zhucheng Liyu Machinery Co., Ltd., Sandong, China) at
25 ◦C and 80% humidity. Statistics were observed after inoculation, following the modified
protocol of Tian et al. [30].

2.3. Species Identification and Confrontation Testing of Rot Disease Pathogenic Fungi

Morphological observation of the pathogenic fungus: The pathogens were inoculated
on PDA medium and incubated at 25 ◦C for 3–5 days. The colony morphology, color, and
growth rate of the pathogenic fungi were observed and recorded. Specifically, hyphae,
conidia, and conidiophores of the pathogenic fungi were observed and recorded under a
light microscope (DM2500, Leica, Weztlar, Germany), and their size was determined [31].

Molecular identification: DNA was extracted from fresh mycelium harvested from
PDA plates after 4 days, as described by Turner et al. [32]. Fungal genomic DNA was
extracted using the Fungal gDNA Isolation Kit (Biomiga, San Diego, CA, USA). With
the primer pairs ITS5/ITS4 and EF1-728F/TEF1LLErev, the internal transcribed spacer
(ITS), 5.8S ribosomal RNA, and partial translation elongation factor 1- (TEF) were am-
plified [33–35]. Polymerase chain reaction (PCR) was performed with a 25 µL reaction
system containing 10 µL of PCR mix (Dream TaqTM Green PCR Master Mix 2×, Thermo,
Waltham, MA, USA), 2 µL of template DNA, 1 µL each of forward and reward primers
(10 µM), and 11 µL of ultrapure water. Amplification was performed on a T100TM Thermal
Cycler (BIO-RAD, Hercules, CA, USA), which was programmed for initial denaturation
at 94 ◦C for 3 min, followed by 34 cycles of denaturation at 94 ◦C for 30 s, annealing at
51 ◦C for 50 s, extension at 72 ◦C for 45 s, and final extension at 72 ◦C for 10 min. The PCR
products were sequenced using the same primers used for amplification at Sangon Biotech
Co., Ltd. (Shanghai, China). The phylogenetic analyses were conducted using 61 strains,
including 9 strains of Trichoderma species from this study; Protocrea farinose CBS 121551
and P. pallida CBS 299.78 were used as the outgroup taxa, and 50 other Trichoderma species
selected sequences were obtained from the NCBI database (Table S1).

Mycelium plate confrontation: When the mycelium of Phallus rubrovolvatus grew to
2–3 cm, Trichoderma koningii was inoculated at a distance of approximately 2 cm from
the mycelium of P. rubrovolvatus. The plates were incubated in a constant-temperature
incubator at 25 ◦C for confrontation culture.
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2.4. Scanning Electron Microscopy (SEM)

The epidermis and inner layers of healthy and diseased basidiocarps were collected
separately and placed for 2 h in vials containing 2.5% (v:v) glutaraldehyde at 4 ◦C. Thereafter,
the samples were sent to the electron microscopy room for preparation. Briefly, the samples
were washed three times with phosphate-buffered saline (PBS), post-fixed for 2 h in a 1%
osmic acid solution, and washed with PBS again three times for 10 min. Then, the samples
were dehydrated twice in an ethanol series (30%, 50%, 70%, and 95%, v:v) for 20 min, and
finally in absolute ethanol. After drying, the samples were coated with gold films [36]. All
samples were observed using FEI Inspect SEM (Hillsboro, OR, USA).

2.5. Transmission Electron Microscopy (TEM)

The sampling method was the same as that described in Section 2.4. The samples were
placed in vials containing 3% (v) glutaraldehyde at 4 ◦C and then washed three times with
PBS. Next, the samples were post-fixed for 2 h in a 1% osmic acid solution and washed
with PBS again three times for 15 min. Then, the samples were dehydrated twice in an
acetone series (30%, 50%, 70%, and 95%, v:v) for 20 min, and finally in absolute acetone.
The dehydrated specimens were then polymerized for 48 h in 21-well silicate-embedded
plates at 60 ◦C. Thin sections (thickness = 60 nm) were obtained with the Ultratome Leica
UC6 and stained with 2% uranyl acetate (30 min) and lead citrate (10 min) [37]. The stained
samples were then observed under a transmission electron microscope (JEM-1400FLASH,
JEOL, Beijing, China).

2.6. Phallus rubrovolvatus Enzyme Activity Assays

When the fungus is stressed, it produces defensive enzymes to resist invasion. There-
fore, the testing of defense enzymes is necessary. A sterile hole punch was used to sample
a fungal block with a diameter of 5 mm; the fungal block was inoculated on the surface
of healthy basidiocarps (3–5 cm). Tissues were sampled from disease spots and a 0.1 mm
region around the disease spots after 3 days of operation according to the MDA and H2O2
test kit instructions (Beijing solarbio science and technology Co., Ltd., Beijing, China). The
three types of samples can reflect the changes of defense enzymes under different health
conditions. Then, 1 mL of MDA and H2O2 extract were added to 0.1 g of the sample. The
samples were homogenized in an ice bath and centrifuged at 8000× g for 15 min at 4 ◦C on
ice. The supernatant was used to determine MDA and H2O2 content [38].

PPO, MnP, PAL, superoxide dismutase (SOD), and laccase activity determination: The
sampling method was the same as that for MDA quantification. Briefly, 1 mL of PPO,
MnP, PAL, SOD, and laccase extracts were added to 0.1 g of sample. The samples were
homogenized in an ice bath and centrifuged at 8000× g at 4 ◦C for 10 min [38–41]. The
supernatant was placed on ice for testing. All test kits were purchased from Beijing solarbio
science and technology Co. Ltd. (Beijing, China).

2.7. Tissue ROS Levels

Environmental stress induces the accumulation of reactive oxygen species (ROS) in
the cells, which can cause severe oxidative damage to the plants, thus inhibiting growth
and grain yield [42]. Pathogenic fungi were inoculated with healthy P. rubrovolvatus
basidiocarps, and rot tissue was collected after 3 days. Intracellular ROS levels were
measured using the In Situ Fluorescence Staining Kit (Genmed Scientifics Inc., Shanghai,
China) according to the manufacturer’s protocol. The cells were observed under a confocal
fluorescence microscope at the excitation and emission wavelengths of 499 and 515 nm,
respectively. Intense green fluorescence indicates high ROS levels [43].

3. Results
3.1. Onset and Symptoms of Phallus rubrovolvatus Rot Disease

In the present study, the incidence of rot disease in five planting regions of Guizhou
Province, China, was statistically analyzed, as shown in Table 1. The average incidence
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of greenhouse planting rot disease was the lowest in Guiding County and the highest in
Qianxi County. The average incidence rate in greenhouse planting was 41.67–80.33%, and
the average incidence rate of undergrowth planting rot disease was 6–36%.

Table 1. Field incidence of P. rubrovolvatus rot disease.

Greenhouse Planting Undergrowth Planting
Growing Area Average Incidence (%)

Xingyi 66.33 ± 4.16 15.33 ± 9.02
Nayong 69.00 ± 14.42 36.00 ± 12.49
Qianxi 80.33 ± 12.22 36.00 ± 4.00

Guiyang 67.67 ± 3.06 6.00 ± 2.00
Guiding 41.67 ± 4.16 10.00 ± 2.00

Date: September 2021, Total statistics of basidiocarps in Greenhouse planting: n = 100 (pcs), Total statistics of
basidiocarps in Undergrowth planting: n = 50 (pcs).

Temperatures and humidity in the planting area during September were analyzed.
(Table 2). Overall, temperature and humidity in the greenhouse were higher than those
outdoors; therefore, warmer temperatures accelerated the reproduction of pathogenic
microorganisms, resulting in a higher incidence of rot disease in greenhouse planting.

Table 2. Temperature and humidity statistics in September in main P. rubrovolvatus growing areas.

Undergrowth Planting Greenhouse Planting

Growing Area Mean Minimum
Temperature/◦C

Mean Maximum
Temperature/◦C

Average Monthly
Temperature/◦C

Average
Humidity %

Average Monthly
Temperature/◦C

Average
Humidity %

Qianxi 17.73 27.60 22.67 78.70 29.50 85.20
Nayong 17.70 26.83 22.27 80.50 28.30 90.30
Xingyi 18.57 28.47 23.52 84.43 30.20 95.00

Guiding 18.30 28.37 23.33 84.70 29.80 90.00
Guiyang 18.17 27.40 22.78 79.73 28.50 85.40

During the period around September, when a second crop of P. rubrovolvatus is grown
and harvested, serious rot was recorded in both greenhouse and undergrowth planting.
In particular, the incidence of rot disease is higher in greenhouse planting, with more
severe symptoms. The disease primarily develops throughout the basidiocarp’s growth.
At the initial stages of the disease, brown spots appear on the surface of P. rubrovolvatus
basidiocarps, and their color gradually deepens, overflowing with light-yellow water
droplets (Figure 1a,b). The disease spot gradually expands, forming obvious brown lesions,
and gradually decays by exposing the glial layer tissue (Figure 1c), with white, yellow,
or green colonies appearing around it. The diseased area expands rapidly (Figure 1d,e),
resulting in the death or malformation of mushrooms after the extensive decay of the
basidiocarps (Figure 1f–h).

3.2. Isolation of the Pathogenic Fungus and Evaluation of Its Pathogenicity

Six strains were isolated from the diseased basidiocarps of P. rubrovolvatus: NY120302,
PL110114, PL218116D, PL218119D, XY101301, and NY120304H. We evaluated the pathogenic-
ity of the isolated strains and found that PL110114 and NY120302 could cause P. rubrovolvatus
rot, and both are pathogenic. Basidiocarps inoculated with NY120302 started presenting
with reddish-brown spots on the surface after 2 days. The other test strains did not ex-
hibit disease characteristics. Meanwhile, the basidiocarps inoculated with NY120302 and
PL110114 started exhibiting spilled yellowish-brown water droplets on the epidermis after
3 days. The diameter of the spots gradually increased over time. On day 5, PL110114
damaged the basidiocarps more significantly, and the diseased area gradually expanded
outward (Figure 2). At the later stages of the disease, the degree of decay increased, and
the basidiocarps turned necrotic, with many white and green spore clusters attached. The
process of symptoms was consistent with disease symptoms in the field. To verify that
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the same fungi caused the symptoms, the pathogens were isolated from the diseased ba-
sidiocarps and identified. Identified based on morphological and phylogenetic analyses,
the identified pathogenic fungi were the same as the originally isolated strains. Therefore,
PL110114 and NY120302 are the pathogens causing rot disease. PL110114 was collected
from Baiyun District of Guiyang City, Guizhou Province, while NY120302 was collected
from Nayong County of Bijie City, Guizhou Province.
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3.3. Identification and Characterization of Fungal Isolates

All six fungi isolated from P. rubrovolvatus were identified as Trichoderma species. The
non-pathogenic strains PL218116D, PL218119D, XY101301, and NY120304H were the most
similar to and clustered with Trichoderma pollinicola, Trichoderma lixii, Trichoderma tomentosum,
and Trichoderma asperellum, respectively. BLAST searches of the sequenced fragments re-
vealed that the pathogenic strains NY120302 and PL110114 were the most similar to
T. koningiopsis strain 18ASMA001 (ITS region: 100% identity to accession MT520621;
EF1-α: 99.87% identity to accession MT671922) and T. koningii strain Hypo 51 = CBS
119500 (ITS region: 100% identity to accession FJ860762; EF1-α: 99.86% identity to accession
KC285594), respectively. In addition, a phylogenetic tree was constructed with MEGA 7
based on the sequences of the ITS region and EF1-α gene to confirm that the representative
isolates NY120302 and PL110114 shared high genetic similarity with T. koningiopsis and
T. koningii (Figure 3). The highly pathogenic PL110114 was used in the follow-up experi-
ments. Representative sequences of the tested DNA regions were deposited in the NCBI
GenBank database (ITS: OP604608; EF1-α: OP620753).

The PL110114 strain grew rapidly on PDA medium when cultured at 25 ◦C for 4 days
and overgrew the plates (9 mm). Aerial hyphae were white, and colonies were radial with
neat edges (Figure 4); the conidia were initially white, which subsequently turned green.
The conidiophores were multi-branched, opposite, or alternate. Phialides were solitary or
2–4 spirally arranged, flask-shaped, measuring 7–11 × 2–3 µm and 1.5–2 µm wide near the
base. Conidia were sub-globose or obovoidal, measuring 3.0–4.2 × 2.5–3.6 µm.
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3.4. Mycoparasitism Assays In Vitro

During the confrontation culture, the color of the P. rubrovolvatus mycelium changed
from white to red when it came into contact with T. koningii (Figure 5a,b). Throughout the
culture process, the color change of the hyphae implied aging and growth inhibition. Light
microscopy revealed that after co-culture, T. koningii hyphae grew along the mycelium of
P. rubrovolvatus and produced many sub-hyphae (Figure 5c); the hyphae grew close to the
surface of the mycelium of P. rubrovolvatus, and their growth was significantly better than
that of the P. rubrovolvatus mycelium (Figure 5d). The hyphae continued to wrap around
the host in a spiral manner such that the mycelium of P. rubrovolvatus appeared shriveled
(Figure 5e). The pathogenic mycelium grew profusely on top of the host hyphae to form
a tumor-like protrusion, tightly wrapping the mycelium of P. rubrovolvatus. Eventually,
the mycelium of P. rubrovolvatus shriveled and was unable to absorb nutrients from the
medium, which led to growth inhibition or death (Figure 5f).
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3.5. Morphological, Ultrastructural and Physiological Changes Process of
Trichoderma koningii-Infested Phallus rubrovolvatus
3.5.1. Morphological Studies by SEM

SEM revealed that healthy basidiocarp tissues were well arranged, smooth, full, and
evenly distributed (Figure 6a,b). The dissection of basidiocarps after T. koningii inoculation
revealed abundant invasive mycelium wrapped in the cells of infected P. rubrovolvatus
basidiocarps; the infesting mycelium was thick and full and penetrated the intercellular
spaces of P. rubrovolvatus. Meanwhile, the host mycelium was severely contracted and
dried (Figure 6c,d).
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3.5.2. Ultrastructural Studies by TEM

TEM revealed that the cells of healthy basidiocarps were neatly arranged and evenly
distributed (Figure 7a,d). In contrast, the cells of the basidiocarp infested with T. koningii
were loosely arranged, and pathogenic cellular structures with dense cytoplasms and
abundant organelles were observed in both the outer and inner cortical tissues. The tips of
pathogenic mycelium contacting P. rubrovolvatus tissues formed tuberculate protrusions
attacking the host, sinking the host cell wall inward (Figure 7b,c). The pathogenic mycelium
tip gradually tapered to penetrate the interior of the cell, and the host cell structure was
destroyed (Figure 7e,f).
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3.5.3. Effect on Defense Enzyme Activity

As shown in Figure 8, at 3 days after inoculation, the MDA content around and at the
lesion site of basidiocarps was significantly higher than the CK (healthy tissue) value. As
such, MDA content around and at the lesion site was, respectively, 18.41 and 90.66 times
higher than that in the healthy areas of the basidiocarp, indicating the beginning of lipid
oxidation around the rot and severe lipid oxidation at the rot site. PPO and PAL are
important defense enzymes, while MnP and laccase play a defensive role in fungi [44]. As
shown in Figure 8, PPO activity around and at the lesion site was, respectively, 36.35 and
51.03 times higher than that in the healthy areas of the basidiocarp. PAL activity around and
at the lesion site was, respectively, 2.58 and 2.87 times higher than that in the healthy areas
of the basidiocarp. Further, MnP activity around and at the lesion site was, respectively,
71.10 and 62.22 times higher than that in the healthy areas of the basidiocarp. Laccase
activity around and at the lesion site was, respectively, 0.06 and 0.24 times higher than that
in the healthy areas of the basidiocarp.

3.5.4. Changes in ROS Levels

Compared with normal levels, ROS and H2O2 concentrations around and at the lesion
site of P. rubrovolvatus tended to increase following T. koningii infestation, as evidenced
by more-intense green fluorescence around and at the lesions. Under normal conditions,
H2O2 levels in P. rubrovolvatus basidiocarps were 0.3 µmol·g−1 FW. Meanwhile, after
T. koningii infestation, H2O2 accumulated around and at the lesion site at four-times-higher
levels than normal, consistent with the results of green fluorescence (Figure 9). Under
normal physiological metabolic conditions, ROS are continuously produced and scavenged
simultaneously, and in the equilibrium state, ROS serve the function of maintaining the
normal metabolism of the organism. In contrast, after T. koningii infestation, a reduction in
ROS scavenging ability in the body of P. rubrovolvatus leads to an increase in their content,
resulting in the oxidation of membrane lipids and oxidative damage to the cell membrane.
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4. Discussion

Phallus rubrovolvatus rot is an important fungal disease commonly occurring on the
second crop. The disease usually appears during the basidiocarp development period and
is characterized by droplet-like dewdrops in the early stages. Subsequently, the epidermis
starts rotting due to infection by various fungi, resulting in 60–70% disease incidence, and
the basidiocarps deform or stop growing thereafter, leading to substantial economic losses
for mushroom farmers [13,45,46].

Phallus rubrovolvatus rot is a typical soil-borne disease prone to outbreaks and dev-
astating losses at high temperatures and humidity. It is a potentially harmful and im-
portant disease in the production of P. rubrovolvatus. Trichoderma koningii was identified
as the pathogen causing P. rubrovolvatus rot. There are many species of pathogenic in
edible fungal diseases, such as Agaricus bisporus disease, mainly Pseudomonas tolaasii and
Lecanicillium fungicola [47,48]. Some studies have shown that the pathogens in P. rubrovolvatus
are Saccharomycopsis phalluae, Penicillium citrinum and T. koningiopsis [3,13,49]. This work
enriches the species of pathogens of P. rubrovolvatus.

This pathogenic fungus primarily affects the basidiocarps of P. rubrovolvatus, and
the diseased part starts to rot at high temperatures and humidity; finally, green spores
are visible. The mycelia of pathogens were white and separated. Trichoderma pollinicola,
T. lixii, T. tomentosum, and T. asperellum, respectively, form a cluster on the phylogenetic
tree. However, none of these four species was pathogenic. In contrast, strains NY120302
and PL110114, which lead to P. rubrovolvatus decay, were significantly pathogenic and most
similar to T. koningiopsis and T. koningii, respectively (Figure 3). Among these, T. koningiopsis
was identical to the isolated pathogenic fungi of green mold [13]. Trichoderma species
contaminate the substrates of Auricularia heimuer and Pholiota adipose, infesting the mycelia
of P. pulmonarius, which could inhibit fruiting body formation [50–52]. Furthermore, these
pathogens could infest the fruiting bodies of A. bisporus, causing solid rot [53,54]. Overall,
the morbidity symptoms described in previous studies were similar to the symptoms of
P. rubrovolvatus rot disease observed in the present study.

Through disease surveys in the field, we noted that the incidence of rot disease in
undergrowth planting was significantly lower than that in greenhouse planting, and the
P. rubrovolvatus rot disease was more severe in the major planting areas of Guizhou Province,
such as Qianxi, Nayong, and Xingyi. The disease typically occurs from July to September,
coinciding with the growth and harvesting periods of a second crop of P. rubrovolvatus.
Previously accumulated insect pests and pathogens, coupled with the high temperature
and humidity conditions, reduce the immunity of mushrooms, rendering them susceptible
to pathogenic fungi and resulting in serious decay. The main reasons for analyzing the
prevalence of rot disease were as follows: (1) the amount of pathogenic fungal inocula
accumulates over time; as the first crop accumulates many pests and diseases, the second
crop is prone to a large outbreak [55,56]; (2) high temperatures and humidity are conducive
to disease development [46]; (3) the soil in the study regions is sticky and heavy, poorly
aerated, and prone to waterlogging, favoring disease development [57]; (4) fungi in soil
and compost can cause a range of diseases in P. rubrovolvatus due to soil community
imbalance, and P. rubrovolvatus mycelium can act as a substrate for these fungi [58]; and
(5) ants, flies, mites and snails, among other carriers, harbor Trichoderma spores, acting as
vectors for pathogen transmission [59,60]. The climate in Guizhou Province is warm and
humid, with abundant rainfall, and the major cultivation areas of P. rubrovolvatus mostly
constitute deciduous forests. During the summer, field humidity and temperature are high,
which is favorable for the outbreak of P. rubrovolvatus rot disease [61]. The prolongation of
P. rubrovolvatus cultivation may lead the pathogens to gather and multiply under the right
conditions, and under the conditions of high temperature and humidity, this may result
in a severe disease outbreak. In the present study, we confirmed the pathogenic fungus
of P. rubrovolvatus rot; investigated the parasitism of pathogenic fungi on P. rubrovolvatus;
observed the morphological and ultrastructural characteristics of the infected basidiocarps;
and measured important physiological and biochemical changes in the defense response.
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In addition, we investigated the disease’s epidemiological factors. Our results can serve as
an important guideline for the development of rot prevention and control measures during
mushroom production.

Mycoparasitism is one of the important characteristics of Trichoderma. Trichoderma species
are traditionally considered necrophilic re-parasitic fungi [62], playing important pathogenic
roles in the host pathogenesis, primarily through entanglement, branching production,
stinging, and the production of degradative enzymes to lyse the host mycelium [63–65]. To
date, studies on the infestation of edible and medicinal fungi, such as Pleurotus pulmonarius
and Ganoderma sp., by Trichoderma spp. have been conducted, while only a few studies
have been reported on the infestation of P. rubrovolvatus by T. koningii [22,51]. In this study,
we systematically studied the processes of T. koningii infestation of the host, formation of
rot, mode of infestation, and effect on host cell destruction from histopathological aspects.

Trichoderma koningii mycelium growth and infestation rates are fast. When Phallus
rubrovolvatus mycelium basidiocarps were inoculated with T. koningii, within 8 h, the
pathogenic mycelium radially grew from the center of the block to the edges. Reddish-
brown spots were visible at 48 h after inoculation, and yellowish mucilage appeared at
72 h. The mycelium of T. koningii could penetrate the entire tissues of P. rubrovolvatus during
the infestation process. The pathogen fed on the decomposing tissues, allowing for the
continuous multiplication of mycelium and conidia and producing a profuse fungal mass.
TEM revealed that the tip of the mycelium could form a bulge, invading the interior of
the cell after contact, and resulting in severe damage to the cell structure. Over time, the
tissue became visibly spotted, began to rot and leach, and a large number of cells at the spot
died [66]. The color of the spots deepened, the basidiocarp began to crumple or ooze more
yellow water, the spots expanded and merged, and a large number of cells died, eventually
leading to the cessation of growth or death of P. rubrovolvatus as it could no longer absorb
nutrients normally [22,64,67].

After co-culturing on PDA plates, P. rubrovolvatus mycelium contacted the mycelium
of T. koningii, and the reddening of the host mycelium could be visualized, followed by
the cessation of growth. Microscopic observations revealed that the pathogenic mycelium
intertwined with the host mycelium, producing numerous branching entanglements
(Figure 5). Trichoderma harzianum infests L. edodes by forming mycelial entanglements
at the anterior end of mycelia [67]. Trichoderma atroviride can penetrate the cell walls of
other fungi upon interacting with them, grow inside their mycelium, and cause local cell
death within 6 days of inoculation by breaking down the mycelial cell wall and feeding
on the cytoplasm [68]. Thus, lesion formation is closely related to mycelial growth, which
plays an important role in the pathogenesis process. In this study, after recognizing the
host, T. koningii mycelium entangled with P. rubrovolvatus mycelium and produced many
small branches with bulbous projections at the tips. From these observations, the invading
mycelium likely produced a large amount of actin to form a network-like structure and
ensure a strong tip shape, generating more mechanical pressure to squeeze the host cell
wall inward to form the invasion point [69]. We hypothesize that this spherical structure is
similar to the cell attachment structure that produces extracellular enzymes or toxins that
cause damage to host tissue cells [70]. Here, we systematically studied the key infestation
process of T. koningii on the host P. rubrovolvatus and clarified the pattern and structure of
the infestation of this pathogen, as well as its destructive effect on host tissue cells.

Infestation by pathogens, such as fungi, bacteria, viruses, and nematodes, can increase
ROS levels in the host, which are regulated via enzyme production through complex
mechanisms of signaling pathways in response to external factors, and defense enzyme
activity varies depending on the degree of damage to the host [71,72]. Trichoderma spp.
produce an array of extracellular enzymes that ablate the host when invading it [73–75].
Krupke et al. showed that Trichoderma aggressivum f. aggressivum produces antimicrobial
enzymes in mushroom compost that inhibit the mycelial growth of A. bisporus [76]. In
Korea, oak wood mushrooms are primarily infested by Trichoderma species, which produce
lignin-degrading extracellular enzymes that inhibit the host mycelial growth [77]. Upon
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infestation by Trichoderma spp., which cause green mold, it has been reported as a major
constraint and common disease that leads to extensive damage to the mycelium and
sporocarps of edible fungus [78,79]. When the pathogen invades the host, a series of
defensive responses results in the upregulation of many lignin-like enzymes, such as
laccase, MnP, and lignin peroxidase [27,80]. In our study, P. rubrovolvatus infested with
T. koningii activated the key defense enzyme system in vivo, with a significant increase in the
activity of defense enzymes such as PAL, SOD, and PPO; these results are consistent with
most previous reports in other crops [15]. Hence, T. koningii infestation altered the activity
of P. rubrovolvatus defense enzymes. Furthermore, upon infestation, excess ROS accumulate
in the host body, leading to the peroxidation and de-lipidation of membrane lipids and
damaging cellular structure and function. Finally, increased membrane permeability
and the massive extravasation of intracellular solute molecules block the physiological
metabolism of the host [44,80].

After recognizing the host, Trichoderma can inhibit its growth either by parasitism
the living host to obtain nutrients or by secreting degradative enzymes that penetrate
the cell wall and kill the host cells to obtain nutrients from the dead cytoplasm [81–83].
After the inoculation of T. koningii on P. rubrovolvatus basidiocarps, the mycelium grew
rapidly and invaded the tissue. After invasion, the mycelium was closely attached to and
entangled with the host hyphae. Microscopic observation revealed that P. rubrovolvatus
mycelium appeared significantly swollen, and the mycelium and spores of T. koningii
were observed inside the tissue. T. koningii mycelium may secrete extracellular enzymes
upon contact with the host and then degrade and penetrate the cell wall of the host
mycelium. TEM revealed that the pathogenic fungal mycelium could penetrate the host
mycelial cells and enter the interior, causing serious damage. Furthermore, T. koningii
infestation altered the activity of defense enzymes in P. rubrovolvatus. Specifically, the MDA
content at and around the decay site increased significantly, and the activities of MnP,
PPO, and other defense enzymes were greatly elevated, indicating that the invasion of the
pathogenic fungus stimulated defense enzyme synthesis in P. rubrovolvatus to resist the
attack. As the infestation time increased, the defense enzyme activity exceeded a certain
level; simultaneously, the pathogenic fungus entered the cell and decomposed the cell wall
of the host by producing extracellular enzymes, which led to the leakage of soluble sugars
from P. rubrovolvatus cells. The degraded polysaccharides and proteins recruited other
fungi or microorganisms to decompose or ferment the intracellular organic matter. The
fermented organic matter inside the cells mixed with the cytosol to form droplets, leading
to the appearance of brown spots. These spots gradually expand and eventually lead to
basidiocarp rot.

Under the conditions of high temperature and humidity in the major cultivation areas
of P. rubrovolvatus, Trichoderma species proliferate in the soil. Abundant Trichoderma koningii
mycelium attaches to P. rubrovolvatus mycelium. T. koningii mycelium intertwines with
P. rubrovolvatus mycelium through structures similar to cell attachments. T. koningii crushes
the cell wall of P. rubrovolvatus inward by secreting cell wall-degrading enzymes and gen-
erating mechanical pressure through cell attachment-like structures to produce invasion
sites. T. koningii invasion activates MAPK signaling in P. rubrovolvatus cells, inducing
the expression of defense-related genes and the synthesis of defense enzymes, such as
PPO, PAL, and MnP (Figure 10). T. koningii secretes extracellular enzymes, such as cell
wall-degrading enzymes, which hydrolyze the cell wall components of P. rubrovolvatus, and
the degraded polysaccharides and proteins attract flying insects or other microorganisms,
further promoting the release of organic matter inside the cells. ROS accumulation exceeds
the scavenging capacity of antioxidant enzymes (POD, SOD, and CAT), leading to mem-
brane lipid peroxidation and oxidative damage, partial cell wall disintegration, organelle
degradation, and cell content spillage in P. rubrovolvatus. The oozing cell sap mixes with
the fermentation liquid to form droplets, leading to the appearance of brown spots, which
gradually expand, eventually leading to basidiocarp rot.
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leading to membrane lipid peroxidation and oxidative damage, partial cell wall disinte-
gration, organelle degradation, and cell content spillage in P. rubrovolvatus. The oozing 
cell sap mixes with the fermentation liquid to form droplets, leading to the appearance of 
brown spots, which gradually expand, eventually leading to basidiocarp rot. 
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Figure 10. Pathogenic mechanism of T. koningii in P. rubrovolvatus.

In summary, the present study systematically described the process of spot formation
after the infestation of P. rubrovolvatus by T. koningii, the mode of infestation, and the
histopathological process of the destruction of host cells, providing a theoretical basis for
the prevention and control of P. rubrovolvatus rot and the development of disease-resistant
P. rubrovolvatus strains, promoting the production of edible mushrooms.

5. Conclusions

Trichoderma koningii can severely damage both the mycelium and basidiocarps of
P. rubrovolvatus. Upon interacting with the P. rubrovolvatus mycelium, the T. koningii
mycelium intertwines in a spiral manner, inhibiting the growth of and ultimately killing
the host as it can no longer absorb nutrients normally. After infecting the basidiocarp,
the pathogenic mycelium can penetrate the whole substrate. The tip of the pathogenic
mycelium forms a tumor-like protrusion and invades the tissue, disrupting the physi-
ological balance and defense response, which results in the malformation or rotting of
P. rubrovolvatus basidiocarps. Our findings can serve as a useful reference for the prevention
and management of P. rubrovolvatus rot disease.
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