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Abstract: The interaction between invasive plants and soil microbial communities is critical for
plant establishment. However, little is known about the assembly and co-occurrence patterns of
fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities
and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using
high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion
significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa
associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe).
In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota
and Glomeromycota were significantly reduced when compared to native plants. At the genus level,
the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential
antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased
the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the
average degree and average path length, and increased the modularity value, resulting in a less com-
plex but more effective and stable network. Our findings improved the knowledge of the soil fungal
communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.

Keywords: Amaranthus palmeri invasion; rhizosphere soil; fungal community; LEfSe; co-occurrence
network; keystone taxa

1. Introduction

Alien plant invasion is a significant component of current global change and one of
the primary causes of biodiversity loss [1,2]. The successful invasion of alien plants is
directly correlated with the alteration of the underground microenvironment, including
the alterations in soil characteristics and the composition and function of the soil microbial
community [3,4]. All plants have distinct microbial communities, and the population
establishment of exotic plants is accompanied by a shift in microbial communities to obtain
different nutrient pools, thus bringing growth advantages to invasive plants [5]. Soil fungi
are an essential component of the soil microbial community. Fungi can act as mutual-
ists in the synthesis and decomposition of soil organic matter, and they can also prevent
plants from establishing as pathogens [6–8]. The interaction between plants and fungi is
frequently one of the main determinants of plant invasion. There have been extensive
attentions on the evaluation of how soil fungal communities react to the invasion of ex-
otic plants [6]. The enrichment of arbuscular mycorrhizal fungi (AMF) species such as
Paraglomus sp. in soil was found to be one of the mechanisms contributing to the successful
invasion of Chromolaena odorata [9]. Greater diversity and higher abundance of specific
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types of fungal communities in invaded soils were associated with the growth and repro-
duction of invaders [10]. Bamboo invasion increased the alpha diversity, while it decreased
the abundance of soil fungal communities [11]. The invasion of Bromus diandrus and
Avena fatua may result in a reduction of multiple soil symbionts that native species rely on
for pathogen defense and improved access to soil resources [12]. Co-invasion of pine and
their ectomycorrhizal fungi caused a dramatic loss of fungal diversity which could inhibit
the recovery and restoration of invaded ecosystems [13].

Molecular ecological network (MEN) analysis based on random matrix theory (RMT)
is a potent method for examining the intricate relationships between microbes. In re-
cent years, network analysis has been applied to investigate the co-occurrence patterns
of microorganisms in a variety of environments, including rivers, wetlands, lakes, and
soils [14–17]. The microbial groups are positively or negatively linked, exhibiting coop-
erative or competitive characteristics [18]. Network analysis can also be used to identify
keystone taxa, which are highly connected to other species in the network and may have a
considerable impact on the entire microbial community [19–21]. Keystone taxa, regardless
of abundance, have been shown to play an over-proportional role of functional explana-
tory power in the co-occurrence networks [22,23]. Thus, in order to predict the impact of
exotic plant invasion on ecosystem function, it is necessary to conduct a more thorough
investigation of the influence of A. palmeri invasion on fungal community networks and
keystone taxa.

Palmer amaranth (Amaranthus palmeri S. Watson abbreviated as A. palmeri) is native
to the western United States and northern Mexico. It is a dangerous “super weed” that
is resistant to many different herbicides [24,25]. The presence of A. palmeri will result
in significant yield losses if not fully controlled, and it has been regarded as the most
agronomically challenging species in the United States [26,27]. In recent years, A. palmeri has
spread rapidly throughout the Beijing-Tianjin-Hebei region of northern China, displacing
native plants and endangering local biodiversity [28]. Previous studies have already
indicated that A. palmeri invasion enhanced functional traits (i.e., leaf number, plant height,
and total biomass) [29], altered soil chemical and biological properties (e.g., total carbon,
ammonium nitrogen, and soil extracellular enzyme activities) [30], and influenced bacterial
composition and co-occurrence patterns [31]. It is unknown, nevertheless, how the invasion
of A. palmeri would affect the diversity, composition, and ecological network of the soil
fungal community. The purpose of this study was to (1) investigate the composition and
co-occurrence patterns of soil fungal communities and (2) compare the significant species
and keystone taxa in invasive and native rhizosphere soils.

2. Materials and Methods
2.1. Sampling Site and Soil Collection

In the Beijing-Tianjin-Hebei region of China, 22 sampling sites (38.74◦–40.04◦ N,
116.36◦–117.85◦ E) were established in 2021 (general information, site description, and
vegetation characteristics were shown in Table 1 and Table S1; the map of the sampling
sites was shown in Figure S1), in which 5 invaded plots and 5 paired native plots were
created in each site to collect the rhizosphere soils of native and invasive plants, respectively.
Plant roots, litter, stones, and impurities visible in the samples were taken out, kept at
a low temperature, and then transported back to the laboratory. The soil samples were
divided into three parts after screening, with one placed at −20 ◦C for DNA extraction
and the other at −4 ◦C for the content of ammonium nitrogen (AN) and nitrate nitrogen
(NN) measurement. The remaining soil samples were dried naturally and used for the
determination of soil pH, total carbon (TC), total nitrogen (TN), total phosphorus (TP), and
available phosphorus (AP) content. Our earlier investigations provided comprehensive
descriptions of the study locations, sample collection, and measurement of physicochemical
properties [30].
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Table 1. Ecological characteristics of the 22 sampling sites.

Site Province Longitude (◦) Latitude (◦) Mean Annual
Temperature

Mean Annual
Precipitation Habitat Types

S1 Tianjin 116.92 38.73 506 12.96 Wasteland neighbouring roadside
S2 Tianjin 117.02 38.90 515 12.92 Wasteland neighbouring roadside
S3 Tianjin 116.96 39.04 520 12.84 Wasteland
S4 Tianjin 117.16 39.15 566 13.38 Wasteland
S5 Tianjin 117.28 39.64 549 11.95 Wasteland neighbouring roadside
S6 Tianjin 117.37 39.44 554 12.13 Wasteland
S7 Tianjin 117.51 39.15 551 12.43 Wasteland neighbouring roadside
S8 Tianjin 117.42 38.96 555 13.03 Wasteland neighbouring roadside
S9 Tianjin 116.93 39.39 535 12.39 Wasteland neighbouring roadside

S10 Tianjin 116.95 39.16 532 12.69 Wasteland neighbouring roadside
S11 Tianjin 117.39 40.03 564 11.73 Wasteland neighbouring roadside
S12 Tianjin 117.85 39.48 588 11.79 Wasteland neighbouring roadside
S13 Hebei 117.06 39.66 543 11.85 Wasteland neighbouring roadside
S14 Hebei 116.92 39.88 538 11.68 Wasteland neighbouring roadside
S15 Hebei 116.71 39.60 546 12.16 Wasteland
S16 Beijing 116.77 39.71 545 11.92 Wasteland
S17 Beijing 116.46 39.80 570 12.31 Wasteland
S18 Beijing 116.35 39.82 571 12.40 Wasteland
S19 Hebei 116.75 39.32 535 12.39 Wasteland neighbouring roadside
S20 Hebei 116.42 39.41 556 12.21 Wasteland
S21 Hebei 116.76 39.15 530 12.62 Wasteland neighbouring roadside
S22 Hebei 116.45 39.09 512 12.67 Wasteland neighbouring roadside

2.2. DNA Extraction, PCR, and High-Throughput Illumina Sequencing

DNA was extracted from soil samples using a Power Soil DNA extraction kit (Mo
Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions, and
DNA concentration was measured using a Thermo Nanodrop 2000 instrument. The
fungal primer pair ITS5-1737F and ITS2-2043R with a specific barcode was used to amplify
the ITS1 regions of the fungal ITS rRNA genes [32]. The PCR reaction contained 25 µL
2× Premix Taq (Takara Biotechnology, Dalian Co., Ltd., Dalian, China), 1 µL of each
primer (10 µM), and a 3 µL DNA (20 ng/µL) template in a volume of 50 µL. The PCR
amplification included initialization at 94 ◦C for 5 min, followed by 30 cycles of 94 ◦C for
30 s, 52 ◦C for 30 s, and 72 ◦C for 30 s, and a final elongation at 72 ◦C for 10 min. NEBNext®

Ultra™ II DNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA)
was used for library construction [33]. Illumina Nova 6000 platform was used for PE250
sequencing (Guangdong Magigene Biotechnology Co., Ltd. Guangzhou, China). All raw
fastq files were quality-filtered using Trimmomatic software [34]. FLASH was used to
merge pair-ended sequences after barcodes and primers were removed [35]. Following
this, UPARSE clustered these sequences into operational taxonomic units (OTUs) with a
sequence threshold of 97% similarity, and representative OTU sequences were concurrently
selected [36]. The singletons and chimeras were filtered during the UPARSE procedure.

2.3. Statistical Analysis

Taxonomic richness and Shannon diversity were calculated in the R 4.0.5 statistical
environment (R Core Team, 2013, http://www.R-project.org/, accessed on 22 May 2020)
with a rarefaction depth of 30,815 per sample (Figure S2). The fungal beta diversity
was examined using principal coordinate analysis (PCoA) based on Bray–Curtis distance
matrices. The analysis of similarities (ANOSIM) test was used to assess whether the soil
fungal communities differed between invasive and native plants. Linear discriminant
analysis effect size (LEfSe) was used to analyze significant taxa at the phylum, family,
and genus levels of soil fungal communities. The linear discriminant analysis (LDA)
score was set at 3.0, and the p value was set at 0.05. Bar graphs were used to display
significant LDA scores. OriginLab 2023 (OriginLab, Northampton, MA, USA) was used to

http://www.R-project.org/
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generate a heatmap between predominant phylum and physicochemical variables based
on the spearman correlation. Canonical correspondence analysis (CCA) was employed to
examine the relationships between edaphic factors and soil fungal community by Canoco
4.5 (Microcomputer Power, Ithaca, NY, USA). Correlated variables were excluded from
CCA analysis when inflation factors exceeded 10. The contributions of soil physicochemical
properties to keystone taxa were determined using random forest analysis [37]. This
analysis was performed using the lm and calc.relimp functions in the “relaimpo” package
using R software Version 4.0.5.

To assess the links between fungal communities, we created molecular ecological
networks (MENs) and visualized them with Gephi 0.9.2. The network contained only robust
relationships (Spearman’s correlation coefficient >0.6 and p value < 0.05). To guarantee
reliable correlation, OTUs that were present in more than 50% of all samples were chosen.
The network topological features (i.e., node number, edge number, average degree, average
clustering coefficient, and network modularity) were calculated by “igraph” R package.
The connectivity of each node was described within module connectivity (Zi) and module
connectivity (Pi) indexes. The OTU nodes in the network were divided into four groups
based on their Zi and Pi values: peripherals (Zi < 2.5, Pi < 0.62), connectors (Pi > 0.62),
provincial hubs (Zi > 2.5), and kinless hubs (Zi > 2.5 and Pi > 0.62). The latter three
categories were defined as keystone taxa [38]. The Zi-Pi plots based on OTUs topological
features were constructed by R statistical platform.

3. Results
3.1. Fungal Diversity and Composition in A. palmeri and Native Rhizosphere Soils

The soil fungal richness and Shannon index did not vary significantly between in-
vasive and native plants (Figure 1a,b). The PCoA analysis and ANOSIM test (Figure 1c)
showed a significant difference in the soil fungal community composition between in-
vasive and native plants (R = 0.128, p = 0.003). The first principal component explained
14.2% of the variance, while the second principal component explained 11.1% of the vari-
ance. Ascomycota, unclassified-k-Fungi, Basidiomycota, Ciliophora, Mortierellomycota,
Nematoda, Mucoromycota, Chytridiomycota, Arthropoda, and p- unclassified-k-Alveolata
were the top 10 phyla with the highest relative abundance among 44 soil samples within
22 sites (Figure 2a). Linear discriminant analysis effect size (LEfSe) analysis revealed that
the relative abundance of Basidiomycota was significantly greater, whereas Ascomycota
and Glomeromycota were significantly lower in the rhizosphere soils of A. palmeri than that
in native plants (Figure 2b).

3.2. Fungal Significant Groups Associated with Plant Invasion

LEfSe analysis showed that, at the family level, f_unclassified_o__Tremellales, Bul-
leribasidiaceae, Plectosphaerellaceae, Glomerellaceae, Microascaceae, Chaetomiaceae, Mi-
crobotryomycetes_fam_Incertae_sedis, and Entylomatales_fam_Incertae_sedis were signifi-
cantly enriched in the rhizosphere soils of A. palmeri, while the abundance of f_unclassified
_p__Ascomycota, f_unclassified_o__Pleosporales, Pleosporaceae, Stachybotryaceae,
f_unclassified_k__Protista, Phaeosphaeriaceae, Magnaporthaceae, Glomeraceae, and Sym-
poventuriaceae was significantly lower than that in native rhizosphere soils (Figure 3a).
At the genus level, Dioszegia, g_unclassified_o__Tremellales, Tilletiopsis, Plectosphaerella, Col-
letotrichum, Spizellomyces, Colacogloea, and Chaetomium were significantly enriched in the
rhizosphere soils of A. palmeri, whereas the abundance of g_unclassified_p__Ascomycota,
g_unclassified_o__Pleosporales, g_unclassified_f __Glomeraceae, Ochroconis, Chrysosporium,
g_unclassified_k__Protista, g_unclassified_f __Stachybotryaceae, Alternaria, g_unclassified
_f __Phaeosphaeriaceae, and Phaeosphaeria was significantly lower than that in the native
rhizosphere soils (Figure 3b).
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3.3. Fungal Co-Occurrence Networks and Keystone Species

To investigate the co-occurrence patterns of soil fungal communities, molecular eco-
logical networks of invasive and native plants were built (Figure 4a,b). The networks
of A. palmeri and native plants showed positive correlation ratios of 69.65% and 70.23%,
respectively, demonstrating that cooperative relationships dominated in the maintenance
of soil fungal interactions (Table S2). There were 401 nodes in the invaded network, which
was more than the native network (389). The edge numbers of the invasive network were
comparable to those of the native network (814 and 817, respectively). The invaded plots’
soil fungal network displayed a higher modularity value (0.635) (Table S2).

The keystone taxa of soil fungal communities were investigated further, and they
were screened using the Zi-Pi value (Figure 5a,b). In addition to the peripheral hubs, the
other three hubs were regarded as keystone taxa, and the difference test of keystone taxa
between invasive and native plants were listed in Table S3. The majority of the nodes in
the invasive and native communities were found on the peripherals, with the remainder
located within the provincial hubs and connectors, whereas the two molecular ecological
networks lacked kinless hubs. There were 48 keystone taxa (ranging from 0.005 to 1.429%)
in the soil fungal communities of A. palmeri, mostly belonging to Saitozyma, Alternaria,
Colacogloea, Cephalotrichum, Myrmecridium, Podospora, Nigrospora, Gibellulopsis, Rhizopus,
Mortierella, Stachybotrys, Bipolaris, Aspergillus, Myrothecium, Leptospora, and Phoma, account-
ing for only 6.37% of the total reads. There were 41 keystone taxa (ranging from 0.006
to 2.307%) in the soil fungal communities of native plants, including Hannaella, Dileptus,
Myrmecridium, Alternaria, Periconia, Cyphellophora, Clonostachys, Fusariella, Colletotrichum,
Mortierella, Beauveria, Lectera, and Phaeosphaeria, accounting for only 9.87% of the total
reads. The keystone of OTU_137 (Colacogloea), OTU_36, OTU_1765, OTU_370, OTU_136
(Alternaria), and OTU_81 in A. palmeri showed significant variation compared with native
fungal communities. Colacogloea were abundant in A. palmeri plots, whereas Alternaria were
dominated in native plots (Table S3).
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3.4. Associations between Fungal Community and Edaphic Factors

CCA analysis showed that the eigenvalues of axis 1 and axis 2 were 21.8% and 19.7%,
respectively, which explained 41.5% of the relationship between fungal communities and
edaphic factors (Figure 6a). After excluding TN with expansion factors greater than 10,
Monte Carlo results revealed that TP (p = 0.001, F = 2.04), TC (p = 0.002, F = 1.68), and AP
(p = 0.026, F = 1.45) were the most significant factors affecting soil fungal community
structure. The relationship between the prevalent phyla and the soil physicochemical
characteristics was further examined using Spearman correlation analysis (Figure 6b). Soil
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total carbon was found to be significantly positively correlated with Ascomycota and
Ciliophora, while negatively correlated with Basidiomycota and Glomeromycota. Soil
total phosphorus and available phosphorus were significantly negatively correlated with
Basidiomycota, and soil available phosphorus was significantly positively correlated with
Ciliophora. According to random forest analysis, soil total carbon best explained (p < 0.05)
the occurrence of keystone taxa among the soil factors (Figure S3).
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ships between the fungal community and selected soil properties. (b) A heatmap showing the
correlation between dominant phyla and physicochemical variables. Red color indicated positive
correlations, and blue color indicated negative correlations. * p < 0.05. Abbreviations: TN, total
nitrogen; TC, total carbon; TP, total phosphorus; AN, ammonium nitrogen; NN, nitrate nitrogen; and
AP, available phosphorus.

4. Discussion

Our research is the first to provide tangible experimental proof of the ecological
adaption strategies and response characteristics of soil fungal communities to the inva-
sion of A. palmeri in northern China. The invasion of A. palmeri dramatically changed
the soil fungal community composition, according to PCoA and ANOSIM analyses. The
impacts of plant invasion on the microbial assembly have also been observed in numerous
earlier investigations [8,12,16,39]. Soil physicochemical properties influence fungal commu-
nity composition [40–42]. The CCA results demonstrated that soil total carbon (TC), total
phosphorus (TP), and available phosphorus (AP) all significantly influenced the fungal com-
munity structure. Soil TC was found to be significantly linked with the relative abundance
of Ascomycota, Basidiomycota, Ciliophora, and Glomeromycota, AP with Ciliophora and
Glomeromycota, and TP with Basidiomycota. Hence, soil properties may largely affect the
abundance of these four phyla in order to alter the assembly of the fungal community [42].
The influence mechanism of edaphic variables on the soil fungal community needs to be
further studied in order to comprehend the changes in the soil fungal community and
predict its functional consequences in response to A. palmeri invasion. In contrast to native
plants, A. palmeri had a much higher abundance of Basidiomycota and a noticeably reduced
abundance of Ascomycota in its rhizosphere soil. Basidiomycota played an important
role in the degradation of lignin-rich plant litter [43]. Regardless of ecological strategies,
Basidiomycota was better adapted than Ascomycota to resource allocation and spatial
exploration in varied habitats, according to Bödeker [44]. Glomeromycota, a kind of repre-
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sentative arbuscular mycorrhizal fungi (AMF), was detected in lower relative abundance
in the invaded plots, indicating that the development of invasive plants by symbiosis with
fast-growing AMF may not be as important for A. palmeri in these particular habitats as
other researchers have suggested [8,12]. It was possible that changes in biomass allocation
were the cause of the large Glomeromycota differential between invaded and native habi-
tats. AMF preferred native plants that were more adapted to the local environment [12,45].
Additionally, A. palmeri is an annual plant; therefore, it may be less dependent on the AMF
reciprocal interaction and less reliant on soil reciprocal organisms, which could speed up
the development of its population after interference [12,46,47]. The considerable changes
in the abundance of Ascomycota, Basidiomycota, and Glomeromycota may be indicative of
significant changes in the ecosystem’s subterranean processes related to A. palmeri invasion.

The use of LefSe analysis to identify biomarkers in microbial communities is a reliable
method. The results revealed that Dioszegia, Tilletiopsis, Plectosphaerella, Colletotrichum,
Spizellomyces, Colacogloea, and Chaetomium were biomarkers in the rhizosphere soil of
A. palmeri, and Ochroconis, Chrysosporium, Alternaria, and Phaeosphaeria were regarded as
biomarkers in the rhizosphere soil of native plants. Different biomarkers were found in
invasive and native soil communities, which could be related to the different ecological
strategies of A. palmeri and native vegetations. Dioszegia was identified as a keystone taxon
in the agroecosystem by Banerjee [48]. Tilletiopsis species may produce antifungal com-
pounds and hydrolytic enzymes that act as antagonists of pathogens and indirectly promote
plant growth [49]. Although most Colletotrichum species were destructive pathogens [50],
some members such as Colletotrichum tofieldiae colonized in Arabidopsis roots and trans-
ferred phosphorus to the host under phosphate deficiency conditions to promote plant
growth [51], and Colletotrichum siamense had growth-promoting effects and suppressed
Fusarium oxysporum symptoms in tomato plants [52]. A saprophytic yeast known as
Colacogloea was highly competitive, tolerant of harsh environments, and non-pathogenic to
humans, animals, or plants [53]. Spizellomyces may have more extensive pathways that help
metabolize nutrients that were typically hard to obtain, boosting adaptability to a variety
of environments [54]. Members of the Chaetomiaceae family are well-known for producing
cellulase and hemicellulase [55]. Previous research found Chaetomium members to be
potential antagonists of many soil-borne pathogens as well as beneficial fungal groups in
plants [56–58]. The pathogens of Alternaria and Phaeosphaeria were enriched in the rhizo-
sphere soil of native plants. Alternaria is a widespread pathogen that is responsible for
20–80% of agricultural losses in field crops, horticultural crops, planted crops, and forest
plants [59,60]. Phaeosphaeria devastated important commercial grasses and cereals [61,62].
The more prevalent antagonists (Chaetomium and Tilletiopsis) in the rhizosphere of A. palmeri
may explain the significant decline in Alternaria and Phaeosphaeria. The findings suggested
that these taxa as biomarkers may play an important role in soils invaded by A. palmeri and
might be adapted to soil niches that are favorable for plant invasion.

The co-occurrence network reflected potential microbial interactions. The proportion
of positive links in invasive and native networks was 69.65% and 70.23%, respectively,
indicating that mutualism or commensalism may have had a substantial influence on how
the community was shaped [63]. In comparison to native plants, the invasion of A. palmeri
increased the negative relationship between the soil fungal community, implying that
A. palmeri fungal community faced higher resource competition [64,65]. The lower edges,
average degree, and clustering coefficient showed that the A. palmeri invasion reduced the
complexity of the soil fungal network [66]. The invasive soils’ greater modularity values
indicated a more stable microbial community [8,67,68]. The redistribution of nutrients
and the stability of ecosystem functions were facilitated by a more stable co-occurrence
network [38]. A. palmeri had an average path length that was shorter than native plants,
indicating that the network was more effective at transporting mass or nutrients [69]. We
concluded that A. palmeri invasion may form a simpler but more effective network than
native plants, affecting soil fertility and plant productivity.
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Changes in the topological properties of microbial networks coincided with the replace-
ment of keystone taxa. Keystone OTUs were placed in the most central and well-connected
areas of the network [70]. Through frequent interactions with other members, keystone
taxa played an important role in maintaining network stability, and their removal may
destabilize modules or networks [21,71]. To the best of our knowledge, this study is the first
attempt to link changes in keystone taxa of the soil fungal community with the invasion of
A. palmeri. According to our findings, the keystone taxa of invasive and native plants were
noticeably different. The majority of the keystone taxa identified in this study belonged
to phyla of Ascomycota, Basidiomycota, and Mortierellomycota. Within the Ascomycota,
Cephalotrichum is a saprophytic soil fungus [72]; Myrmecridium, a plant endophytes taxon,
has been reported to produce extracellular hydrolytic enzymes and cellulase [73]; Podospora
are well-known cellulose degraders [74]; Nigrospora has the capacity to improve the with-
stand stress of host plants and produce antifungal compounds [75]; and Gibellulopsis is
linked to carbohydrate content [76]. Within the Basidiomycota, members of Saitozyma are
involved in the decomposition of dead plant biomass [77]; Colacogloea is a saprophytic
yeast that can persist in difficult conditions [53]. Within the Mortierellomycota, Mortierella
is mostly composed of saprophytic species that perform several functions, including the
degradation of cellulose and lignin [78]. When the relative abundance of keystone taxa
was compared between invaded and native plots, Colacogloea increased dramatically, while
Alternaria decreased significantly in the rhizosphere soil of A. palmeri. This result agreed
with the indicator taxa determined by LEfSe analysis, indicating that using these methods
to identify the keystone taxa in our study was valid [15]. The keystone taxa in the inva-
sive plots included a variety of saprophytic fungi, such as Mortierellomycota (e.g., genus:
Mortierella) and yeast (e.g., genus: Colacogloea and Saitozyma), which may result in different
soil organic carbon contents in the invasive and native plants because saprophytic fungi
decompose more quickly [40]. We tentatively suspect that saprophytic fungi are crucial in
regulating A. palmeri invasion. In addition, our random forest analysis revealed that soil
total carbon was a determinant of keystone taxa. Keystone taxa may influence the organic
carbon content of soil, thereby influencing the soil total carbon content. In conclusion, we
believe that changes in keystone species and members may be one of the primary strategies
for A. palmeri invasion and that this should be confirmed in the future.

5. Conclusions

In conclusion, our research revealed that the soil fungal community, rather than alpha
diversity, was significantly altered in response to A. palmeri invasion. Soil total phosphorus,
total carbon, and available phosphorus were the main determinants of fungal commu-
nity structure. The relative abundance of Basidiomycota increased while Ascomycota
and Glomeromycota decreased after plant invasion. More antagonists (e.g., Chaetomium
and Tilletiopsis) found in invaded soils may inhibit pathogenic fungi (e.g., Alternaria and
Phaeosphaeria). Compared to native plants, A. palmeri created a simpler but more stable soil
fungal network. Moreover, the replacement of keystone taxa may be associated with the
invasion of A. palmeri. Our findings provide insight into the composition and co-occurrence
patterns of fungal communities in A. palmeri-invaded ecosystems.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof9050509/s1. Figure S1: Main soil factors affecting key-
stone taxa characterized by random forest modeling analysis. Figure S2: The rarefaction curve of
22 samples. Figure S3: Main soil factors affecting keystone taxa characterized by random forest
modeling analysis. Table S1: Major topological properties of fungal networks in A. palmeri (AP) and
native (N) rhizosphere soils. Table S2: Relative abundance and difference test of keystone taxa in
A. palmeri (AP) and native(N) rhizosphere soils. ** p < 0.01, * p < 0.05. Table S3: Relative abundance
and difference test of keystone taxa in A. palmeri (AP) and native(N) rhizosphere soils. ** p < 0.01,
* p < 0.05.
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