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Abstract: Diaporthe species produce versatile secondary metabolites (SMs), including terpenoids,
fatty acids, polyketides, steroids, and alkaloids. These structurally diverse SMs exhibit a wide
range of biological activities, including cytotoxic, antifungal, antibacterial, antiviral, antioxidant,
anti-inflammatory, and phytotoxic activities, which could be exploited in the medical, agricultural,
and other modern industries. This review comprehensively covers the production and biological
potencies of isolated natural products from the genus Diaporthe associated with terrestrial and marine
origins. A total of 275 SMs have been summarized from terrestrial (153; 55%) and marine (110; 41%)
origins during the last twelve years, and 12 (4%) compounds are common to both environments. All
secondary metabolites are categorized predominantly on the basis of their bioactivities (cytotoxic,
antibacterial, antifungal, and miscellaneous activity). Overall, 134 bioactive compounds were isolated
from terrestrial (92; 55%) and marine (42; 34%) origins, but about half the compounds did not report
any kind of activity. The antiSMASH results suggested that Diaporthe strains are capable of encoding
a wide range of SMs and have tremendous biosynthetic potential for new SMs. This study will be
useful for future research on drug discovery from terrestrial and marine natural products.

Keywords: Diaporthe; secondary metabolites; biological potencies; drug discovery

1. Introduction

Diaporthe is an important fungal genus of plant pathogens [1] belonging to the family
Diaporthaceae, order Diaporthales, and class Sordariomycetes [2]. It is isolated mainly from
plant hosts, which are distributed worldwide; many of them have been reported as plant
pathogens, nonpathogenic endophytes, or saprobes, and human and other mammalian
pathogens [3,4]. Diaporthe sp. is a widespread fungal genus that colonizes a wide range of
hosts. It consists of nearly 800 described species, with around 950 species being attributed
to its asexual state (Phomopsis) [5]. It is often isolated from above-ground plants, especially
tropical and temperate woody plants [6]. Among numerous endophytic fungi, the genus
Diaporthe is known for its potent biosynthetic ability to produce bioactive metabolites [7,8].
Secondary metabolites (SMs) isolated from Diaporthe sp. have shown a wide range of
biological activities and chemical structures [9,10]. Chemical studies on some Diaporthe
spp. have revealed a variety of bioactive natural products [11], such as cytotoxic diapolic
acids [12], antifungal compounds [5,13], antibacterial agents [14,15], anti-candidal ketone
derivatives [16], and anti-tubercular metabolites [17]. In the last twelve years, a total of
106 bioactive SMs have been reported from the genus Diaporthe [18].

Endophytic communities that develop inside the host plants are influenced by various
parameters, such as environmental conditions (terrestrial and marine), host type, etc. [19].
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Fungal endophytes are asymptomatic inhabitants of plant tissues that have the capability
to colonize all parts of plants and determine their functional aspects, including increasing
plant growth, acting as a biocontrol agent, naturally protecting the host from pests, and
enduring tolerance against numerous biotic/abiotic stresses [20,21]. In return, they benefit
from host plants in several ways, including providing nutrients, protection from desiccation,
spatial structure, and passing on reproductive fungal propagules to the next generation
of hosts in the case of vertical transmission [22]. Due to the vast diversity of endophytic
fungal communities, the characterization of the SMs of each endophytic fungal community
is difficult; therefore, the current review aims to describe the SMs species from the genus
Diaporthe from two main origins (terrestrial and marine) and, furthermore, to classify them
on the basis of their biological potency.

2. Terrestrial Origin
2.1. Cytotoxic Metabolites

Liu et al. (2013) isolated nine compounds (1–9), including a novel (1R,2E,4S,5R)-1-
[(2R)-5-oxotetrahydrofuran-2-yl]-4,5-dihydroxy-hex-2-en-1-yl(2E)-2 methylbut-2-enoate (1),
a known (1R,2R,4R)-trihydroxy-p-menthane (2), three linear furanopolyketides (3–5), and
four lovastatin analogues, oblongolides D (6), H (7), P (8), and V (9), from Diaporthe sp. SXZ-
19 on C. acuminate. These compounds showed weak cytotoxic activities against HCT 116
cells at a concentration of 10 µM [23]. Two bioactive metabolites, emodin (10) and arbutin
(11), were isolated from an endophytic fungus D. lithocarpus. Compound 10 exhibited
remarkable cytotoxic activity against P-388 murine leukemia cells (IC50 = 0.41 µg/mL),
and 11 showed moderate cytotoxicity against murine leukemia P-388 cells and had an IC50
value at 2.91 µg/mL [15]. Two cytoskyrin-type bisanthraquinones, cytoskyrin C (12), and
(+)-epicytoskyrin (13), were isolated from Diaporthe sp., an endophytic fungus derived
from Anoectochilus roxburghii. Both compounds showed dose-dependent cytotoxicities
against SMMC-7721 cells [24]. A new compound, vochysiamide B (14), and the known 2,5-
dihydroxybenzyl alcohol (15) were derived from D. vochysiae LGMF1583 on the medicinal
plant Vochysia divergens and showed cytotoxic activities against A549 human non-small cell
lung and PC3 human prostate cell lines [8]. Mycoepoxydiene (16) and eremofortin F (17)
were obtained from the endophytic fungus Diaporthe sp. SNB-GSS10 on Sabicea cinerea and
showed cytotoxic activity against KB and MRC5 cells [6].

Two eremophilanes, lithocarins B (18) and C (19), were isolated from an endophytic
fungus D. lithocarpus A740 on Morinda officinalis. Both compounds exhibited cytotoxicity
against SF-268, MCF-7, HepG-2, and A549 tumor cells with IC50 values between 37.68 and
97.71 µM [9]. The endophytic fungus D. terebinthifolii GG3F6, derived from the medicinal
plant Glycyrrhiza glabra, was a source of the metabolite xylarolide (20), which showed
cytotoxicity against MIAPaCa-2, HCT-116, and T47D cancer cells with IC50 values of 38 µM,
100 µM, and 7 µM, respectively [12]. The metabolites xylarolide A (21) and xylarolide
(20) were isolated from the fungus Diaporthe sp. on D. inoxia and showed remarkable
cytotoxicity against MIAPaCa-2 with IC50 values of 20 µM and 32 µM, respectively, and
against PC-3 with IC50 values of 14 µM and 18 µM, respectively [25]. Brissow et al. (2017)
obtained 18-des-hydroxy cytochalasin H (22) from the endophytic fungus D. phaseolorum-
92C on Combretum lanceolatum. This compound exhibited cytotoxic activity against the
breast cancer cells MDA-MB-231 and MCF-7 [26]. A new brasilane-type sesquiterpenoid,
diaporol R (23), was isolated from an endophytic Diaporthe sp. on leaves of R. stylosa.
Diaporol R had a moderate cytotoxic effect on SW480 cancer cells and exhibited an IC50
value of 8.72 ± 1.32 µM [27]. Diaporone A (24), a new dihydroisocoumarin derivative,
was isolated from the crude extract of the plant endophytic fungus Diaporthe sp. and
exhibited weak cytotoxicity against the human cervical cancer (HeLa) cell line with an
IC50 value of 97.4 µM [28]. Yang et al. (2020) isolated nine cytochalasans (25–33) from the
endophytic fungus Diaporthe sp. SC-J0138 isolated from the leaves of Cyclosorus parasiticus.
All compounds showed cytotoxic activity [29]. Khan et al. (2023) isolated a novel compound
phomopthane A (34) from the plant-derived fungus D. unshiuensis YSP3, which exhibited
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cytotoxic activities against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM,
respectively [30]. Compounds 1–34 are shown in Figure 1.
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2.2. Antibacterial Metabolites

Two isocoumarin metabolites, (10S)-diaporthin (35) and orthosporin (36), were isolated
from D. terebinthifolii LGMF907 isolated from Schinus terebinthifolius. They showed antibac-
terial activities against methicillin-sensitive Staphylococcus aureus and methicillin-resistant
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S. aureus [31]. A new 3-substituted-5-diazenylcyclopentendione, named kongiidiazadione
(37), was separated from D. kongii on C. lanatus and showed antibacterial activity against
Bacillus amyloliquefaciens [32]. The three metabolites emodin (10), coumarin (38), and 1,2,8-
trihydroxyanthraquinone (39) were isolated from the endophytic fungus D. lithocarpus.
Compound 38 had a diameter inhibition zone of 12.3 ± 0.3 mm against the bacterium
B. subtilis, and 10 showed antibacterial activity against B. subtilis, M. luteus, Pseudomonas
fluorescences, E. coli, and S. cerevisiae with inhibition zone diameters of 14.7 mm, 13.2 mm,
13.7 mm, 12.7 mm, and 11.7 mm, respectively, while compound 39 displayed antibacterial
activity against B. subtilis, E. coli, and S. cerevisiae with inhibition zone diameters of 14.2 mm,
11.3 mm, and 10.7 mm, respectively [15]. Two antibacterial metabolites, phomosines A (40)
and C (41), were extracted from Diaporthe sp. F2934 of the plant Siparuna gesnerioides. Both
were active against S. aureus, M. luteus, Streptococcus oralis, Enterococcus fecalis, Enterococcus
cloacae, and Bordetella bronchiseptica, with the diameter of the zone of inhibition ranging
from 6 ± 0.62 to 12 ± 1.18 mm at a concentration of 4 µg/µL [11].

A new lanostanoid, 19-nor-lanosta-5(10),6,8,24-tetraene- 1α,3β,12β,22S-tetraol (42),
along with two known steroids, 3b,5a,9a-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (43)
and chaxine C (44), were isolated from Diaporthe sp. LG23 on the Chinese medicinal
plant Mahonia fortune. Compound 42 exhibited antibacterial activity against both Gram-
positive and Gram-negative bacteria, and 43 and 44 showed antibacterial activity against
B. subtilis with streptomycin as a positive control [14]. Two new fatty acids, diapolic
acids A and B (45 and 46), along with two known compounds, xylarolide (20) and pho-
molide G (47), were isolated from the endophytic fungus D. terebinthifolii GG3F6, which
was derived from the medicinal plant Glycyrrhiza glabra. All these compounds show an-
tibacterial activity against Y. enterocolitica with IC50 values of 78.4 µM, 73.4 µM, 72.1 µM,
and 69.2 µM, respectively [12]. The new 21-acetoxycytochalasins J3 (48) was extracted
from Diaporthe sp. GDG-118 on Sophora tonkinensis and showed moderate antibacterial
activity against Bacillus anthraci and Escherichia coli [33]. A carboxamide, vochysiamide
B (14), from D. vochysiae LGMF1583 showed antibacterial activity on the Gram-negative
bacterium Klebsiella pneumoniae (KPC) with a minimum inhibitory concentration (MIC)
value of 80 µg/mL [8]. Flavomannin-6,60-di-O-methyl ether (49) was extracted from an
endophytic strain of D. melonis from Annona squamosal, which showed antimicrobial activity
against S. aureus 25697, S. aureus 29213, and Streptococcus pneumonia ATCC 49619 with MIC
values of 32 µg/mL, 32 µg/mL, and 2 µg/mL, respectively [34]. A phenolicmetabolite,
tyrosol (50), was extracted from D. helianthi isolated from Luehea divaricate. Tyrosol showed
significant antagonistic activity against several tested pathogenic bacterial strains [35].
Compound 24 was isolated from the plant endophytic fungus Diaporthe sp. and showed
moderate antibacterial activity against Bacillus subtilis with a MIC value of 66.7 µM [28].
The novel 3-methoxy-5-methylnaphthalene-1, 7-diol (51) was isolated from a Diaporthe sp.
on the plant Syzygium cordatum. Compound 51 demonstrated antibacterial activity against
Pseudomonas syringae pv phaseolicola and Xanthomonas axonopodis pv phaseoli, with MIC
values of 2.50 mg/mL (7.00 ± 0.00 mm) and 1.25 mg/mL (7.67 ± 0.33 mm), respectively,
against test organisms [36]. A new alternariol methyl ether-12-O-α-D-arabinoside (52)
derived from D. unshiuensis YSP3 and showed antibacterial effect on B. subtilis (MIC value
16 µg/mL) [30]. The structures of compounds 35–52 are shown in Figure 2.
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2.3. Antifungal Secondary Metabolites

Tanney et al. (2016) isolated four secondary metabolites of D. maritima from healthy
Picea mariana and Picea rubens needles, including phomopsolides A (53), B (54), and C
(55) and a stable a-pyrone, (S,E)-6-(4-hydroxy-3-oxopent-1-en-1-yl)-2H-pyran-2-one (56).
All compounds showed antifungal activities against M. violaceum and Saccharomyces cere-
visiae [5]. A known product, 7-hydroxy-6-metoxycoumarin (57), was isolated from the endo-
phytic fungus D. lithocarpus, showing significant antifungal activity against Sporobolomyces
salminocolor with an inhibition zone of 12.2 ± 0.3 mm [15]. A bis-anthraquinone derivative,
(+)-2,20-epi-cytoskyrin A (58), was isolated from Diaporthe sp. GNBP-10 from Uncaria gam-
bir Roxb. It showed antifungal activity against 22 yeast strains and 3 filamentous fungi
with MICs ranging from 16 µg/mL to 128 µg/mL [37]. Cytochalasins were isolated from
Diaporthe sp. GDG-118, including 7-acetoxycytochalasin H (59) and cytochalasins H (60)
and E (61), and showed varying degrees of antifungal activity against Alternaria oleracea,
Pestalotiopsis theae, Colletotrichum capsici, and Ceratocystis paradoxa [33]. The novel metabolite
3-hydroxy-5-methoxyhex-5-ene-2,4-dione (62) was isolated from Diaporthe sp. ED2 on the
herb Orthosiphon stamieus Benth. It showed antifungal activity against C. albicans with
an MIC value of 3.1 µg/mL [16]. A new metabolite, eucalyptacid A (63), along with the
three known metabolites cytosporone C (64), 1-(4-hydroxyphenyl) ethane-1,2-diol (65), and
(2-hydroxy-2-phenylethyl) acetamide (66), was isolated from the solid rice cultures of the
endophytic fungus D. eucalyptorum KY-9 that had been isolated from Melia azedarach. All
compounds exhibited antifungal activities against Alternaria solani [13]. Compounds 53–66
are shown in Figure 3.
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2.4. Miscellaneous Activities

Seven metabolites, mucorisocoumarin A (67); pestalotiopsone B (68); acetoxydoth-
iorelone B (69); dothiorelones B (70), L (71), and G (72); and cytosporone D (73), were
isolated from the endophytic fungus D. pseudomangiferaea on Tylophora ouata. Compounds
67–73 displayed anti-fibrosis activity with inhibition rates of 17.4%, 59.2%, 62.9%, 41.1%,
32.9%, and 52.1% in human lung fibroblast MRC-5 cell activation induced by TFG-b at
10 µM. Cytosporone D (73) showed antioxidant activity with an inhibition rate of 63.3%
by releasing MOA at a concentration of 10 µM and moderate antidiabetic activity to-
ward protein tyrosine phosphatase 1B (PTP1B) [38]. The fungus D. eres derived from
pathogen-infected leaves of Hedera helix produced an isocoumarin, 3,4-dihydro-8-hydroxy-
3,5-dimethylisocoumarin (74), and tyrosol (50), which had a phytotoxic effect on the growth
of Lemna paucicostata [39]. A novel metabolite, diportharine A (75), was obtained from the
culture of a Diaporthe sp. isolated from Datura inoxia. It showed remarkable antioxidant
activity by scavenging DPPH radicals (EC50 = 10.3 µM) [25]. Two new benzopyranones,
diaportheones A (76) and B (77), were extracted from Diaporthe sp. P133 from Pandanus
amaryllifolius. They exhibited moderate antitubercular activities and achieved MIC values
of 100.9 µM and 3.5 µM, respectively, against Mycobacterium tuberculosis H37Rv with ri-
fampin as the positive control (MIC = 0.25 µM) [40]. The cyclohexeneoxidedione derivatives
phyllostine acetate (78) and phyllostine (79) were extracted from D. miriciae on the plant
Cyperus iria and showed potent antifeedant activities on Plutella xylostella. [41]. Cytoskyrin
C (12) and (+)-epicytoskyrin (13) were isolated from Diaporthe sp. and were able to acti-
vate the NF-KB pathway and increase the relative activity of luciferase at a concentration
of 50 µM [24]. Five phytotoxic compounds, p-cresol (80), 4-hydroxybenzoic acid (81),
4-hydroxybenzaldehyde (82), nectriapyrone (83), and tyrosol (50), were isolated from D.
eres on V. vinifera wood. In leaf disk and leaf absorption bioassays, the phytotoxicities of all
compounds increased with concentration over the range 0.1–1 mg/mL [42]. Two diphenyl
ether derivatives, diaporthols A (84) and B (85), were extracted from Diaporthe sp. ECN-137
isolated from the leaves of Phellodendron amurense. Compounds displayed a migration
inhibitory effect on TGF-β1-triggered MDA-MB-231 breast cancer cells at a concentration of
20 µM [43]. Two new metabolites, gulypyrone A (86) and phomentrioloxin B (87), were ex-
tracted from a strain of D. gulyae isolated from C. lanatus, which had a low phytotoxic effect
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and caused some necrosis in various weed and crop species [44]. Phomolide C (88) from
a Diaporthe sp. on Aucuba japonica var. borealis inhibited the proliferation of human colon
adenocarcinoma cells at a concentration of 50 µg/mL [45]. Compound 18-des-hydroxy cy-
tochalasin H (22) from the endophytic fungus D. phaseolorum-92C inhibited leishmanicidal
activity and moderate antioxidant activity against the breast cancer cells MDA-MB-231 and
MCF-7 [26]. Studies of the strain Diaporthe sp. JC-J7 from the stems of Dendrobium nobile
led to the isolation of a new compound, diaporthsin E (89). It showed low antihyperlipi-
demic activity on triglycerides (TG) in steatotic L-02 cells with an inhibition rate of 26%
at a concentration of 5 µg/mL [46]. Two dibenzopyrones, 2-hydroxy-alternariol (90) and
alternariol (91), were isolated from the endophytic fungus Diaporthe sp. CB10100. Both
compounds significantly reduced the production of NO to as low as 10 µM in LPS-induced
RAW264.7 cells [47]. A new metabolite, phomentrioloxin (92), was isolated from the liquid
culture of Phomopsis sp. (asexual state of Diaphorte), which showed phytotoxic activity, and
caused growth and chlorophyll content reduction in fronds of Lemna minor and inhibition
of tomato rootlet elongation [48]. Structures of compounds 67–92 are shown in Figure 4.
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2.5. Compounds with No Activity

Two known compounds (93–94) isolated from D. lithocarpus showed no activity [15].
The compound vochysiamides A (95) from D. vochysiae LGMF1583 did not report ac-
tivity [8]. The endophytic fungus D. pseudomangiferae yielded the inactive compound
altiloxin A (96) [6]. A new benzophenone derivative, named tenllone I (97), the new
lithocarin D (98), and the known phomopene (99) were isolated from the endophytic fun-
gus D. lithocarpus A740. These compounds were not found to be significantly active [9].
Xylarolide B (100) isolated from the culture of an endophytic fungus Diaporthe sp. Har-
bored from Datura inoxia showed no activity [25]. Nine new sesquiterpenoids, diaporols
J–Q and S (101–108 and 109), were isolated from Diaporthe sp., an endophytic fungus.
None of them reported any activity [27]. Alternariol 4,10-dimethyl ether (110) and al-
ternariol 4-methyl ether (111) were isolated from a crude extract of the plant endophytic
fungus Diaporthe sp. and did not display any kind of bioactivity [28]. Three compounds,
4H-1-benzopyra-4-one-2,3-dihydro-5-hydroxy-2,8-dimetyl (112), 4H-1-benzopyran-4-one-
2,3-dihydro-5-hydroxy-8-(hydroxy-lmethyl)-2-methyl (113), and phomosine D (114), were
isolated from the Diaporthe sp. F2934. These isolated compounds were found to be inac-
tive [11]. Four known compounds, 3β,5α,9α,14α-tetrahydroxy-(22E,24R)-ergosta-7,22-dien
6-one (115), (22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6α-triol (116), demethylincisterol A3
(117), and volemolide (118), were isolated from an endophytic fungus, Diaporthe sp. LG23,
and were found to have no bioactivity [14]. A chemical investigation into the endophyte
D. melonis reported the isolation of two new compounds, diaporthemins A (119) and B
(120). Neither compound was reported to have any kind of potency [34]. Three inactive
metabolites, a new metabolite, eucalactam B (121), and two known metabolites, eugenitol
(122) and 4-hydroxyphenethyl alcohol (123), were isolated from the solid rice cultures of the
endophytic fungus D. eucalyptorum KY-9 [13]. The chemical exploration of an endophytic
fungus D. pseudomangiferaea led to the isolation of eleven inactive (124–134) secondary
metabolites [38]. Nine compounds (135–143) were isolated from a strain of D. gulyae, but
did not report any bioactivity [44]. Ten inactive polyketones (144–153) were isolated from
the fermentation of Diaporthe sp. JC-J7 [46]. Nine inactive metabolites (154–162) were iso-
lated from the endophytic fungus Diaporthe sp. CB10100 [47]. An inactive new cytochalasan
(163) was isolated from the endophytic fungus Diaporthe sp. SC-J0138 [29]. Two inactive
novel compounds, phomopthane B (164) and phomopyrone B (165), were isolated from D.
unshiuensis [30]. The structures of compounds 93–165 are shown in Figure 5.
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3. Marine Origin
3.1. Antibacterial and Antifungal Metabolites

A chemical investigation into Diaporthe amygdali SgKB4, an endophytic fungal strain
isolated from the West Sumatran mangrove plant Sonneratiagriffithii Kurz, led to the isolation
of cytochalasin H (60). This compound showed mild antibacterial activity against some
pathogenic bacteria [49]. The fungus D. phaseolorum derived from Laguncularia racemose,
afforded 3-hydroxypropionic acid (166), which showed antimicrobial activity against S.
aureus and S. typhi [50]. A new compound (167), named diaporthelactone, was isolated
from the culture of Diaporthe sp., a marine fungus growing in the submerged decayed
leaves of Kandelia candel in the mangrove, and exhibited inhibitory antifungal activity
against Aspergillus niger with a MIC of 50 µg/mL [51]. Niaz et al. (2021) isolated a new
isochromophilone G (168) along with six known azaphilones (169–174) from the endophytic
fungus Diaporthe perseae on the Chinese mangrove Pongamia pinnata (L.). All compounds
exhibited antibacterial potency against human pathogens [52]. Compounds 166–174 are
shown in Figure 6.
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3.2. Miscellaneous Activities

Three compounds, pestalotiopsones F (175) and B (176), and 3,8-dihydroxy-6-methyl-9-
oxo-9Hxanthene- 1-carboxylate (177), were isolated from Diaporthe sp. SCSIO 41011. These
compounds showed significant anti-IAV activities against three influenza A virus subtypes,
including A/Puerto Rico/8/34 H274Y (H1N1), A/FM-1/1/47 (H1N1), and A/Aichi/2/68
(H3N2) [53]. Phomoxanthone A (178), with a novel carbon skeleton, was isolated from the
fungus D. phaseolorum FS431 and showed good cytotoxic potency against MCF-7, HepG-
2, and A549 with IC50 values of 2.60 µM, 2.55 µM, and 4.64 µM, respectively [54]. A
new compound biatriosporin N (179), together with five known compounds (180–182,
60, and 178), was obtained from the culture of the fungus Diaporthe sp. GZU-1021. All
compounds displayed significant inhibitory effects against NO production with IC50 values
from 1.94 µM to 16.5 µM [55]. Six bioactive metabolites were separated from D. phaseolorum
SKS019 derived from the mangrove plant A. ilicifolius, (−)-phomopsichin A (183), (+)-
phomopsichin A (184), (+)-phomopsichin B (185), (−)-phomopsichin B (181), and the new
diaporchromanones C (186) and D (187). These metabolites showed moderate inhibition
of osteoclastogenesis by inhibiting RANKL-induced NF-KB activation [56]. The fungus
Diaporthe sp. SCSIO 41011, derived from the mangrove plant R. stylosa, yielded two
metabolites, epi-isochromophilone II (172) and isochromophilone D (188). Compound
172 displayed cytotoxicity against ACHN, OS-RC-2, and 786-cells with IC50 values of
between 3.0 µM and 4.4 µM, and 188 had an IC50 of 8.9 µM against 786-O cancer cells [57].
Compound 167 showed inhibitory activity against human tumor cell lines KB and Raji with
IC50 values of 6.25 µg/mL and 5.51 µg/mL, respectively [51]. Diaporisoindole A (189) and
tenellone C (190) were obtained from Diaporthe sp. SYSU-HQ3 on the mangrove plant E.
agallocha and displayed inhibitory activity on M. tuberculosis protein tyrosine phosphatase
B (MptpB) (IC50 values = 4.2 µM and 5.2 µM, respectively) [58]. Eight new compounds,
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diaporindenes A−D (191−194), isoprenylisobenzofuran A (195), diaporisoindoles D and E
(196 and 197), and tenellone D (198), were isolated from the endophytic fungus Diaporthe
sp. SYSU-HQ3 derived from the branches of Excoecaria agallocha. All metabolites displayed
significant anti-inflammatory activity [59]. Cordysinin A (199) was derived from the
endophytic fungus D. arecae on Kandelia obovate. It displayed antiangiogenic activity against
human endothelial progenitor cells (EPCs) with an IC50 value of 15.1 ± 0.2 µg/mL [60].
The metabolites 5-deoxybostrycoidin (200) and fusaristatin A (201) were obtained from D.
phaseolorum SKS019 on the mangrove plant A. ilicifolius. Compound 200 showed cytotoxic
activity against MDA-MB-435 and NCI-H460 with IC50 values of 5.32 µM and 6.57 µM,
respectively, and the IC50 value of 201 on MDA-MB-435 was 8.15 µM [61]. Phomopsin F
(202) was isolated from D. toxica and showed cytotoxic activity against HepG2 cells [62].
Two novel metabolites, longidiacid A (203) and longichalasin B (204), were isolated from
the deep-sea-derived fungus Diaporthe longicolla FS429. These compounds were shown to
inhibit 35.4% and 53.3% of the enzyme activity of the Mycobacterium tuberculosis protein
tyrosine phosphatase B (MptpB), respectively, at a concentration of 50 µM [63]. The new
diaporpenoid A (205) and the new diaporpyrone A (206) were isolated from a MeOH
extract obtained from cultures of the endophytic mangrove fungus Diaporthe sp. QYM12.
Compounds 205 and 206 exhibited potent anti-inflammatory activities by inhibiting the
production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells with
IC50 values of 21.5 µM and 12.5 µM, respectively [64]. Seven compounds (168–174) were
isolated from the endophytic fungus D. perseae. Outstanding DPPH and ABTS radical
scavenging activities were exhibited by all seven compounds [52]. Compounds 175–206
are shown in Figure 7.

3.3. Inactive Compounds

Secondary metabolites 207–221 and 124–134 were isolated from the mangrove-associated
fungus Diaporthe sp. SCSIO 41011. None of these compounds reported any kind of ac-
tivity [53]. Two new polyketides, phaseolorins G and H (222 and 223), and one new
phaseolorin I (224), along with two known compounds (225 and 226), were isolated from
D. phaseolorum FS431. None of these compounds showed any activity [54]. Two new
metabolites, diaporchromanones A and B (227 and 228), and a known compound (229)
were obtained from D. phaseolorum SKS019, but showed no activity [56]. Three chloroaza-
philone derivatives (230−232) were obtained from the fungus Diaporthe sp. SCSIO 41011,
along with three known analogues (233−235). None of these isolated compounds were
reported to have any kind of activity [57]. Two inactive compounds, diaporisoindole B
(236) and diaporisoindole C (237), were isolated from the endophytic fungus Diaporthe sp.
SYSUHQ3 [58]. A new arecine (238) and twenty-two known diketopiperazines (239–260)
were isolated from the endophytic fungus D. arecae, but showed no activity [60]. Six
new compounds, including diaporphasines A–D (261–264) and meyeroguillines C and D
(265–266), and a known meyeroguilline A (267) were isolated from an endophytic fungus
D. phaseolorum. None of these compounds reported any kind of activity [61]. A chemical
investigation into the fungus D. longicolla FS429 led to the isolation of six metabolites, the
novel longidiacid B (268), two new polyketides (269–270), a new cytochalasin analogue
longichalasins A (272), and two known compounds (271 and 273). None of them showed
activity [63]. Four inactive compounds, including the new diaporpenoids B and C (274
and 275), and the known diaporpyrones B and C (160 and 161), were isolated from the
mangrove endophytic fungus Diaporthe sp. QYM12 [64]. The structures of compounds
207–275 are shown in Figure 8.
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In this paper, a total of 275 secondary compounds from the genus Diaporthe are summa-
rized. As can be seen in Figure 9, 153 secondary metabolites were isolated from terrestrial
origins and 110 from marine origins, and 12 were common to both environments. These
compounds are categorized on the basis of their activity and inactivity. Figures 10 and 11,
and Tables 1 and 2 show that about half of all 275 compounds reported from terrestrial and
marine origins were inactive, accounting for 74 (45%) and 80 (66%) metabolites, respec-
tively. Moreover, the active compound ratios were 56% and 34%, respectively. The active
secondary metabolites showed various types of bioactivities, mainly cytotoxic (34; 20%),
antibacterial (18; 11%), antifungal (14; 9%), and miscellaneous activities (26; 15%) for those
of terrestrial origin and antibacterial and antifungal (10; 8%) and miscellaneous activities
(32; 26%) for those of marine origin.
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Table 1. Secondary metabolites associated with terrestrial origin.

No. Compound Producing Strain Active/Inactive Ref.

1
(1R,2E,4S,5R)-1-[(2R)-5-oxotetrahydrofuran-2-
yl]-4,5-dihydroxy-hex-2-en-1-yl(2E)-2
methylbut-2-enoate

Diaporthe sp. SXZ-19 Cytotoxic [23]

2 (1R,2R,4R)-trihydroxy-p-menthane − Cytotoxic −

3 butyl
5-[(1R)-1-hydroxyethyl]-γ-oxofuran-2-butanoate − Cytotoxic −

4 3,4-dihydro-5′-[(1R)-1-hydroxyethyl]
[2,2′-bifuran]-5(2H)-one − Cytotoxic −

5 3,4-dihydro-5′-[(1R)-1-hydroxymethylethyl]
[2,2′-bifuran]-5(2H)-one − Cytotoxic −

6 Oblongolides D − Cytotoxic −
7 Oblongolides H − Cytotoxic −
8 Oblongolides P − Cytotoxic −
9 Oblongolides V − Cytotoxic −
10 Emodin D. lithocarpus Cytotoxic, Antibacterial [15]

11 Arbutin − Cytotoxic −

12 Cytoskyrin C Diaporthe sp. Cytotoxic, Activate the NF-KB
pathway [24]

13 (+)-epicytoskyrin − Cytotoxic, Activate the NF-KB
pathway −

14 Vochysiamide B D. vochysiae LGMF1583 Cytotoxic, Antibacterial [8]

15 2,5-dihydroxybenzyl alcohol − Cytotoxic −

16 Mycoepoxydiene Diaporthe sp.
SNB-GSS10 Cytotoxic [6]

17 Eremofortin F − Cytotoxic −
18 Lithocarins B D. lithocarpus A740 Cytotoxic [9]

19 Lithocarins C − Cytotoxic −
20 Xylarolide D. terebinthifolii GG3F6 Cytotoxic, Antibacterial [12]

21 Xylarolide A Diaporthe sp. Cytotoxic [25]

22 18-des-hydroxy cytochalasin H D. phaseolorum-92C Cytotoxic, Antioxidant [26]

23 Diaporol R Diaporthe sp. Cytotoxic [27]

24 Diaporone A Diaporthe sp. Cytotoxic, Antibacterial [28]

25 Diaporthichalasin D Diaporthe sp. SC-J0138 Cytotoxic [29]

26 Diaporthichalasin E − Cytotoxic −
27 Diaporthichalasin F − Cytotoxic −
28 Diaporthichalasin H − Cytotoxic −
29 Diaporthichalasin A − Cytotoxic −
30 Diaporthichalasin B − Cytotoxic −
31 Diaporthichalasin C − Cytotoxic −
32 Phomopsichalasin G − Cytotoxic −
33 21-O-deacetyl-L-696,474 − Cytotoxic −
34 Phomopthane A D. unshiuensis YSP3 Cytotoxic [30]
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No. Compound Producing Strain Active/Inactive Ref.

35 (10S)-diaporthin D. terebinthifolii
LGMF907 Antibacterial [31]

36 Orthosporin − Antibacterial −
37 Kongiidiazadione D. kongii Antibacterial [32]

38 Coumarin D. lithocarpus Antibacterial [15]

39 1,2,8-trihydroxyanthraquinone − Antibacterial −
40 Phomosines A Diaporthe sp. F2934 Antibacterial [11]

41 Phomosines C − Antibacterial −

42 19-nor-lanosta-5(10),6,8,24-tetraene-
1α,3β,12β,22S-tetraol Diaporthe sp. LG23 Antibacterial [14]

43 3b,5a,9a-trihydroxy-(22E,24R)-ergosta-7,22-dien-
6-one − Antibacterial −

44 Chaxine C − Antibacterial −
45 Diapolic acid A D. terebinthifolii GG3F6 Antibacterial [12]

46 Diapolic acid B − Antibacterial −
47 Phomolide G − Antibacterial −
48 21-acetoxycytochalasins J3 Diaporthe sp. GDG-118 Antibacterial [33]

49 Flavomannin-6,60-di-O-methyl ether D. melonis Antibacterial [34]

50 Tyrosol D. helianthi, D. eres Antibacterial, Phytotoxic [35,39,
42]

51 3-methoxy-5-methylnaphthalene-1, 7-diol Diaporthe sp. Antibacterial [36]

52 Alternariol methyl ether-12-O-α-D-arabinoside D. unshiuensis YSP3 Antibacterial [30]

53 Phomopsolide A D. maritima Antifungal [5]

54 Phomopsolide B − Antifungal −
55 Phomopsolide C − Antifungal −

56 (S,E)-6-(4-hydroxy-3-oxopent-1-en-1-yl)-2H-
pyran-2-one − Antifungal −

57 7-hydroxy-6-metoxycoumarin D. lithocarpus Antifungal [15]

58 (+)-2,20-epicytoskyrin A Diaporthe sp. GNBP-10 Antifungal [37]

59 7-acetoxycytochalasin H Diaporthe sp. GDG-118 Antifungal [32]

60 Cytochalasin H − Antifungal −
61 Cytochalasin E − Antifungal −
62 3-hydroxy-5-methoxyhex-5-ene-2,4-dione Diaporthe sp. ED2 Antifungal [16]

6 Eucalyptacid A D. eucalyptorum KY-9 Antifungal [13]

64 Cytosporone C − Antifungal −
65 1-(4-hydroxyphenyl) ethane-1,2-diol − Antifungal −
66 (2-hydroxy-2-phenylethyl) acetamide − Antifungal −
67 Mucorisocoumarin A D. pseudomangiferaea Antifibrosis [38]

68 Pestalotiopsone B − Antifibrosis −
69 Acetoxydothiorelone B − Antifibrosis −
70 Dothiorelone B − Antifibrosis −
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No. Compound Producing Strain Active/Inactive Ref.

71 Dothiorelone L − Antifibrosis −
72 Dothiorelone G − Antifibrosis −

73 Cytosporone D − Antifibrosis, Antioxidant,
Antidiabetic −

74 3,4-dihydro-8-hydroxy-3,5- dimethylisocoumarin D. eres Phytotoxic [39]

75 Diportharine A Diaporthe sp. Antioxidant [25]

76 Diaportheone A Diaporthe sp. P133 Antitubercular [40]

77 Diaportheone B − Antitubercular −
78 Phyllostine acetate D. miriciae Antifeedant [41]

79 Phyllostine − Antifeedant −
80 P-cresol D. eres Phytotoxic [42]

81 4-hydroxybenzoic acid − Phytotoxic −
82 4-hydroxybenzaldehyde − Phytotoxic −
83 Nectriapyrone − Phytotoxic −
84 Diaporthol A Diaporthe sp. ECN-137 Antimigratory [43]

85 Diaporthol B − Antimigratory −
86 Gulypyrone A D. gulyae Phytotoxic [44]

87 Phomentrioloxin B − Phytotoxic −
88 Phomolide C Diaporthe sp. Antiproliferation effect [45]

89 Diaporthsin E Diaporthe sp. JC-J7 Antihyperlipidemic [46]

90 2-hydroxy-alternariol Diaporthe sp. CB10100 Reduced NO production [47]

91 Alternariol − Reduced NO production −
92 Phomentrioloxin Phomopsis sp. Phytotoxic [48]

93 Diaporthindoic acid D. lithocarpus Inactive [15]

94 2-phenylethanol − Inactive −
95 Vochysiamides A D. vochysiae LGMF1583 Inactive [8]

96 Altiloxin A D. pseudomangiferae Inactive [6]

97 Tenllone I D. lithocarpus A740 Inactive [9]

98 Lithocarin D − Inactive −
99 Phomopene − Inactive −
100 Xylarolide B Diaporthe sp. Inactive [25]

101 Diaporol J Diaporthe sp. Inactive [27]

102 Diaporol K − Inactive −
103 Diaporol L − Inactive −
104 Diaporol M − Inactive −
105 Diaporol N − Inactive −
106 Diaporol O − Inactive −
107 Diaporol P − Inactive −
108 Diaporol Q − Inactive −
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109 Diaporol S − Inactive −
110 Alternariol 4,10-dimethyl ether Diaporthe sp. Inactive [28]

111 Alternariol 4-methyl ether − Inactive −

112 4H-1-benzopyra-4-one-2,3-dihydro-5-hydroxy-
2,8-dimetyl Diaporthe sp. F2934 Inactive [11]

113 4H-1-benzopyran-4-one-2,3-dihydro-5-hydroxy-
8-(hydroxy-lmethyl)-2-methyl − Inactive −

114 Phomosine D − Inactive −

115
3β,5α,9α,14α-tetrahydroxy-(22E,24R)-ergosta-
7,22-dien
6-one

Diaporthe sp. LG23 Inactive [14]

116 (22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6α-triol − Inactive −
117 Demethylincisterol A3 − Inactive −
118 Volemolide − Inactive −
119 Diaporthemin A D. melonis Inactive [34]

120 Diaporthemin B − Inactive −
121 Eucalactam B D. eucalyptorum KY-9 Inactive [13]

122 Eugenitol − Inactive −
123 4-hydroxyphenethyl alcohol − Inactive −
124 (9S, 17R, 19S, 6Z, 10E, 14E)-Diaporlactone A D. pseudomangiferaea Inactive [38]

125 5-hydroxy-7-methoxy-4,6-dimethyl-2-
phenylisoindoline-1,3-dione − Inactive −

126 (13R)-Diaporphthalide − Inactive −
127 (15S)-Acetoxydothiorelone A − Inactive −
128 Dothiorelone K − Inactive −
129 Dothiorelone M − Inactive −
130 Dothiorelone N − Inactive −
131 16-acetoxydothiorelone C − Inactive −
132 Dothiorelone A − Inactive −
133 Dothiorelone C − Inactive −
134 Dothiorelone I − Inactive −
135 9-O-acetyl derivative D. gulyae Inactive [44]

136 9-O-S-MTPA ester − Inactive −
137 9-O-R-MTPA ester − Inactive −
138 Gulypyrone B − Inactive −
139 Phomentrioloxin C − Inactive −
140 4-methylbenzoic acid − Inactive −
141 3-nitropropionic acid − Inactive −
142 Succinic acid − Inactive −
143 Nectryapyrone − Inactive −
144 Diaporthsin A Diaporthe sp. JC-J7 Inactive [46]

145 Diaporthsin F − Inactive −
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No. Compound Producing Strain Active/Inactive Ref.

146 Diaporthsin H − Inactive −
147 Diaporthsin C − Inactive −
148 Diaporthsin B − Inactive −
149 Diaporthsin D − Inactive −
150 Diaporthsin G − Inactive −
151 Diaporthsin I − Inactive −
152 Diaporthsin J − Inactive −
153 Diaporthsin K − Inactive −
154 α-Pyrone Diaporthe sp. CB10100 Inactive [47]

155 Dothideopyrone F − Inactive −
156 Ellagic acid − Inactive −
157 Dibenzo-α-pyrone − Inactive −
158 Ellagic acid B − Inactive −
159 Diaporpyrone A − Inactive −
160 Diaporpyrone B − Inactive −
161 Diaporpyrone C − Inactive −
162 Diaporpyrone D − Inactive −
163 Diaporthichalasin G Diaporthe sp. SC-J0138 Inactive [29]

164 Phomopthane B D. unshiuensis YSP3 Inactive [30]

165 Phomopyrone B − Inactive [30]

Table 2. Secondary metabolites associated with marine origin.

No. Compound Producing Strain Active/Inactive Ref.

60 Cytochalasin H Diaporthe amygdali SgKB4,
Diaporthe sp. GZU-1021

Antibacterial, Anti-NO
production [49,55]

166 3-hydroxypropionic acid D. phaseolorum Antibacterial [50]

167 Diaporthelactone Diaporthe sp. Antifungal, Cytotoxic [51]

168 Isochromophilone G D. perseae Antibacterial,
Anti-inflammatory [52]

169 Isochromophilone A − Antibacterial,
Anti-inflammatory −

170 Isochromophilone B − Antibacterial,
Anti-inflammatory −

171 5-chloroisorotiorin − Antibacterial,
Anti-inflammatory −

172 epi-isochromophilone II D. perseae, Diaporthe sp. SCSIO
41011

Antibacterial, Cytotoxic,
Anti-inflammatory [52,57]

173 Isochromophilone III D. perseae Antibacterial,
Anti-inflammatory [52]

174 Penicilazaphilone D D. perseae Antibacterial,
Anti-inflammatory [52]

175 Pestalotiopsones F Diaporthe sp. SCSIO 41011 Anti-IAV [53]
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176 Pestalotiopsones B − Anti-IAV −

177
3,8-dihydroxy-6-methyl-9-oxo-
9Hxanthene-
1-carboxylate

− Anti-IAV −

178 Phomoxanthone A D. phaseolorum FS431 Cytotoxic [54]

179 Biatriosporin N Diaporthe sp. GZU-1021 Anti-NO production [55]

180 Penialidin A − Anti-NO production −

181 (−)-phomopsichin B Diaporthe sp. GZU-1021, D.
phaseolorum SKS019

Anti-NO production,
Antiosteoclastogenesis [55,56]

182 21-O-deacetyl-L-696,474 Diaporthe sp. GZU-1021 Anti-NO production [55]

183 (−)-phomopsichin A D. phaseolorum SKS019 Antiosteoclastogenesis [56]

184 (+)-phomopsichin A − Antiosteoclastogenesis −
185 (+)-phomopsichin B − Antiosteoclastogenesis −
186 Diaporchromanone C − Antiosteoclastogenesis −
187 Diaporchromanone D − Antiosteoclastogenesis −
188 Isochromophilone D Diaporthe sp. SCSIO 41011 Cytotoxic [57]

189 Diaporisoindole A Diaporthe sp. SYSU-HQ3 Cytotoxic [58]

190 Tenellone C − Cytotoxic −
191 Diaporindene A Diaporthe sp. SYSU-HQ3 Anti-inflammatory [59]

192 Diaporindene B − Anti-inflammatory −
193 Diaporindene C − Anti-inflammatory −
194 Diaporindene D − Anti-inflammatory −
195 Isoprenylisobenzofuran A − Anti-inflammatory −
196 Diaporisoindole D − Anti-inflammatory −
197 Diaporisoindole E − Anti-inflammatory −
198 Tenellone D − Anti-inflammatory −
199 Cordysinin A D. arecae Antiangiogenic [60]

200 5-deoxybostrycoidin D. phaseolorum SKS019 Cytotoxic [61]

201 Fusaristatin A − Cytotoxic −
202 Phomopsin F D. toxica Cytotoxic [62]

203 Longidiacid A Diaporthe longicolla FS429 Enzymatic activity [63]

204 Longichalasin B − Enzymatic activity −
205 Diaporpenoid A Diaporthe sp. QYM12 Anti-inflammatory [64]

206 Diaporpyrone A − Anti-inflammatory −
207 Secocurvularin Diaporthe sp. SCSIO 41011 Inactive [53]

208 Pestalotiopsone H − Inactive −
209 Pestalotiopsone A − Inactive −
210 (±)-microsphaerophthalide H − Inactive −
211 Microsphaerophthalide I − Inactive −

212 5-hydroxy-7-methoxy-4,6-
dimethylphthalide − Inactive −

213 Dihydrovermistatin − Inactive −
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No. Compound Producing Strain Active/Inactive Ref.

214 Methyl convolvulopyrone − Inactive −
215 Sclerotinin A (a) − Inactive −
216 Sclerotinin A (b) − Inactive −

217 3,5-dimethyl-8-hydroxy-3,4-
dihydroisocoumarin − Inactive −

218 3,5-dimethyl-8-methoxy-3,4-
dihydroisocoumarin − Inactive −

219 methyl 8-hydroxy-6-methyl-9-oxo-
9Hxanthene-1-carboxylate − Inactive −

220 Pinselin − Inactive −
221 7-hydroxy-2,5-dimethylchromone − Inactive −
222 Phaseolorin G D. phaseolorum FS431 Inactive [54]

223 Phaseolorin H − Inactive −
224 Phaseolorin I − Inactive −
225 Dicerandrol B − Inactive −

226 2,20,60-trihydroxy-4-methyl-6-methoxy-
acyl-diphenylmethanone − Inactive −

227 Diaporchromanone A D. phaseolorum SKS019 Inactive [56]

228 Diaporchromanone B − Inactive −
229 (±)-diaporchromone A − Inactive −
230 Isochromophilone C Diaporthe sp. SCSIO 41011 Inactive [57]

231 Isochromophilone E − Inactive −
232 Isochromophilone F − Inactive −
233 epi-isochromophilone III − Inactive −

234 6-((1E,3E)-3,5-dimethylhepta-1,3-dien-1-
yl)-2,4-dihydroxy-3-methylbenzaldehyde − Inactive −

235 (2E,4E)-1-(2,6-dihydroxy-3,5-
dimethylphenyl)hexa-2,4-dien-1-one) − Inactive −

236 Diaporisoindole B Diaporthe sp. SYSUHQ3 Inactive [58]

237 Diaporisoindole C − Inactive −
238 Arecine D. arecae Inactive [60]

239 Cyclo(L-Thr-L-Pro) − Inactive −
240 Cyclo(6-hydroxy-Pro-L-Leu) − Inactive −
241 Cyclo(L-Val-L- Pro) − Inactive −
242 Bacillusamide B − Inactive −
243 Cyclo(L-Leu-L-Pro) − Inactive −
244 Cyclo(L-Val-L-Ala) − Inactive −
245 Cyclo(L-Leu-L-Ala) − Inactive −
246 Cyclo(L-Ile-L-Ala) − Inactive −
247 Cyclo(Gly-L-Val) − Inactive −
248 Cyclo(Gly-L-Leu) − Inactive −
249 Cyclo(Gly-L-Ile) − Inactive −



J. Fungi 2023, 9, 453 22 of 28

Table 2. Cont.

No. Compound Producing Strain Active/Inactive Ref.

250 Cyclo(L-Ile-D-Pro) − Inactive −
251 Staphyloamide A − Inactive −
252 Cyclo(L-Ala-L-Pro) − Inactive −
253 Cyclo(L-Ser-L-Pro) − Inactive −
254 Cyclo(L-Trp-L-Pro) − Inactive −
255 Cyclo(L-Tyr-L-Pro) − Inactive −
256 Cyclo(L-Phe-L-Ala) − Inactive −
257 Cyclo(L-Ser-L-Phe) − Inactive −
258 Cyclo(D-Tyr-L-Leu) − Inactive −
259 Cyclo(Gly-L-Trp) − Inactive −
260 Cyclo(L-Trp-L-Ser) − Inactive −
261 Diaporphasine A D. phaseolorum Inactive [61]

262 Diaporphasine B − Inactive −
263 Diaporphasine C − Inactive −
264 Diaporphasine D − Inactive −
265 Meyeroguilline C − Inactive −
266 Meyeroguilline D − Inactive −
267 Meyeroguilline A − Inactive −
268 Longidiacid B D. longicolla FS429 Inactive [63]

269 Longichromone A − Inactive −
270 Longiphthalidin A − Inactive −
271 Acetophthalidin − Inactive −
272 Longichalasin A − Inactive −
273 Cytochalasin J3 − Inactive −
274 Diaporpenoid B Diaporthe sp. QYM12 Inactive [64]

275 Diaporpenoid C − Inactive −

4. Analysis of Secondary Metabolite Biosynthetic Potential

Despite the numerous compounds isolated from Diaporthe species, recent advances in
genome sequencing and bioinformatics analysis indicate that the number of biosynthetic
gene clusters (BGCs) of SMs exceeds the number of SMs identified so far [65]. To fully
understand SMs’ biosynthetic potential, we used the “antibiotics and secondary metabolite
analysis shell–antiSMASH” tool to predict BGCs from the genomes of Diaporthe species
available in the NCBI database (National Center for Biotechnology Information, http://www.
ncbi.nlm.nih.gov/, accessed on 1 February 2023). A total of 19 species were analyzed, and
the antiSMASH 7 beta was applied using the “relaxed” detection strictness. As is shown
in Figure 12, most species encoded ~90 BGCs to 110 BGCs except for Diaporthe aspalathi
(46 BGCs) and Diaporthe helianthi (65 BGCs).

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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The BGCs were characterized as polyketide (PKSs), non-ribosomal peptides (NRPSs),
terpenes, hybrid PKS-NRPSs, ribosomally synthesized and post-translationally modified
peptides (RiPPs), and indole-related compounds. PKSs and NRPSs are the most abundant
BGCs of all species (Figure 12). Some BGCs show high similarity with known BGCs, and
their SMs are common to different species (Figure 13). A number of Diaporthe species
were predicted to synthesize alternariol, mellein, and nectriapyrone C, which were noted
for their phytotoxic and antimicrobial activities [66–68]. These metabolites may allow
organisms to inhibit competitors that occupy the same niches and facilitate invasion when
organisms are acting as phytopathogens. The BGCs of enniatin, ochratoxin A, and culmorin
are present in several Diaporthe genomes [69–71]. These compounds are described as
“emerging mytotoxins” and are mainly produced by the Fusarium species, which are wheat
pathogens. This indicates that not only the Fusarium, but also the Diaporthe strains can
produce contaminants in food and feed. Certain compounds with medicinal potential were
also observed. Clavaric acid is an inhibitor of FPTase and may be effective as an anticancer
agent in tumors [72]. FR901512 is an HMG-CoA reductase inhibitor that has the potential
to lower cholesterol and fat [73].
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5. Conclusions

This review highlights the potential of the secondary metabolites of the genus Diaporthe.
A total of 275 secondary metabolites associated with terrestrial and marine environments
have been isolated from this genus during the last twelve years. We can see in Figure 9
that of the 275 compounds reported, 153 (accounting for about 55% of the total) and
110 (about 41% of the total) were derived from terrestrial and marine origins, respectively,
and 12 (about 4%) were isolated in both environments. After the comprehensive literature
review, we found that active metabolites (56% and 34%, respectively) are less common than
inactive metabolites (45% and 66%, respectively) in terrestrial and marine environments.
Moreover, a total of 92 bioactive compounds (approximately 56%) were found in terrestrial
samples, while 42 (about 34%) were found in marine samples. Current studies suggest
that compounds with strong bioactivities could be used as potential drug candidates in the
future, but more in-depth studies are needed to explore the mechanisms involved. This
study also confirms the potential of terrestrial habitats for drug discovery and will help
researchers find novel natural, potent fungal products. Genomic analyses suggested that
Diaporthe species have great potential to produce more SMs. Therefore, future efforts should
be focused on activating these silent BGCs via various methods, such as changing fermen-
tation conditions, transcriptional regulation, using chemical elicitors, and heterologous
gene expression.
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