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Abstract: There is an increasing interest in determining the influence of global change on plant–
microorganism interactions. We review the results of experiments that evaluated the effects of the
global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant
symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants
and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon
dioxide levels and low temperatures differentially influenced the growth of plants and endophytes,
which could compromise the symbioses. Furthermore, we summarise the plant stage in which
the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone
and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just
a few of them. While only studied in response to ozone and drought, evidence showed that the
effects of these factors on symbiotic plants persisted trans-generationally. We also identified the
putative mechanisms that would explain the effects of the factors on plant–endophyte associations.
These mechanisms included the increased contents of reactive oxygen species and defence-related
phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we
describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects
of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants,
reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and
photosynthesis levels. Knowledge gaps regarding the effects of global change on plant–endophyte
associations were identified and discussed.

Keywords: climate change; endophyte; stress; symbiosis; phytohormone; ROS; antioxidant;
transgenerational effect

1. Introduction

Global change is dramatically altering natural ecosystems and biodiversity. The global
mean surface temperature is expected to increase by about 1.5 ◦C due to the elevated
emissions of greenhouse gases and pollutants such as CO2 and ozone [1]. Climate is
changing at local and regional scales, increasing the frequency and intensity of cold, heat,
drought, and flooding events [1,2]. Salt contents in soil are also increasing as consequence
of climate change and inadequate agricultural practices [3]. Evidence shows that the
environmental factors associated with global change influence different aspects of the
biology of plants including growth and reproduction [4]. Furthermore, the global change
factors are challenging the production of major world-wide crops such as wheat, rice, maize,
and soybean [5]. In natural and managed ecosystems, plants are normally associated with
beneficial microorganisms that promote growth and plant fitness [6,7]. Given their critical
role in plant fitness, there is an increasing interest to understand the effects of global
change factors on the interaction of plants with beneficial microorganisms [8,9]. It is
particularly interesting to determine if the global change factors alter the benefits conferred
by microorganisms to their hosts and the mechanisms that underlie these alterations [7,10].
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Plant–Epichloë associations are interesting symbioses to investigate the effects of global
change on plants that interact with beneficial microorganisms. Epichloë fungi form endo-
phytic associations with Pooideae grasses and inhabit intercellular spaces of green plant
tissues [11]. Most of these endophytes are maternally inherited by establishing mycelia in
mature seeds [12]. In these symbioses, the fitness of plants and endophytes are strongly
aligned since host plant reproduction and seed stage provide the opportunity for symbionts
to multiply and disperse [13]. Plants and vertically transmitted endophytes form mutu-
alistic associations. The success of these symbioses (measured as frequency of symbiotic
plants in populations) depends on both the net benefit conferred by endophytes on plants
and the efficiency of vertical transmission [14,15]. Epichloë endophytes confer multiple
benefits to their plant hosts, and the most documented is the antiherbivore protection
given by endophyte-derived alkaloids [16]. Epichloë endophytes also alter the levels of
phytohormones and induce the production of plant secondary metabolites that enhance
the host tolerance against abiotic and biotic stress factors [17,18]. Additionally, the endo-
phytes increase the contents of antioxidants in plants that help to mitigate the oxidative
damage triggered by environmental stress factors [19]. Despite all these benefits, plant–
Epichloë interactions can transiently turn into negative associations by either the action of
certain stress-triggered plant responses or the limitation of plant resources (i.e., endophyte-
symbiotic plants displaying lower fitness than their endophyte-free counterparts) [15,20].
As an expression of the context-dependent symbiosis outcome, global change factors are
likely to affect the persistence, distribution, and abundance of plant–endophyte symbiosis
in the near future.

The aim of this review is to describe some of the documented effects that global
change factors exert on plant–Epichloë symbioses. The factors considered in the present
work are carbon dioxide (CO2), ozone, heat, cold, drought, flooding, and salinity. Most,
but not all, of the listed factors can generate stress and growth reductions in plants. For
instance, within certain range, the environmental temperature can stimulate the growth
of plants [21]. The factors were selected due to their recognised effects on plant fitness
and the available information in the plant–endophyte literature [22,23]. We summarised
published results showing the effects of the selected global change factors on plant–Epichloë
associations, and identified the putative mechanisms that would explain the effects of these
factors on the associations. Furthermore, we described the counteracting mechanisms by
which endophytes would mitigate the detrimental effects of the global change factors on
plants. For vertically transmitted endophytes, these mechanisms would be critical for their
persistence in individual plants and plant populations. Our study contributes to under-
standing the effects of global change factors on plants that interact with endophytes, the
specific mechanisms that explain these effects, and the endophyte-conferred mechanisms
that counteract and alleviate the negative effects.

2. Effects of Global Change Factors on Plant–Epichloë Associations

The environmental factors associated with global change affect distinct processes and
functions in both plants and endophytes across the plant life cycle. Since fungal hyphae
grow vegetatively in newly formed host seeds, the effects of global change factors on
symbiotic plants can be trans-generationally transmitted (Figure 1).

Multiple studies have shown that atmospheres with elevated CO2 levels influence
plant–Epichloë associations by affecting the plant/endophyte growth and fungal production
of alkaloids. High CO2 levels increased the biomass of Festuca arundinacea (Schreb.) (Syn.
Schedonorus arundinaceus) and Lolium perenne plants associated with endophytes, but the
greenhouse gas did not affect the production of reproductive tillers or seed in symbiotic
plants [24–26]. Similar beneficial effects of CO2 on plant growth were documented in
endophyte-symbiotic Brachypodium sylvaticum and L. perenne plants that grew in soils
with high nutrient contents [27,28]. Experimental results showing positive effects of CO2
on endophytes have been also reported. Elevated CO2 levels increased the amount of
endophyte mycelial biomass in F. arundinacea [29]. Furthermore, an increased frequency
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of endophyte-symbiotic plants was documented in F. arundinacea populations that were
exposed for several years to high CO2 levels [30]. Only a few experimental results have
shown negative effects of the greenhouse gas on plant–endophyte associations. Elevated
CO2 levels reduced the fungal production of alkaloids and eased the endophyte-based
plant growth promotion in the same plant species [29–31].

Tropospheric ozone influences plant–Epichloë associations by affecting host morpho-
physiological traits and the endophyte persistence within plants and populations. Irrespec-
tive of the plant symbiotic status, high ozone levels reduced the photochemical efficiency
and leaf greenness in L. multiflorum plants, but the oxidative damage induced by the
pollutant was generally lower in endophyte-symbiotic than non-symbiotic plants [32,33].
The symbiosis increased the survival of seedlings under elevated ozone levels, but the
pollutant reduced the reproductive effort of symbiotic plants (the ratio between repro-
ductive and shoot biomass) [32–34]. Reduced seed longevity was also documented in
endophyte-symbiotic plants that grew in environments with high ozone levels [35,36].
While ozone did not affect the transmission efficiency of endophytes from plant to seed, the
viability of the fungus declined at a faster rate in seed produced by plants exposed to the
pollutant [32,35]. Ozone did not affect either the concentration of alkaloids nor the biomass
of fungal mycelia within plant green tissues or seed [32,34]. Despite the lack of effect of the
ozone on alkaloids, the level of resistance to herbivores in symbiotic plants was reduced by
the pollutant, and this effect persisted in the next plant generation [34,37,38].

Cool and warm temperatures affect plant–Epichloë associations by altering the plant/
endophyte growth and fungal production of alkaloids. Cool temperatures reduced the
growth of grasses associated with endophytes [39]. Low temperatures also reduced the
endophyte mycelial biomass and alkaloid concentrations in F. arundinacea, L. perenne,
and L. multiflorum [40–43]. Furthermore, low temperatures diminished the frequency of
endophyte-symbiotic plants in F. arundinacea populations [39]. This stress also decreased the
concentration of alkaloids within plants and compromised the endophyte-based resistance
to insects [42,44]. In opposition to low temperatures, the fitness of endophyte-symbiotic
plants was generally increased by treatments with warm temperatures. In F. arundinacea,
the warm temperature stimulated biomass production more in endophyte-symbiotic than
endophyte-free plants [45]. Moreover, enhanced concentrations of certain endophyte-
derived alkaloids were documented in F. arundinacea and L. perenne plants grown in warm
temperatures [45–48], but see [40]. In field experiments, concentrations of endophyte-
derived alkaloids were positively correlated with the environmental temperature experi-
enced by plants [49,50]. Furthermore, the endophyte-mediated promotion in the number
of plant flowerheads was apparently influenced by the variation in the temperature in
conjunction with other environmental variables in the field (e.g., soil nutrient contents,
water availability) [51]. High temperatures usually exert negative effects on the endophyte
presence in seeds. The endophyte viability in seed is usually reduced in environments that
combine elevated temperature and moderated to high relative humidity [52]. For example,
endophytes were not viable when seed were exposed for 100 days to 40 ◦C and 43% of
relative humidity (while the seed were 100% viable) [53].

Multiple studies have evaluated the effects of drought on plant–Epichloë associations.
The general pattern is that endophytes increase the survival and stimulate the growth of
plants subjected to this stress [18,54,55]. For instance, the endophyte presence increased the
tillering of F. arundinacea plants under drought [56]. Similarly, the endophyte also stimu-
lated the growth (and photosynthesis rate) of Achnatherum inebrians plants that experienced
water restriction [57]. In the case of L. multiflorum, symbiotic plants exhibited high water
use efficiency and root conductivity under drought, but plant growth was not affected
by the fungus [58]. In addition to the effects on plants, drought generally increased the
concentration of endophyte-derived anti-herbivore alkaloids [56,59,60]. The endophyte
presence also influenced the host seed production in certain genotypes of L. perenne in
drought situations [61]. Few experiments have shown negative effects of endophytes on
plants subjected to drought. For example, reduced water availability inhibited the germina-
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tion of endophyte-symbiotic seeds more than non-symbiotic seeds [62]. These effects vary
in their magnitude—but seemingly not direction—depending on the species/genotypes
of both the plants and endophytes [18,63]. Furthermore, the magnitude of the benefits
conferred by Epichloë endophytes to plants in drought situations also depends on maternal
effects in the host plants [64].

Compared to drought, the effects of Epichloë on plants experiencing flooding stress
have been less well documented. This may be due to the fact that early experimental results
did not find that the endophyte presence provided advantages to plants that experienced
flooding (see [65]). Another reason could be that most of the early research was performed
on plant species/genotypes that are already somewhat flood-tolerant (i.e., F. arundinacea
and L. perenne) [66]. However, more recent investigations have shown that distinct plant–
endophyte combinations behave differently in the presence of flooding. For instance, the en-
dophyte enhanced the growth and leaf water contents in certain genotypes of F. arundinacea
plants that experienced the stress [67]. Furthermore, Hordeum brevisubulatum plants natu-
rally associated with endophytes showed higher foliar biomass than their non-symbiotic
counterparts grown in soils with excess water [68]. A similar result was documented in
distinct ecotypes of Festuca sinensis, where endophyte-symbiotic plants accumulated more
biomass under flooding conditions than endophyte-free plants [69]. Less common are
experimental results showing negative effects of this stress on endophyte-symbiotic plants.
Reduced foliar biomass and seed production was documented in endophyte-symbiotic
Poa leptocoma plants in flooding conditions [70]. However, the incidence of endophyte-
symbiotic plants in the population was high, suggesting that other endophyte-derived
benefits outweighed this apparent cost [71].

Epichloë endophytes generally increased the biomass and seed production of plants
grown in soils with high salinity contents [72–76]. Furthermore, the endophyte also en-
hanced the survival and germination of seeds that experienced high salinity [77,78]. High
salinity also increased the concentration of endophyte alkaloids and mycelial biomass
within plant tissues [59,79].
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The top diagram shows plant and endophyte lifecycles. The plant lifecycle is divided into mothers
(stages vegetative or reproductive), seeds, and daughters (at any stage). The endophyte lifecycle
shows the presence of the fungus within tissues of mother, seed, and daughter plants and the fungal
transmission from mothers to seeds and seeds to daughters (with horizontal black arrows). The
‘transgenerational effect’ refers to those effects exerted by the factors on mothers that persist in
the progeny (seeds and/or daughters). The 3 indicates the existence of studies that evaluated
the effects of a given factor on the performance of plant hosts or endophytes in a particular plant
lifecycle stage, whereas the 5 indicates a lack of studies. Plant performance refers to growth,
reproduction, or survival, and endophyte performance to growth, alkaloid production, survival,
transmission, or frequency in plant populations. The global change factors were not necessarily
applied at the same plant stage that the plant performance was measured (e.g., factor applied at
seedling stage, but performance measured at reproductive stage). The column ‘References’ refers
to articles that contain experimental results associated with the effects of the factors carbon dioxide
(CO2), ozone (O3), cold and heat/warm temperatures, drought, flooding, and salinity on plant–
endophyte symbioses [18,25,29,32,37,42,51,53,64,68,70,74,79].

3. Mechanisms Underlying the Effects of Global Change Factors on
Plant–Epichloë Associations

The environmental factors associated with global change induce certain plant re-
sponses that may affect the presence of Epichloë endophytes and their derived benefits in
plants (Figure 2).
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Figure 2. Mechanisms by which global change factors stimulate or inhibit endophyte fungi in plants
and fungal mechanisms that counteract the negative effects. Certain factors increase the contents of
carbon (C)-based primary metabolites that stimulate the endophyte growth in plants. Opposite to
this, some factors enhance the amount of reactive oxygen species (ROS), defence-related hormones,
and stress-related hormones, reduce photosynthesis levels, and diminish the contents of nitrogen
(N)-based primary metabolites and nutrients that inhibit the growth of endophytes in plants and
the fungal provision of benefits. Endophytes increase the contents of ROS-scavenging antioxidants,
reduce the levels of defence-related hormones, induce photosynthesis, stimulate the plant acquisition
of nutrients, and produce (or induce the plant production of) protective metabolites (e.g., dehydrin,
mannitol) that potentially counteract/alleviate the detrimental effects of the factors. Arrows indicate
positive regulation and truncated lines negative regulation. Black connectors show the effects of
factors and plant processes on plants and endophytes. Red connectors denote endophyte effects on
plant processes and plant-factor interactions. Endophyte-based metabolites are highlighted in red.
The question mark indicates a putative endophyte regulation. The factors are carbon dioxide (CO2),
ozone (O3), cold and heat/warm temperatures, drought, flooding, and salinity. Abbreviations: H2O2,
hydrogen peroxide; ·OH, hydroxyl radical; SA, salicylic acid; JA, jasmonic acid; ABA, abscisic acid;
P, phosphorus.
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Grasses hosting Epichloë endophytes are C3 species, and it is well documented that
elevated CO2 levels stimulate the growth and photosynthesis of these species [80,81].
Higher concentrations of non-structural and soluble carbohydrates have been generally
reported in C3 plants exposed to elevated CO2 levels [82]. This CO2-induced increase in
carbohydrate contents may explain the documented growth stimulation observed in both
plants and endophytes [29]. Concentrations of nitrogen compounds are usually reduced in
plants grown in environments enriched with CO2 [81,82]. Since alkaloids are nitrogen-based
compounds, low concentrations of endophyte-derived alkaloids reported in plants exposed
to high CO2 levels could be explained by reduced nitrogen contents [29,83]. However,
despite that the CO2 reduced the concentration of endophytic alkaloids, the fungus still
conferred protection to the plant hosts against aphids [84]. A possible explanation for
this outcome could be that the reduced alkaloid levels were still above the bioactivity
thresholds [85]. Alternatively, CO2 could have reduced the quality and palatability of
tissues or stimulated the accumulation of other compounds with anti-herbivory effects.
In fact, plants grown in environments with elevated CO2 levels generally showed high
concentrations of antiherbivore phenolic compounds [82].

The increased concentrations of reactive oxygen species (ROS) in plants triggered by
ozone may explain, at least in part, the negative effects of this stress on plant–Epichloë
associations [19,20]. ROS at high levels damage DNA, lipids, and proteins which can
lead to cell death [86]. In addition to the oxidative damage on plants caused directly
by ozone, altered ROS levels reduce the growth of endophytes within plant tissues [87].
Endophytes with mutations in enzymes that produce or regulate the production of ROS
exhibited unrestricted growth within plant tissues but caused stunted and sometimes lethal
phenotypes in their hosts [87,88]. ROS might also limit the distribution of endophyte
mycelia within plant tissues due to their effects strengthening plant cell walls [89]. Ozone
can also increase the levels of defence-related phytohormones such as salicylic acid and
jasmonic acid [90]. These hormones negatively affect fungal endophytes since they induce
the production of antimicrobial compounds by plants, deposition of callose in plant cell
walls (that block the spread of the fungus), and programmed cell death [91–94].

Temperature stresses including both cold and heat increase the levels of ROS and
cause oxidative damage in plant tissues [95]. The inhibition in endophyte growth docu-
mented in situations of temperature stress may be associated with increased ROS levels [42].
The defence-related phytohormone salicylic acid is also stimulated in situations of tem-
perature stress [95]. This hormone affected the endophyte provision of benefits to plant
hosts. The exogenous application of salicylic acid on plants reduced the concentration of
fungal-derived alkaloids and promoted susceptibility of symbiotic plants against insect
herbivores [96,97]. Another documented effect of low temperatures in plants is the reduced
photosynthetic rate [98]. Variations in photosynthate levels, due to reduced photosynthesis,
could also explain the documented changes in endophyte growth and alkaloid production
within plants [43,45]. Alkaloid concentrations may also be affected by temperature-based
changes in the kinetics of biosynthesis and degradation [99]. Furthermore, differences
between plant and endophyte may explain the effects of the stress on the fungal growth
and alkaloid production. For instance, F. arundinacea plants presented lower minimum
cardinal temperatures than their associated endophytes (i.e., the lowest temperature at
which an organism can grow) which suggests that at low temperatures, both fungal mycelia
and alkaloids may be ‘diluted’ within plant tissues since only plants have maintained the
growth [39].

The drought tolerance conferred by endophytes to plant hosts has been well-studied
and excellent reviews have summarised and discussed the mechanisms [18,54,55]. Drought
usually increases ROS levels, induces defence-related phytohormone responses, and re-
duces chlorophyl content in plants [100,101]. Similar to other stresses, Epichloë endophytes
might be negatively affected by these plant responses. It is worth mentioning that the
magnitude of the effects of the water deficit on plant–endophyte associations depends on
the intensity and length of the event [63]. As indicated, results from short-term drought
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experiments showed that endophyte-symbiotic plants have a clear advantage in terms
of plant performance over the non-symbiotic ones [18]. However, evidence from field
surveys suggested that the plant capacity to host endophytes was impaired under extreme
aridity [102,103].

Excess water in the soil causes hypoxia/anoxia in plant roots [104]. Although Epichloë
endophytes are not found in roots, the negative consequences of flooding on host perfor-
mance are likely to impair the symbiosis. Reduced chlorophyll contents, inhibited photo-
synthesis, and increased leaf senescence are some consequences of flooding on plants [105].
Furthermore, ethylene and ROS are generally accumulated within tissues when plants
are subjected to flooding [106]. The reduction in photosynthesis rate may decrease the
endophyte growth within plant tissues. Additionally, the fungal growth may be altered
by the increased levels of ROS and phytohormones. Whereas no studies have evaluated
the effects of flooding on the endophyte growth or its derived benefits, evidence from field
studies suggest that the endophyte performance may be compromised under excess of
water. For instance, a field survey found that L. multiflorum plants occurring in humid
prairies recurrently subjected to flooding showed low endophyte transmission from plants
to seed [107].

Salinity stress also increases the ROS levels in plants [108]. Similar to other stresses,
altered ROS levels under salt stress may affect the growth of Epichloë endophytes [88,89].
The phytohormone jasmonic acid is increased in salt stress, and the induction of the
defence responses associated with this hormone negatively affected the endophyte-derived
benefits [109]. For instance, the exogenous application of methyl jasmonate (an activator
of jasmonic acid defence responses) on symbiotic plants reduced the concentration of
alkaloids and increased the susceptibility of these plants against insects [110]. Salt stress
reduced the photosynthesis and photosynthates contents in plants and this reduction might
also be detrimental for the endophyte growth [72,73]. The soil salinity reduced the plant
acquisition of nutrients such as nitrogen and phosphorus, and low levels of these nutrients
in plants can alter the endophyte growth and production of alkaloids [29,111,112]. Salt
stress associated with sodium produced water deficit (due to the excessive accumulation
of sodium anions within plant cells) and reduced the uptake and transport of essential
ions (e.g., potassium, calcium) [113]. There is a lack of evidence showing whether the
salt-mediated water deficit and altered ion exchange directly affect endophytes. Further
experiments might explore this possibility.

4. Endophyte-Based Mechanisms of Plant Protection against Global Change Factors

Epichloë endophytes confer certain stress-protective mechanisms to plant hosts that
may counteract the detrimental effects of the environmental factors associated with global
change (Figure 2).

Epichloë endophytes can enhance the antioxidant contents in plants [19]. Antioxidants
efficiently scavenge ROS and include several enzymatic and non-enzymatic compounds
such as superoxide dismutase, catalase, peroxidases, glutathione, ascorbic acid, and pro-
line [114,115]. In an experiment that included ozone as a treatment, the endophyte presence
increased the content of proline antioxidants in plants, and this was associated with reduced
levels of oxidate damage [116]. Similarly, under drought stress, endophytes reduced the
oxidative stress in plants which was correlated with increased concentrations of several
antioxidants [117]. The levels of the polyol mannitol, which can be produced by endo-
phytes, were elevated in symbiotic plants that were subjected to drought stress [56,118].
The accumulation of mannitol (and also Epichloë-derived alkaloids) in drought situations
may reduce the osmotic potential in plants and prevent the dehydration of cells [56]. Re-
garding flooding, endophytes increased the concentration of proline antioxidants in H.
brevisubulatum plants, which was linked with low levels of oxidative stress [68]. Similar
endophyte-mediated increases in proline levels were reported in certain genotypes of F.
arundinacea plants subjected to the same stress [67]. In saline soils, the antioxidant capacity
of H. brevisubulatum plants was enhanced by the endophyte presence [72].



J. Fungi 2023, 9, 446 8 of 15

Epichloë can reduce the concentration of defence-related hormones in plants. This
reduction may prevent the induction of plant defence responses that inhibit the presence of
endophytes within plant tissues [16]. As mentioned, plant defence responses associated
with salicylic acid and jasmonic acid hormones are induced by global change stresses includ-
ing ozone, temperature, and salinity (see for instance [90,95]). Experimental results have
shown that Epichloë endophytes manipulate the concentrations of these phytohormones
in the presence and absence of stresses. For instance, absent of any stress, endophytes
reduced the concentration of salicylic acid in L. multiflorum plants [97,119]. Similarly, in the
presence of stress, endophytes reduced the concentration of jasmonic acid and supressed
part of the associated signalling pathway in A. inebrians plants [93]. Similar suppression of
defence-related phytohormones by beneficial microorganisms have been documented in
other symbiotic systems such as that between plants and mycorrhizal fungi [120,121]. The
study of the interaction between Epichloë endophytes and stress-protective hormones has
commenced. Drought stress increased the levels of the stress-protective hormone abscisic
acid in endophyte-symbiotic F. arundinacea plants (although endophyte-free plants were
not included in this study) [122]. Furthermore, an exogenous application of this hormone
on A. inebrians plants increased the observed endophyte-mediated plant growth promotion
in the presence of drought [123].

In the absence of stress, Epichloë endophytes induce multiple molecular changes in
their hosts that may render plants sensitive or tolerant to global change stresses. In L.
perenne, endophytes increased the expression of genes involved in cold/heat responses
that changed the perception of plants to temperature stresses. In the latter study, the
fungus also increased the expression of plant genes associated with the biosynthesis of
raffinose oligosaccharides, which are temperature-protective metabolites [91]. The antioxi-
dant contents in plants were also increased by endophytes in the absence of stress [124].
Furthermore, endophytes enhanced the levels of photosynthesis and upregulated sev-
eral genes associated with this function in A. inebrians plants that were not exposed to
stress [57]. In the presence of stress, Epichloë can induce certain responses that may help
alleviate (perhaps quickly) the detrimental effects of global change stresses. In response
to cold stress, endophytes increased the expression of genes coding for phytochrome and
ethylene receptor proteins that are involved in the acclimatization of plants to low tem-
peratures [125]. Under drought stress, endophyte presence stimulated the expression of
plant genes coding for dehydrin and heat shock proteins that are known to prevent the
cellular damage caused by stresses [126–128]. Furthermore, photosynthesis levels and the
expression of several genes associated with the photosynthesis process were increased by
the endophyte presence in A. inebrians plants in response to drought stress [57]. Similar
outcomes in photosynthesis rates were reported in H. brevisubulatum plants that grew in soil
with high salt contents [72]. In this species, endophytes also reduced the plant uptake of
sodium ions and improved the plant endowment of nitrogen, phosphorus, and potassium
in salt stress situations [72,112]. Similarly, the uptake of sodium (and chloride) ions by
F. arundinacea and Festuca pratensis plants subjected to salt stress were also decreased by their
associated Epichloë endophytes [129]. Furthermore, endophytes increased the diameter of
xylem and phloem cells in plants that experienced salt stress. These anatomical changes
were correlated with reduced levels of water loss in plants [113].

5. Concluding Remarks and Future Perspectives

We summarised evidence showing that environmental factors associated with global
change influenced plant–Epichloë symbioses through compromising plant and endophyte
traits and the symbiosis as well. Under the influence of global change factors, plant
responses were mostly positively regulated by endophytes. However, negative effects of
these factors were also documented. For example, combinations of high temperatures with
humidity were associated with reductions in endophyte viability in seeds. In other cases,
the incidence of environmental factors (e.g., ozone) impaired the benefits conferred by
endophytes to plants. Although most of the research has been performed at individual
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level with few examples at population level (Figure 1), it is likely that global change
factors exert substantial effects on the distribution and abundance of plant-endophyte
symbioses in nature. This is particularly clear in situations where the factors turn beneficial
symbioses into detrimental (i.e., parasitic) associations that eventually will be selected
against. Additionally, there is an increasing interest in understanding whether vertically
transmitted endophytes induce transgenerational effects on their plant hosts in the context
of global change [130]. This has been only investigated in relation to ozone and drought,
with no studies so far regarding other global change factors such as CO2, temperature,
flooding, or salinity (Figure 1). We need further long-term manipulative experiments to
determine, for instance, the effects of multiple and simultaneous global change factors
on both plants and endophytes at individual level, and in the dynamics of endophyte-
symbiotic plants.

We posited that the induction of certain plant responses by global change factors would
explain the effects of these factors on plant–Epichloë symbioses. These plant responses
included the enhanced contents of ROS/defence-related hormones, and reduced levels of
photosynthesis/nutrients (Figure 2). The direct effects of global change factors on Epichloë
endophytes have been rarely studied. This may be because endophytes that are exclusively
vertically transmitted do not present growth stages outside plants, thus the effects of
environmental factors on the fungus cannot be easily separated from the effects on plants.
However, the evaluation of endophyte transcriptomes and gene-edited endophytes are
interesting approaches to improve the understanding of the direct effects the global change
factors on the fungus [131,132]. We described the mechanisms by which endophytes may
counteract the detrimental effects of the global change factors. These mechanisms included
the endophyte ability to increase the plant antioxidant contents, reduce defence-related
phytohormone concentrations, and increase the photosynthesis rates and plant uptake
of nutrients (Figure 2). Further experiments will be necessary to evaluate if endophytes
can increase the levels of stress-related phytohormones [133]. Enhanced levels of these
hormones may increase the response symbiotic plants to stresses including those associated
with the global change [134].
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