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Abstract: Cryptomeria japonica D. Don is a coniferous tree species widely grown in southern China for
its high ornamental value. Recently, during disease surveys in China, a symptom of dieback occurred
on C. japonica in Nanjing, Jiangsu Province, China. A total of 130 trees were surveyed and more than
90% showed the same symptom. The crowns of affected trees were brown when viewing from a
distance, and the bark showed no difference from the healthy ones. In this study, 157 isolates were
isolated from the 3 affected plants of C. japonica, and based on the living culture on PDA, the fungal
isolates were preliminarily divided into 6 groups. Thirteen representative isolates were selected for
the pathogenicity test, and seven of them showed obvious pathogenicity on C. japonica, causing stem
basal canker. These isolates were identified based on comparisons of the DNA sequences of the
internal transcribed spacer regions (ITS), partial translation elongation factor 1-alpha (tef1), β-tubulin
(tub2), and DNA-directed RNA polymerase II subunit (rpb2) and combined with their morphological
characteristics. Results showed that these seven isolates belong to two taxa in Neofusicoccum, including
a species new to science. The new species, Neofusicoccum cryptomeriae, was hereby described and
illustrated. The other species was N. parvum. Both species were pathogens of stem basal canker of
Cryptomeria japonica.

Keywords: Cryptomeria japonica; Neofusicoccum; multi-locus phylogeny; new disease

1. Introduction

Cryptomeria is a monotypic genus of conifer in Cupressaceae, and its only species,
Cryptomeria japonica (Linn. f.) D. Don, Japanese cedar, is a monoecious coniferous tree
species native to Japan and has been introduced to Jiangsu, Guangxi, Shandong, Zhejiang,
and other provinces in China as an ornamental tree species and for lumber production [1,2].
Cryptomeria japonica has been introduced and cultivated in China for a millennium or more,
and some trees on Tianmu Mountain are estimated to be nearly 1000 years old, and the
oldest one, ca. 1500 years old [3,4]. It has been introduced to other countries: Azores
(Portugal), former Czechoslovakia, Føroyar (Denmark), Korea, Mauritius, New Zealand,
Réunion (France), Sweden, Turkey, and the UK [2].

Cryptomeria japonica has extensive application values. Its cones and unusual needles
have high aesthetic appeal. As an environmental-friendly tree, C. japonica showed a good
effect on the absorption of cesium [5,6]. Many studies have shown that the bark, core
material, and needles of C. japonica contain a variety of monoterpenoids, sesquiterpenes,
and diterpenoids [7]. These substances show a wide range of biological activities, such
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as antibacterial and insect resistance [8–10], and the hepatoprotective phytocompounds
from C. japonica have a potential function in inflammatory mediators [11]. In addition, as a
common timber species, C. japonica was widely used in the production of particleboard [12].
However, during the seedling stage and the afforestation process, C. japonica was often
attacked by many kinds of pathogenic fungi, causing a number of diseases, including the
trunk rot caused by Fomitiporia torreyae Y. C. Dai & B. K. Cui [13], leaf spots and new shoot
canker caused by Fusicoccum cryptomeriae Sawada [14], and the shoot blight caused by
Pestalotiopsis neglecta Thüm [15]. The occurrence of the disease has detrimentally affected
the ecological functions and economic value of C. japonica and restricted the development
of this species.

Neofusicoccum was proposed by Crous et al. in 2006 with the type species of Neofusic-
occum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips [16]. It belongs to
Botryosphaericeae, and the fungi of this family include various non-host-specific pathogens,
saprobes, endophytes, and potential pathogens [17]. In the past several years, diseases
caused by Neofusicoccum species were frequently reported in many countries. N. parvum
was reported as a pathogen of many plants, including the stem and branch blight disease
of Zanthoxylum bungeanum in Sichuan, China [18], nut rot of chestnut (Castanea sativa) in
Italy [19], and dieback and canker of hemp (Cannabis sativa L.) in the United States [20].
N. luteum (Pennycook & Samuels) Crous & al., N. batangarum Begoude & al., N. mangiferae
Syd. & P. Syd, and some other species in Neofusicoccum were also reported to relate to
some plant diseases [21–23]. Due to the similarity of morphological characteristics in
Neofusicoccum, some species were erroneously classified in the past. With the development
of phylogenetic analysis, many new species were found, and some known species were
reclassified. Five novel species (N. dianense G.Q. Li & S.F. Chen, N. magniconidium G.Q. Li
& S.F. Chen, N. ningerense G.Q. Li & S.F. Chen, N. parviconidium G.Q. Li & S.F. Chen) were
described by Li et al. [24]. In a recent taxonomic study of Botryosphaericeae, 11 species
in Neofusicoccum were reduced to synonymy, and 2 novel species, named N. podocarpi W.
Zhang & Crous and N. rapaneae W. Zhang & Crous, were described [25]. Since then, several
studies have been published and described a number of new taxa, such as Neofusicoccum
caryigenum M.T. Brewer & C.J. Cameron [26], Neofusicoccum sichuanense X. L. Xu & C. L.
Yang [27], N. hyperici Y. Hattori & C. Nakash, N. miyakoense Y. Hattori & C. Nakash, and
N. okinawaense Y. Hattori & C. Nakash [28], Neofusicoccum moracearum Tennakoon, C.H. Kuo
& K.D. Hyde [29], and Neofusicoccum mystacidii Crous [30]. At present, there are 52 species
of Neofusicoccum [25,27,28].

Recently, during disease surveys in Nanjing, Jiangsu Province, China, a new disease
of C. japonica was found. A total of 130 trees were surveyed and more than 90% showed
the same symptom of dieback of the stem and branch. It is different from the other
reported diseases of C. japonica. The infected plants showed an obvious distinction in
the conjunct area of healthy and infected parts, both in color and texture in the xylem
and the interior side of the bark. The occurrence of the disease seriously damaged the
ornamental value of C. japonica. The aims of this study were to: (1) test the pathogenicity
of representative isolates, and (2) determine the identities of the fungi causing stem basal
canker of C. japonica based on morphological characteristics and phylogenetic analyses and
describe a new fungal species, which is also pathogenic to C. japonica.

2. Materials and Methods
2.1. Sample Collection and Fungal Isolation

Disease surveys were conducted at Nanjing Forestry University from September to
October 2020. Approximately 50 bark pieces from the edges of both healthy and infected
trunks were collected from 3 symptomatic trees. The interior side of the bark was cut into
small pieces (3–5 mm2) using a sterile scalpel. The pieces were submerged in 75% ethanol
for 30 s and then in 1.5% NaClO for 90 s, washed 3 times in sterile water, blotted dry with
sterilized filter paper, and placed onto potato dextrose agar (PDA) with 100 µg/mL of
ampicillin (Nanjing Zebra Experimental Equipment Co., Ltd., Nanjing, China). Cultures
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were incubated at 25 ◦C in the dark for five days, and hyphae tips at the edge of the colony
were transferred to the new PDA plates.

2.2. Pathogenicity Tests

To determine the pathogenicity of the isolates on Cryptomeria japonica, the trunk of
two-year-old seedlings was wounded with a sterile scalpel to expose the cambium. The
wounds were located approximately 2 cm above the soil level. For inoculation, 5 mm plugs
were cut out from the growing edges of 5-day-old cultures placed into the wounds with
the mycelia facing the cambium, and then the inoculating site was wrapped with Parafilm.
Thirteen representative fungal isolates (G1, G2, G4, G11, G15, G16, G18, G23, G24, G74,
G91, G92, and C7) were used for inoculation, and 3 to 5 seedlings were inoculated with
each isolate. Five control seedlings were treated with sterile PDA agar using the same
aforementioned method [31]. All inoculated plants were kept in a greenhouse (relative
humidity > 80%, 25 ± 2 ◦C). The inoculated fungi were re-isolated as described above and
confirmed by both morphological characteristics and ITS sequence analysis.

2.3. Morphological Identification

After the pathogenicity experiment, seven pathogenic isolates were cultured on PDA
for seven days, and the colony color, texture, and pigment production of the isolates were
observed and recorded. To induce sporulation, the fungi were cultured on Petri dishes
containing synthetic nutrient-poor agar medium (SNA) or 2% tap water agar (WA) sup-
plemented with double autoclaved pine needles on their surface [32–34]. All colonies
were placed under near-ultraviolet light at 25 ◦C for 1–2 months. The morphology and
size of 30 pycnidia of each isolate were observed and recorded using a Zeiss stereomi-
croscope (SteRo Discovery v20). Relevant morphological characteristics were observed
and recorded using a Zeiss Axio Imager A2m microscope. The lengths, widths, and
shapes of 20 conidiophores, 20 conidiogenous cells, and 50 conidia of the 7 isolates were
measured [32].

2.4. DNA Extraction, PCR Amplification, and Sequencing

Total genomic DNA from isolates in this study was extracted from the fungal mycelia
of 7-day-old cultures using the cetyltrimethylammonium bromide (CTAB) protocol. Four
loci, including internal transcribed spacer (ITS), partial translation elongation factor 1-alpha
(tef1), partial β-tubulin (tub2), and partial DNA-directed RNA polymerase II subunit (rpb2),
were amplified with the primer pairs ITS1/ITS4 [35], EF1-728F/EF1-986R [36], BT-2a/BT-
2b [37], and RPB2bot6F/RPB-2bot7R [38,39], respectively. The polymerase chain reaction
consisted of 25 µL of Taq DNA polymerase mix, 2 µL of genomic DNA, 2 µL of each primer,
and 19 µL of double-distilled water. The amplification conditions consisted of an initial
denaturation step at 95 ◦C for 5 min, 34 cycles of 95 ◦C for 30 s, and annealing at a suitable
temperature for 30 s for each locus: 56 ◦C (ITS), 52 ◦C (tef1), 60 ◦C (tub2), and 55 ◦C (rpb2),
and then 72 ◦C for 30 s, followed by a final elongation step at 72 ◦C for 10 min and a
cool-down step to 4 ◦C. Primers were synthesized and PCR products were sequenced by
the Shanghai Jieli Biotechnology Co. Ltd., Nanjing, Jiangsu Province, China. All sequences
of the isolates from this study were deposited in GenBank (http://www.ncbi.nlm.nih.gov
(accessed on 28 July 2022)) (Table 1).

Table 1. Strains obtained in this study and downloaded from GenBank with accession numbers used
for phylogenetic analyses.

GenBank Accession Number

Species Isolate ITS c tef1 c tub2 c rpb2 c Reference

Neofusicoccum arbuti CBS 116131 a AY819720 KF531792 KF531793 KX464003 [32]
N. arbuti CBS 117090 AY819724 KF531791 KF531794 N/A [32]

N. australe CBS 110865 AY343408 KX464661 KX464937 KX464005 [40]

http://www.ncbi.nlm.nih.gov
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Table 1. Cont.

GenBank Accession Number

Species Isolate ITS c tef1 c tub2 c rpb2 c Reference

N. australe CMW 6837 a AY339262 AY339270 AY339254 EU339573 [40]
N. batangarum CBS 124923 FJ900608 FJ900654 FJ900635 FJ900616 [41]

N. batangarum CBS 124924 a FJ900607 FJ900653 FJ900634 FJ900615 [41]
N. brasiliense CMM 1285 JX513628 JX513608 KC794030 N/A [42]

N. brasiliense CMM 1338 a JX513630 JX513610 KC794031 N/A [42]
N. buxi CBS 113714 KX464164 KX464677 KX464954 KX464009 [40]
N. buxi CBS 116.75 a KX464165 KX464678 N/A KX464010 [40]

N.caryigenum CBS 146964 a MW405114 MW393657 MW393679 MW393668 [26]
N. cordaticola CBS 123634 a EU821898 EU821868 EU821838 EU821928 [38]
N. cordaticola CBS 123635 EU821903 EU821873 EU821843 EU821933 [38]

N. cryptoaustrale CMW 23785 a FJ752742 FJ752713 FJ752756 KX464014 [40]
N. cryptomeriae G24 = CFCC 55721 a,b ON209700 OP056461 OP056458 OP056455 this study
N. cryptomeriae G1 = CFCC 55720 b ON209698 OP056459 OP056456 OP056453 this study
N. cryptomeriae G2 = CFCC 55728 b ON209699 OP056460 OP056457 OP056454 this study

N. eucalypticola CBS 115679 a AY615141 AY615133 AY615125 N/A [43]
N. eucalypticola CBS 115766 AY615143 AY615135 AY615127 N/A [43]

N. eucalyptorum CBS 115791 a AF283686 AY236891 AY236920 N/A [44]
N. eucalyptorum CMW 10126 AF283687 AY236892 AY236921 N/A [44]

N. grevilleae CBS 129518 a JF951137 N/A N/A N/A [45]
N. hellenicum CERC1947 a KP217053 KP217061 KP217069 N/A [46]
N. hellenicum CERC1948 KP217054 KP217062 KP217070 N/A [46]

N. hongkongense CERC2968 KX278051 KX278156 KX278260 KX278282 [17]
N. hongkongense CERC2973 a KX278052 KX278157 KX278261 KX278283 [17]

N. hyperici MUCC 241 a LC589125 LC589137 LC589147 LC589160 [28]
N. hyperici MUCC 2509 LC589126 LC589138 LC589148 LC589161 [28]
N. illicii CGMCC 3.18310 a KY350149 N/A KY350155 N/A [34]
N. illicii CGMCC 3.18311 KY350150 KY817756 KY350156 N/A [34]

N. kwambonambiense CBS 123639 EU821900 EU821870 EU821840 EU821930 [38]
N. kwambonambiense CBS 123641 EU821919 EU821889 EU821859 EU821949 [38]

N. lumnitzerae CMW 41228 KP860882 KP860725 KP860803 KU587926 [47]
N. lumnitzerae CMW 41469 a KP860881 KP860724 KP860801 KU587925 [47]

N. luteum CBS 562.92 a KX464170 KX464690 KX464968 KX464020 [40]
N. macroclavatum CBS 118223 a DQ093196 DQ093217 DQ093206 KX464022 [48]
N. magniconidium CSF5875 MT028611 MT028777 MT028943 MT029084 [24]

N. magniconidium CSF5876 a MT028612 MT028778 MT028944 MT029085 [24]
N. mangiferae CBS 118531 a AY615185 DQ093221 AY615172 N/A [48]
N. mangiferae CBS 118532 AY615186 DQ093220 AY615173 KX464023 [48]

N. mediterraneum CBS 121718 a GU251176 GU251308 GU251836 KX464024 [49]
N. microconidium CERC3497 a KX278053 KX278158 KX278262 MF410203 [17]
N. microconidium CERC3498 KX278054 KX278159 KX278263 MF410204 [17]
N. miyakoense MUCC 2585 a N/A LC589146 LC589157 LC589170 [28]
N. miyakoense MUCC 2586 LC589133 LC589144 LC589155 LC589168 [28]

N. moracearium MELU 19-2758 a NR174834 MW183808 N/A N/A [29]
N. moracearium MFLU 19-0316 MW063187 MW183809 N/A N/A [29]
N. mystacidii CBS 147079 a NR173012 MW890094 MW890133 MW890065 [30]
N. ningerense CSF6028 MT028613 MT028779 MT028945 MT029086 [24]
N. ningerense CSF6030 MT028614 MT028780 MT028946 MT029087 [24]

N. nonquaesitum CBS 126655 a GU251163 GU251295 GU251823 KX464025 [49]
N. nonquaesitum PD 301 GU251164 GU251296 GU251824 N/A [49]

N. occulatum CBS 128008 a EU301030 EU339509 EU339472 EU339558 [39]
N. occulatum MUCC 286 EU736947 EU339511 EU339474 EU339560 [39]

N. okinawaense MUCC 789 a LC589134 LC589145 LC589156 LC589169 [28]
N. parviconidium CSF5667 a MT028615 MT028781 MT028947 MT029088 [24]
N. parviconidium CSF5677 MT028619 MT028785 MT028951 MT029092 [24]

N. parvum ATCC 58191 a AY236943 AY236888 AY236917 EU821963 [44]
N. parvum CMW 9080 AY236942 AY236887 AY236916 EU821962 [44]
N. parvum G15 = CFCC 55724 b ON209685 OP095379 OP095383 OP095387 this study
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Table 1. Cont.

GenBank Accession Number

Species Isolate ITS c tef1 c tub2 c rpb2 c Reference

N. parvum G16 = CFCC 55718 b ON209686 OP095380 OP095384 OP095388 this study
N. parvum G91 = CFCC 55719 b ON209687 OP095381 OP095385 OP095389 this study
N. parvum G92 = CFCC 55723 b ON209688 OP095382 OP095386 OP095390 this study

N. pennatisporum WAC 13153 a NR136987 EF591976 EF591959 N/A [50]
N. pistaciae CBS 595.76 a KX464163 KX464676 KX464953 KX464008 [40]
N. podocarpi CBS 115065 MT587507 MT592222 MT592714 MT592411 [25]

N. podocarpi CBS 131677 a MT587508 MT592223 MT592715 MT592412 [25]
N. protearum CBS 114176 a AF452539 KX464720 KX465006 KX464029 [40]
N. rapaneae CBS 145973 a MT587511 MT592226 MT592718 MT592415 [25]
N. rapaneae CPC 32578 MT587512 MT592227 MT592719 MT592416 [25]

N. ribis CBS 114306 MT587514 MT592229 MT592721 MT592418 [25]
N. ribis CBS 115475 a AY236935 AY236877 AY236906 EU821958 [25]

N. sichuanense SICAUCC22-0099 a OP058990 OP066336 OP066363 OP066355 [27]
N. sichuanense SICAUCC22-0093 OP058984 OP066333 OP066357 OP066349 [27]

N. sinense CGMCC 3.18315 a KY350148 KY817755 KY350154 N/A [34]
N. sinoeucalypti CERC2005 a KX278061 KX278166 KX278270 KX278290 [17]
N. sinoeucalypti CERC3416 KX278064 KX278169 KX278273 KX278293 [17]

N. stellenboschiana CBS 110864 a AY343407 AY343348 KX465047 KX464042 [40]
N. terminaliae CBS 125263 a GQ471802 GQ471780 KX465052 KX464045 [40]
N. terminaliae CBS 125264 GQ471804 GQ471782 KX465053 KX464046 [40]

N. umdonicola CBS 123645 a EU821904 EU821874 EU821844 EU821934 [40]
N. umdonicola CBS 123646 EU821905 EU821875 EU821845 EU821935 [40]

N. ursorum CMW 23790 FJ752745 FJ752708 KX465057 N/A [40]
N. ursorum CMW 24480 a FJ752746 FJ752709 KX465056 KX464047 [40]
N. variabile CMW 37739 a MH558608 N/A MH569153 N/A [51]
N. variabile CMW 37742 MH558609 MH576585 MH569154 N/A [51]

N. viticlavatum CBS 112878 a AY343381 AY343342 KX465058 KX464048 [32]
N. viticlavatum CBS 112977 AY343380 AY343341 KX465059 N/A [32]
N. vitifusiforme CBS 110880 AY343382 AY343344 KX465008 N/A [40]
N. vitifusiforme CBS 110887 AY343383 AY343343 KX465061 KX464049 [40]
N. yunnanense CSF6034 MT028672 MT028838 MT029004 MT029117 [24]
N. yunnanense CSF6142 a MT028667 MT028833 MT028999 MT029112 [24]
Botryosphaeria

dothidea CBS 115476 a AY236949 AY236898 AY236927 EU339577 [44]

a Ex-type cultures are shown in bold. b Isolates used in this study. c ITS, internal transcribed spacer; rpb2,
DNA-directed RNA polymerase II subunit; tef1, partial translation elongation factor 1-alpha gene; tub2, partial
beta-tubulin gene.

2.5. Phylogenetic Analyses

Initial identities of the isolates were determined using BLASTn of the NCBI GenBank
with sequences generated in this study. ITS, tef1, tub2, and rpb2 sequences of phylogeneti-
cally related Neofusicoccum species and Botryosphaeria dothidea (CBS 115476) as an outgroup
were obtained from GenBank (Table 1). The sequences of Neofusicoccum isolates obtained
during this study were aligned based on loci with reference sequences, respectively, in
PhyloSuite V1.2.2 using the ‘FFT-NS-2 (default)’ strategy and normal alignment mode
of MAFFT V7.313, and then edited manually where necessary [52,53]. Two phylogenetic
analyses were conducted using IQtree ver. 1.6.8 for the maximum likelihood (ML) analysis
and MrBayes 3.2.6 for Bayesian Inference (BI) analysis [54,55]. ModelFinder was used to
select the best-fit model for the multi-locus phylogenetic analyses [56]. For ML analysis,
with 1000 bootstrap replicates, we utilized the best-fit model: GTR + F + I + G4. For BI
analysis, we used the GTR + I + G + F model (2 parallel runs, 2,000,000 generations), in
which the initial 25% of sampled data were discarded as burn-in. All phylogenetic trees
were viewed using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/ (accessed
on 12 February 2023)).

http://tree.bio.ed.ac.uk/software/figtree/
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2.6. Genealogical Concordance Phylogenetic Species Recognition Analysis

The concatenated dataset (ITS, tef1, tub2, and rpb2) was used to analyze the new species,
their species limits, and their most closely related taxa, as described by Quaedvlieg et al. [57],
through the GCPSR concept with a PHI test performed in SplitsTree v.4.14.6. A PHI index
below 0.05 (Φw < 0.05) indicates the presence of significant recombination in the dataset. The
relationships between this new taxon and closely related species were visualized in splits
graphs with both the LogDet transformation and splits decomposition options.

3. Results
3.1. Symptoms in the Field and Fungal Isolation

The results of drone aerial photography and field investigation showed that 90 percent of
C. japonica showed symptoms of dieback (130 trees in total) (Figure 1A,B). Affected trees have
normal bark and reddish-brown canopies (Figure 1C,D). After stripping the bark, lesions can
be observed in the phloem, which spread from the root color to the breast height of the trunk
(Figure 1E–H). The lesions were dry and brownish, and the healthy xylem was yellowish and
moist. A total of 157 fungal isolates were isolated and were divided into 6 groups according
to the colony morphology. Thirteen representative isolates (G1, G2, G4, G11, G15, G16, G18,
G23, G24, G74, G91, G92, and C7) were selected for pathogenicity experiments.

3.2. Pathogenicity Assays

Three days after the inoculation, brown spots began to appear at the inoculation points
of isolates G1, G2, G15, G16, G24, G91, and G92. The lesions gradually expanded in about a
week, and after 20 days, half of the whole plant withered from the bottom to the top, and
the whole plant withered in 1 month (Figure 2B–H). These symptoms were consistent with
those observed in the field. At the same time, the control, G4, G11, G18, G23, G74, and C7
did not develop symptoms (Figure 2A). The inoculated fungal isolates were re-isolated
from the lesions on the inoculated seedlings, and no fungi were isolated from the control.
Therefore, the seven isolates (G1, G2, G15, G16, G24, G91, and G92) were identified as the
causal agents of stem basal canker on C. japonica.

3.3. Molecular Identification of the Fungal Isolates

Phylogenetic analyses showed that four isolates (G15, G16, G91, and G92) were in
the same cluster with N. parvum (ex-type: ATCC 58191). Three isolates (G1, G2, and G24)
were clustered in a distinct clade, which was distinct from all other known species and
a sister clade to the clade of N. sinense (ex-type: CGMCC 3.18315) (Figure 3). Based on
the phylogenetic analyses using the concatenated sequences of the ITS, tef1, tub2, and
rpb2 sequences, four isolates (G15, G16, G91, and G92) were N. parvum, and three isolates
(G1, G2, and G24) were a new species of Neofusicoccum. The tree topologies of ML and
BI phylogenetic trees were consistent, where maximum likelihood bootstrap support
values (ML ≥ 50) and Bayesian posterior probability (PP ≥ 0.90) are shown at the nodes
(ML/PP). Furthermore, the PHI test on N. cryptomeriae revealed that there was no significant
recombination (Φw = 0.163) among their closely related taxa: N. sinense, N. brasiliense, and
N. kwambonambiense (Figure 4). Thus, the isolates G1, G2, and G24 were confirmed to be
new species.
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Figure 2. Symptoms caused by fungal isolates in this study 20 days after inoculation. (A) Control,
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Figure 3. Phylogenetic relationship of Neofusicoccum cryptomeriae and N. parvum with closely related
taxa derived from a maximum likelihood (ML) analysis and Bayesian Inference using combined
ITS, tef1, tub2, and rpb2 sequence alignment, with Botryosphaeria dothidea (CBS 115476) as the out-
group. Maximum likelihood bootstrap support values (ML ≥ 50) and Bayesian posterior probability
(PP ≥ 0.90) are shown at the nodes (ML/PP). Ex-type strains are marked in bold, the species are
delimited with colored blocks, and isolates in this study are marked in red.
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Figure 4. Pairwise homoplasy index (PHI) test of Neofusicoccum cryptomeriae and closely related
N. sinense, N. brasiliense, and N. kwambonambiense using both LogDet transformation and splits
decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset.

3.4. Morphology and Taxonomy

For isolates G1, G2, and G24, morphological differences were observed compared to
the most closely related species (Neofusicoccum sinense CGMCC 3.18315) based on phylo-
genetic analyses. Therefore, the results of the phylogenetic analyses and morphological
studies support the conclusion that three isolates (G1, G2, and G24) were a Neofusicoccum
species new to science. The new species is described as follows:

Neofusicoccum cryptomeriae Li-Hua Zhu, Yuan-Zhi Si, Jian-Wei Sun & D. W. Li, sp. nov.
(Figure 5).

Index Fungorum number, IF 900283.
Etymology. Latin: cryptomeriae referring to the host genus Cryptomeria.
Sexual state: Undetermined. Asexual state: Conidiomata pycnidial, produced on pine

needles on SNA within 30 days, solitary or aggregated, covered by mycelium, dark-brown
to black, stylolitic, ellipsoidal or spherical, up to 183–381 µm-wide, and 463–1152 µm-high.
Conidiophores hyaline, cylindrical, branched, and smooth: (20.6–)25–34.1(–39) × (3.1–)3.6–
3.8(–5.2) µm (av. = 29.6× 4.2 µm, n = 20). Conidiogenous cells holoblastic, hyaline, cylindri-
cal, and phialidic, with periclinal thickening: (11.6–)13.8–22.4(–25.8) × (3–)3.4–4.2(–4.9) µm
(av. = 18.1 × 3.8 µm, n = 20). Paraphyses not observed. Conidia 1-celled, hyaline, thin-
walled, smooth with granular contents, fusiform, initially non-septate, and subsequently
becoming 1–2 septate: (20.9–)23.0–26.1(–27.5) × (6.8–)7.0–7.8(–8.3) µm (av. = 24.6 × 7.4 µm,
n = 50; L/W = 3.3).

Culture characteristics: Colonies on PDA were initially white with fluffy mycelia.
After five days, the aerial mycelia were dense at the edge of the colony and sparse in the
middle, and hyphae at the center of the front and back sides are gray.

The measured data of isolates G1 and G2 are listed in Table 2.
Holotype: China, Jiangsu, Nanjing, 32◦04′53.11” N, 118◦49′10.27” E, isolated from

Cryptomeria japonica, 2 September 2020, Jian-Wei Sun, CFCC 55721 (=G24). The holotype
specimen is a living specimen being maintained via lyophilization at the China Forestry
Culture Collection Center (CFCC), Chinese Academy of Forestry, Beijing, China.

Additional materials examined: China, Jiangsu, Nanjing, 32◦04′53.11” N, 118◦49′10.27”
E, isolated from Cryptomeria japonica, 2 September 2020, Jian-Wei Sun, CFCC 55720 (=G1).
China, Jiangsu, Nanjing, 32◦04′53.11” N, 118◦49′10.27” E, isolated from Cryptomeria japonica,
2 September 2020, Jian-Wei Sun, CFCC 55728 (=G2).

Host/distribution: from Cryptomeria japonica in Nanjing, Jiangsu, China.
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Notes: Phylogenetically, N. cryptomeriae is closely related to N. sinense. They were
distinguished based on 14 nucleotides in the concatenated alignment, of which 9 were
distinct in ITS, 4 in tef1, and 1 in tub2. N. sinense has no sequence data of rpb2 for com-
parison. Morphologically, N. cryptomeriae differs from N. sinense by its longer conidia
(23–26.1 × 7–7.8 µm vs. 17.6–20.4 × 7.4–8 µm) (Table 2). Fusicoccum cryptomeriae was a
pathogen causing leaf spots on C. japonica, and it was differentiated from N. cryptomeriae by
its much smaller conidia: 6.5–8 × 2.5 µm vs. 23.0–26.1 × 7.0–7.8 µm [14].
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Figure 5. Morphology of Neofusicoccum cryptomeriae (G24). (A) Five-day-old front and back view
culture on PDA. (B,C) Conidioma formed on pine needle culture. (D) Conidiophores, conidiogenous
cells, and developing conidia. (E) Conidiogenous cells. (F) Conidia with 1 septum (indicated by
arrow). (G) Conidia. Scale bars: (B,C) = 500 µm; (D–G) = 10 µm.

Table 2. Synoptic characters of two species of Neofusicoccum in this study and related Neofusicoccum spp.

Species Isolates Conidiogenous Cells (µm) Conidia (µm) Reference

Neofusicoccum cryptomeriae G1 = CFCC 55720 16.4–24.1 × 3–3.9 20.5–25.7 × 7.1–8.9 this study
G2 = CFCC 55728 15.8–24.2 × 3.2–4 20.1–22.6 × 6.8–8 this study

G24 = CFCC 55721 13.8–22.4 × 3.4–4.2 23–26.1 × 7–7.8 this study
N. parvum G15 = CFCC 55724 13.4–18.4 ×2.6–3.8 17–18.7 × 5.8–6.3 this study

G16 = CFCC 55718 11.4–19.5 × 2.1–3.6 16.8–18.1 × 5.7–6.3 this study
G91 = CFCC 55719 13.7–20.9 × 2.5–3.3 17.1–19.5 × 5.7–6.4 this study
G92 = CFCC 55723 12.2–21.4 × 2.6–3.4 17.1–18.8 × 5.6–6.3 this study

N. sinense CGMCC 3.18315 not observed 17.6–20.4 × 7.4–8 [34]
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Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips.
Based on analyses of DNA sequence data, four isolates (G15, G16, G91, and G92) were

in the same cluster with N. parvum. Comparing these four isolates with the morphological
characteristics of N. parvum, including colony, conidiomata, conidiophores, conidiogenous
cells, and conidia, showed that the morphologies of the four isolates were the same as
N. parvum. Therefore, these four isolates were N. parvum. The morphological characteristics
of the representative isolate G15 are as follows (Figure 6). On PDA, G15 was initially
white, and after 5 days, it developed an abundant greyish-white aerial mycelium. Conid-
iomata pycnidial, produced on pine needles on WA within 30 days, solitary or in groups,
covered by mycelium, dark-brown to black, up to 172–247 µm-wide, and 144–440-µm
high. Conidiogenous cells were hyaline and short subcylindrical: (11.4–)13.4–18.4(–19.4) ×
(2.5–)2.6–3.8(–4.2) µm (av. = 15.9 × 3.2 µm, n = 20). Conidia 1-celled, hyaline, ellipsoidal
to fusiform: (15.5–)17–18.7(–20.3) × (5.2–)5.8–6.3(–6.8) µm (av. = 18.3 × 6.2 µm, n = 50;
L/W = 3), and when mature, became brown, septate. The measured data of isolates G16,
G91, and G92 are listed in Table 2.
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Figure 6. Morphology of Neofusicoccum parvum (G15). (A) Five-day-old front and back view culture on
PDA. (B) Conidioma formed on pine needle culture. (C) Conidiogenous cells and developing conidia.
(D) Hyaline conidia. (E) Brown, septate conidia (indicated by arrow). Scale bars: (B) = 200 µm;
(C–E) = 10 µm.

4. Discussion

In this study, the pathogen causing stem basal canker of C. japonica in Nanjing, China,
was determined by the pathogenicity tests using Japanese cedar seedlings. Based on
morphological, GCPSR principle, and phylogenetic studies, the pathogens were identified
as two species of Neofusicoccum, N. parvum and a new species, Neofusicoccum cryptomeriae.

As early as 2013, studies have shown that N. parvum is a widely distributed and com-
mon pathogen to plants, occurring on 90 host species across 6 continents [58]. At present,
this species has been reported in 181 plants [59]. In subsequent studies, N. parvum was
found to be one of the most virulent species based on the extent of necroses it causes [60–63].
Neofusicoccum spp. have not been reported to infect Japanese cedar, but many species of
Neofusicoccum have been reported on other conifers, including many endangered species.
For example, N. nonquaesitum was reported to cause branch cankers on Sequoiadendron
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giganteum in North America [64]. N. parvum was reported to cause canker and dieback
of S. giganteum in the Geneva Lake area, Switzerland [65]. N. nonquaesitum has also been
reported to cause branch dieback and decline in Araucaria araucana, and this tree species
has been listed as an endangered species on the Red Data List of the International Union
for Conservation of Nature [66].

The asexual state developed under natural conditions is very important for the mor-
phological identification of fungi [67]. Many genera of Botryosphaericeae, including
Neofusicoccum, Botryosphaeria, Pseudofusicoccum, and Neoscytalidium, share similar mor-
phological characteristics of their asexual states, and most of their conidia are narrow
ellipsoids [16]. Similar morphological characteristics make it difficult to differentiate the
genera. Botryosphaericeae can grow well on culture media, but it is difficult to produce
conidia [16]. These conditions have led to some challenges in the morphological identifi-
cation of fungi in this family. Many species of Neofusicoccum are similar in morphology,
and the molecular methods provide supplementary methods of fungal identification and
classification. In recent years, phylogenetic and phytopathological studies on Neofusicoccum
have used concatenated sequences of ITS, tef1, tub2, and rpb2 [24,28,68]. Phylogenetic
analyses using sequences of multiple loci can better distinguish and identify some closely
related species in the genus.

The research on Neofusicoccum fungi was mainly focused on the identification of plant
pathogens in China, where there is a lack of systematic taxonomic research. New species
of this genus have been continuously discovered, indicating that the fungal resources of
the genus Neofusicoccum are relatively abundant in China. It is necessary to collect a large
number of specimens to establish a complete and reasonable classification system for this
genus to provide mycological and molecular information and a scientific basis for disease
prevention and control.
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