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Abstract: Certain viruses have been found to induce diverse biological pathways to carcinogenesis,
evidenced by the presence of viral gene products in some tumors. Despite the fact that many fungal
agents contain mycoviruses, until recently, their possible direct effects on human health, including
carcinogenesis and leukemogenesis, had not been explored. In this regard, most studies of fungal
agents have rightly concentrated on their mycotoxin formation and effects. Recently, the direct role
of yeasts and fungi in the etiology of cancers, including leukemia, have been investigated. While
greater attention has been placed on the carcinogenic effects of Candida, the role of filamentous fungi
in carcinogenesis has also been explored. Recent findings from studies using the enzyme-linked
immunosorbent assay (ELISA) technique indicate that the plasma of patients with acute lymphoblastic
leukemia (ALL) uniformly contains antibodies for a certain mycovirus-containing Aspergillus flavus,
while controls are negative. The exposure of mononuclear leukocytes from patients with ALL in
full remission, and long-term survivors, to the product of this organism was reported to result in
the re-development of typical genetics and cell surface phenotypes characteristic of active ALL.
Mycoviruses are known to be able to significantly alter the biological characteristics and functions of
their host. The possible carcinogenic and leukemogenic role of mycoviruses, with and without their
host, needs to be further investigated.

Keywords: cancer; leukemia; etiology; mycoviruses; mycotoxins; aflatoxin; viruses; carcinogenesis;
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1. Introduction

All individuals are routinely exposed to a variety of fungal organisms, for the most
part without any detectable significant adverse effects. However, this is not universal
and varies based on health status, immunity, existence of other disorders, and type of the
organism involved. For example, exposure to Aspergillus spores routinely occurs in healthy
populations without any obvious clinically detectable effects. However, the same exposure
can result in serious pathogenic effects in individuals with certain underlying diseases
such as cancer or immune deficiency disorders. Until recently, the major known direct
pathogenic effects of Aspergillus species have included allergies, toxicities, and a variety of
infections [1–61] (Table 1). A substantial amount of data, however, has been accumulated,
indicating that those working in the occupations with a high degree of fungal exposure
generally have a higher rate of cancer [5,62–65]. In contrast, while somewhat controver-
sial [66–72], individuals with allergy-related diseases and asthma have been reported to
generally have a lower rate of cancer, including leukemia and a variety of solid tumors, as
compared to the general population [73–84]. Some epidemiological data indicates potential
roles for IgE, allergy, and atopy in protecting against certain tumors [85,86]. An increased
cancer risk in association with IgE immunodeficiency has also been reported [87,88]. Signif-
icant information regarding the inverse association between atopic conditions and glioma
has been accumulated [89,90].
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Table 1. Major non-mycotoxin-related pathogenic effects of Aspergillus species.

Allergies [1–5]

Cutaneous infections [6–8],

Rhinosinusitis [9–11],

Wound and craniocerebral infections [12–16],

Keratitis [17–21],

Chronic granulomatous sinusitis [22–25],

Neurotoxicity and meningitis [26–28],

Scleritis [29–31],

Endophthalmitis [32–34],

Otomycosis [35–37],

Pericarditis [38–40],

Endocarditis [41–43],

Mediastinitis [44–46],

Osteoarticular disorders [47–50],

Osteomyelitis [51–53],

Urinary tract infections [54–56],

Bronchopulmonary [57–59]

Local and generalized infections [5,61]

Some microorganisms are known to have the ability to induce tumor initiation and
progression, directly through their effects on the cells, or indirectly by their effects on the
immune system. Several studies have correlated the possible involvement and association
of fungal species, particularly Candida, with the development and progression of various
types of cancer. While most attention has been directed to yeasts in the so-called blasto-
mycete theory of cancer, more recently, other mechanisms, including the possible role of
mycoviruses in fungal organisms, have been suggested [91–99]. In the recent past, it has
been shown that the in vitro exposure of mononuclear cells from individuals who have
a history of acute lymphoblastic leukemia (ALL) and are in full remission, without any
evidence of the disease, including long-term survivors, to a certain mycovirus-containing
Aspergillus flavus (MCAF) results in the re-development of cell surface phenotypes and
genetic markers characteristic of active ALL [91]. Such exposure in controls did not induce
any changes [91]. If this is due to the certain genetic or epigenetic background in the ALL
patients is not clear. In a related study, unlike controls, patients with ALL were found
to have antibodies for the products of MCAF [92]. It is of interest that the mycovirus-
containing Aspergillus flavus used for these studies was isolated from the home of a patient
with ALL and the organism did not produce any aflatoxin [91,92]. A well-known theory for
the etiology of ALL in the pediatric age group suggests that the development of this disease
is due to a combination of genetic mutations and exposure to infections [100]. This so-called
“two-hit” model postulates that ALL evolves in two discrete steps. The first step is in
utero initiation by fusion gene formation or hyperdiploidy, which generates a pre-leukemic
clone. The second step, which is proposed to only occur in a very small sub-population
of the predisposed, is suggested to be exposure to infections and post-natal acquisition
of secondary genetic changes that drives conversion to overt ALL. It is postulated that
exposure to infections earlier in life are protective, but in their absence, infections later in
life trigger the critical secondary mutations [100]. It is suggested that the risk can be further
modified by other inherited genetics, and possibly diet, as well as chance. While a number
of predisposing genetic factors have been identified, until recent reports [91,92], no certain
infectious agents had been proposed. Based on the recent findings, it is postulated that
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exposure to mycovirus-containing Aspergillus flavus could possibly be one of the post-natal
infections that can trigger the second step in the developmental process of ALL [91].

A number of studies have explored the role of viral, bacterial, and fungal organisms
in the etiology of a variety of cancers. In the past, many investigations have concentrated
on the correlation of viruses with the development of malignant disorders. While such
a correlation has been made for many viral agents, less attention has been paid to the
fungal organisms, including those containing mycoviruses. Typically, most studies have
been based on the statistical relation of the frequency of exposure to a given agent, versus
the development of a certain cancer. For example, there is an increased rate of cancer
and leukemia [5] in individuals likely be exposed to fungal agents, such as agricultural
workers [101]. More recently, experiments have reported direct evidence of some organism’s
involvement in the development of certain cancers. For example, some experiments have
revealed that DNA specific to the human papilloma virus (HPV) is integrated into the
host cell genome. This virus is known to be associated with cervical, anal, penile, vulvar,
vaginal, oropharyngeal, and head and neck cancers [102]. HPV type 16 and 18 viral DNAs
have been found in cervical cancers and two viral dominant oncogenic genes, E6 and E7,
are consistently expressed in HPV-positive malignancies and HPV-infected cancer cells.
These oncogenes are known to be associated with the malignant transformation of cells
and the alteration of the immune system, causing disruption of natural tumor suppressor
pathways, culminating in the proliferation of cervical carcinoma cells [103].

Fungi have a worldwide distribution and virtually can be detected in any environ-
ment [104–114]. For example, Aspergilli are found in soil, water, outdoor and indoor,
and may produce numerous conidia which can disperse via air movement and possibly
insects [104–106]. While there are seasonal variations, there is a significant amount of spore
and diversity of fungi in air particulate matter [107]. The optimum temperature for the
growth of these organisms has a wide range, with significant growth occurring in tempera-
tures ranging from approximately 15 to 30 ◦C [108–111]. Lately, the direct effects of yeast
and fungi in the etiology of cancers, including leukemia, have also been further explored.
Greater attention has been placed on the so called “blastomycete theory of cancer” and the
relation of yeasts, especially the Candida species, to carcinogenesis [112]. To a lesser extent,
the role of filamentous fungi has also been evaluated. Among the fungal agents, Aspergillus
and Candida species are the most investigated for their possible role in carcinogenesis. As-
pergilli, due to their widespread distribution and production of mycotoxins, are known for
their potential to cause cancer [93,112]. These have been classified and divided into several
groups, each with distinct biological and molecular characteristics [93,115–118]. As noted
above, Aspergilli are known to produce a variety of allergic disorders [1–3,5], toxicities,
and infections [17,22–24,54–58,61]. Aspergillus can be associated with tissue damage, burn,
keratitis and endophthalmitis, or post operative infection [13,16,119–127]. Empyema and
pleural aspergillosis, as well as osteomyelitis, can occur, especially in individuals with
reduced immunity. The association of Aspergillus infections with a foreign body, including
peritoneal dialysis catheters and intravenous lines have been reported. Abscesses in vari-
ous organs and systems, including skin, subcutaneous tissues, sinuses, oropharynx, lungs,
brain, and other organs and systems can occur. In many infection entities, Aspergillus fumi-
gatus or A. flavus are often involved [13,16,119–127]. The effects of mycotoxins produced by
fungal agents have been long recognized [113,114].

Normally, Candida is located on skin, most of mucosal surfaces, mouth, gastrointestinal
tract, and vagina without any detrimental effects. However, Candida species in general,
and Candida albicans in particular, have been found to be associated with the development
of certain cancers, including oral, esophageal, and gastrointestinal neoplasms. Some of
these carcinogenic effects are through the production of specific hydrolytic enzymes me-
tabolizing ethanol to acetaldehyde (ACH). Acetaldehyde is metabolized from ethanol by
alcohol dehydrogenases (ADH). ADH is a cell wall protein necessary for the growth of
fungi, its metabolism [128], and interaction with host cell proteins to initiate an immune
response [128–130]. Mutations within host DNA degrade protein molecules and impair
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their functions which are essential for normal cellular activities and division [131]. ACH,
which is a group 1 human carcinogen, can induce the production of pro-inflammatory
cytokines and mediators [132–134], causing cellular oxidative stress and damage [134],
inducing the formation of covalent adducts in protein or DNA residues [131], DNA cross-
linking, or chromosomal aberrations [135,136]. The aberrations described can potentially
lead to tumor development and progression [95,137]. There is evidence that pathologi-
cally, C. albicans can increase the risk of carcinogenesis and metastasis through several
other mechanisms, including inflammation, the production of carcinogenic byproducts,
the induction of the Th17 response, and molecular mimicry [137–146]. In addition to
several clinical reports associating Candida spp. to carcinogenesis, there are a number of
biomolecular findings indicating its ability to cause dysplasia and malignant neoformation
in oral epithelium. Candida can produce carcinogens, such as N-nitrosobenzylmethylamine,
resulting in the development of malignant disorders including oral cancer [138–141]. The
development of pancreatic cancer has also been attributed to inflammation and immune
activation due to an increased nitrosamine exposure. Some of the mechanisms of actions
suggested for the carcinogenic effects of Candida include over-expression of P53, Ki-67 label-
ing index, and Prostaglandin-endoperoxide synthase 2 (COX-2), promoting the production
of acid aspartyl-proteinase. Other effects include immune-related mechanisms induced
by up-regulation in proinflammatory cytokines such as interleukin (IL)-1α, IL-1β, IL-6,
IL-8, and IL-18, tumor necrosis factor (TNF)-α, IFN-b [138,142,143], and the production of
carcinogenic acetaldehyde [137,144,146] and candidalysin, which is a cytolytic toxin [146].

Mycotoxins

More than 350 types of mycotoxins are found in animal feed but the most important
are aflatoxin, ochratoxin, fumonisin, and zearalenone [147–158]. The pathological condition
induced by any mycotoxin depends on sex, immune status, type of mycotoxin, duration,
and the amount of mycotoxin. Mycotoxins are responsible for the suppression of the quality
of the poultry industry. According to the Food and Agriculture Organization (FAO), 25% of
cereal grains are found to be affected by mycotoxins. Aflatoxin is one of the most important
mycotoxins produced by A. flavus and A. parasiticus. More than 20 types of aflatoxins are
found. The most common derivatives of aflatoxin are B1, B2, M1, and M2. B1 is the most
potent carcinogenic mycotoxin and M1 is the most common in milk.

The carcinogenesis and leukemogenesis of many fungal species, in animals and hu-
mans, have traditionally been attributed to their production of mycotoxin. Mycotoxins
are toxic secondary metabolites that are produced by fungal species, particularly those
of filamentous fungi which often grow on plant-based agricultural products. The fungal
growth occurs prior to the harvest of the crops and during their storage. Mycotoxins can
be found in peanuts, grains, corn, millet, sesame seeds, wheat, and animal-derived foods
such as milk, eggs, meat, and other commodities, and are highly toxic to humans and
animals. A single fungal species can potentially produce several mycotoxins [148,150]. The
hepatotoxicity and hepatocarcinogenic effects of fungal agents secondary to the production
of mycotoxins in general, and aflatoxin in particular, are well recognized [91,93]. Some
mycotoxins affect DNA replication, and therefore, can have mutagenic or teratogenic effects.
Exposure to mycotoxins can result in the impairment of metabolic, nutritional, endocrine,
immunological, hepatic, reproductive, and other systems. The four basic toxicities of myco-
toxins are acute, chronic, mutagenic, and teratogenic effects. Common acute mycotoxin
poisoning effects includes deterioration of liver or kidney function, which can potentially
lead to death. Some mycotoxins interfere with protein synthesis, causing disorders ranging
from skin sensitivity or necrosis to immunodeficiency, depending on the dose exposed.
Mycotoxins are neurotoxic, producing symptoms ranging from trembling to brain damage.
An example of the major biotoxins produced by Aspergillus species are summarized in
Table 2. Aflatoxins, produced by Aspergillus spp., are one of the highly toxic secondary
metabolites derived from polyketides. These are known to induce acute intoxication, ful-
minant hepatic failure, and rhabdomyolysis. Chronic exposure to this toxin can result in
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cirrhosis of the liver which may lead to hepatocellular and gall bladder carcinoma. Other
effects of aflatoxins on human health include disorder of lipid metabolism, depression of
protein and enzyme synthesis, and reduced production of hemoglobin and response to
vaccines [149,150]. The mycotoxins produced by Penicillium and Fusarium species have
adverse effects on heath, including infertility in males and females, destructive effects on
the fetus, impairment of growth and development in children, and undesirable health
outcomes in various stages of life. These agents can hamper the division and differentiation
of the gametes which can result in infertility due to interference with spermatogenesis.
Zearalenone has been linked to precocious puberty in females. In animal models, exposure
to mycotoxins can promote adverse effects on spermatozoa, Sertoli and Leydig cell function,
oocyte maturation, and uterine and ovarian development and function. These agents have
the potential to damage the sex organs. Mycotoxins may disturb the endocrine system and
alter steroid hormone homeostasis, resulting in subfertility or infertility. These can exert
oxidative stress causing sperm DNA damage and reduced fertilization [151–155]. Based on
animal studies, mycotoxins can increase the possibility of stillbirth and can pass through the
mother’s milk and affect the health of infants [156–159]. Since mycotoxins can negatively
alter cell division, they can affect the fetus and decrease the growth and development of
children. Neural tube defects in fetuses have been reported. Adverse effects on fetuses and
children include abnormal neural development, causing cognitive disability. In addition,
these toxins may cause decreased gastrointestinal absorption resulting in malnutrition and
reduced growth [160–165].

Table 2. Major biotoxins produced by Aspergillus species.

Type of Mycotoxin Example of Producing Species

Aflatoxins (AFB1, AFB2)
A. flavus and A. parasiticus (AFG1, AFG2, AFM1) A. parasiticus

Ochratoxins A. carbonarius, A. ochraceus, and
A. niger Patulin A. clavatus

Citrinin A. ochraceus and A. terreus Aflatrem A. aculeatus

Secalonic acids
A. aculeatus and japonicus

Cyclopiazonic acid
A. flavus and A. oryzae

Terrein A. terreus Sterigmatocystin A. versicolor, A. nidulans, and
A. sydowii

Gliotoxin A. fumigatus Fumonisins A. welwitschiae and A. niger

2. Metabolism of Aflatoxins

Aflatoxins are furanocoumarins which are produced by various strains of Aspergillus
species and produce various toxicities in animals and humans [166–171]. The toxicity
and mechanism of action of aflatoxins have been explored [166–171]. The carcinogenic
and mutagenic activities of aflatoxins are largely attributed to their lactone and difuran
rings. Aflatoxins have a furanocoumarin chemical structure, with over 18 types chemically
identified. Following ingestion, AFB1 is metabolized to form AFB1-8,9-epoxide, which
binds to DNA and forms AFB1-guanine adducts. There are significant individual and
age-related differences in the metabolism of AFB1, resulting in variation noted in its toxicity.
In vitro metabolism studies reveal that reduction of AFB1 results in the production of
aflatoxicol (AFL), which its hydroxylation produces AFM1, its hydration generates AFB2a
and its epoxidation AFB1-2,3-epoxide. Of these, epoxide is the most reactive, and is
believed to be responsible for the acute and chronic toxicity of AFB. Aflatoxicol can pass
through the placenta and damage the fetus. AFB1 is known to be metabolized in the
liver by the cytochrome P450 enzyme system (CYPs). Aflatoxin B1-8,9-epoxide (AFB0),
which has exo and endo isomers, is a carcinogenic derivate of this toxin. The CYP3A4
and CYP1A2 derivates are primarily responsible for the aflatoxin biotransformation, and
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the exo isomer formed. Studies in birds indicate that CYP2A6 and, to a lesser extent,
CYP1A1 are involved in the bioactivation of AFB1 into AFBO. Regarding DNA, AFB0
binds covalently to the N7 position on guanine, and forms an AFB1-N7-guanine adduct.
The endo isomer has lower affinity than the exo; therefore, AFB1-exo-8,9-epoxide is likely
the major carcinogenic metabolite [158,171]. The production of the various mycotoxins
varies based on numerous factors. For example, fungal organisms overwinter as either
resistant structures called sclerotia or as mycelium. The difference in the pattern of sclerotia
production is associated with different aflatoxin production. An example is that the S strain
of Aspergillus flavus produces numerous but smaller sclerotia, while the L strain generates
fewer but larger sclerotia. The products of these subgroups vary significantly. The S strain
isolates, designated SB, make only B aflatoxins while those termed SBG produce B and
G aflatoxins. It is suggested that these differences may represent a taxon different from
Aspergillus flavus.

Some strains of Aspergillus flavus do or do not produce aflatoxins B1 and/or B2. Other
toxins which may be produced by this organism include cyclopiazonic acid, kojic acid,
sterigmatocystin, bnitropropionic acid, aflatrem, aspertoxin, aspergillic acid, and gliotoxin.
In addition, Aspergillus flavus can potentially produce other secondary metabolites including
versicolorin A dihydroxyaflavinine, paspalinine, and indole. Aflatoxins, which are the most
potent hepatocarcinogenic agents, are known to be produced by a variety of Aspergillus
species, predominantly A. flavus, nomius, and parasiticus. Of sixteen structurally related
toxins, aflatoxins B1, B2, G1, and G2 are of the most concern [166,167]. The metabolites
produced by the hepatic metabolism of aflatoxins are responsible for most of their toxicity.
Aflatoxin B1 (AFB1) has the most carcinogenic potential, and its carcinogenicity is classified
as group 1 by the International Agency for Research on Cancer (IARC). Exposure to
the aflatoxin metabolites results in acute liver damage. Should this be continued, it has
a high potential for carcinogenesis due to the damage to DNA through adduct formation
and interference with protein metabolism [168]. In pregnant animal models, exposure
to AFB1 leads to genotoxic changes which predisposes the offspring to morphological
abnormalities, behavioral alterations, reproductive disturbances, cancer, and early death in
adult life [170,171]. In humans and animals, the signs and symptoms of aflatoxin toxicity
depends on the level and duration of exposure, age, gender, health status, concurrent
exposure to other toxins, and a number of other variables. Generally, adults have a higher
tolerance for aflatoxin and rarely succumb to acute aflatoxicosis. In contrast, children are
less tolerant and their exposure results in stunted growth and delayed development. The
latter is common in many developing countries [172–174]. In general, acute aflatoxicosis
due to the ingestion or inhalation of high doses of AFB1 results in acute poisoning. These
toxins can be transmitted to the fetus through the placenta, and to infants via breast
milk [110,111,148,175–183]. Severe damage to the internal organs and systems including
liver, kidneys, heart, and the hemopoietic and immune system, along with bleeding,
can result in death. For survivors, long-term complications include organ and system
failures and carcinogenesis. Post exposure, free AFB1 is present only for a short period
of time in the blood. Such exposure can be detected through the measurement of the
metabolites of AFB1 including aflatoxin-albumin, aflatoxin M1 (AFM1), aflatoxin P1 (AFP1),
aflatoxin Q1 (AFQ1), AFB-N7 guanine, and aflatoxicol (AFL), in blood and biological
fluids. In the first 24 h post exposure, the measurement of the breakdown products
of AFB1, including AFB1-guanine, in the urine may reflect exposure to this mycotoxin.
Measurement of the AFB1-albumin adduct level in the serum provides a more integrated
measure of the longer-term exposure. AFM1 is classified as agent 2B by IARC for its
carcinogenic potential. Metabolites of aflatoxins are present in the tissues, urine, feces, and
milk [184–190]. The latter is of importance in infants during breastfeeding because of its
effects in infants. Likewise, commercially available milk collected from animals fed with
various contaminated agricultural commodities may contain this agent. Various metabolites
of mycotoxins can be measured in blood, urine, stool, milk, etc. [184–190]. AFM1 can be
utilized as a measurable biomarker in the urine. Immunotoxins with small molecules fail
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to induce any response in the human immune system. Therefore, a major potential danger
of exposure to mycotoxins in the diet is the human inability to detect them biologically [2].

Another product of AFB1 is the AFB-N7-guanine biomarker which indicates prolonged
exposure to this toxin. DNA alkylation or adduct formation is at nucleophilic sites in
DNA, including the N7-position of guanine. The N7-guanine adducts are considered non-
promutagenic. These are chemically unstable, since the N7-position does not participate
in a Watson–Crick base pairing. The N7-guanine adducts have been shown to convert to
ring opened lesions (FAPy) which have much more mutagenic potential, persist longer in
the body, and have higher mutagenic potency [191]. A variant with a greater carcinogenic
potential is fumonisin B1 (FB1), which is classified by the IARC as a 2B product. This is
predominantly produced by Fusarium verticillioides and F. proliferatum and contaminates
maize and maize-based foods. FB1 inhibits ceramide synthase and interrupts sphingolipid
synthesis via the inhibition of sphingosine-N-acetyltransferase, resulting in oxidative
stress, the alteration of DNA methylation, and modulation of autophagy, and results in
stress to the endoplasmic reticulum, leading to the reduced production of sphingolipids
and the accumulation of sphinganine (Sa) and sphingosine (So). The result is the non-
genotoxic mechanism underlying its toxicological and carcinogenic effects. While its effect
on human health as yet is not fully discovered, in populations consuming large amounts of
contaminated maize-based foods, epidemiological and experimental evidence points to this
being a risk factor for esophageal cancer and neural tube defects. In animals, fumonisins
can cause leukoencephalomalacia in horses, pulmonary edema in swine, and hepatotoxicity
and nephrotoxicity in rats [192–195].

While most studies focus on a single mycotoxin and its effects on human health, animal
studies reveal a complex and possibly additive, synergistic, or antagonistic effect [196–199].
The association of aflatoxins classified as group1 by the IARC, including aflatoxin B1
(AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2), and aflatoxin M1
(AFM1), with liver cancer is well documented. Various malignant disorders due to rice
and cereal contamination with AFB1, including breast, cervical and esophageal cancers,
have been reported [200–207]. A significant amount of data regarding carcinogenicity of
mycotoxins, alone or in conjunction with unrelated viruses are available; however, the
possible effects of mycoviruses singularly or in combination with their fungal host has not
been fully explored.

3. Mycoviruses and Cancer

For several decades, viruses affecting fungal organisms, known as mycoviruses, have
been known to exist [208,209]. However, except for occasional reports, their human
pathogenicity and possible role in health has not been fully evaluated. It is estimated
that from 30 to 80% of all fungal species, predominantly endophytic fungi, contain my-
coviruses. The existence of mycoviruses in Aspergillus species is well recognized. The
modulation of fungal toxins such as the loss of aflatoxin production in A. flavus infected
with mycovirus has been reported [210,211]. Mycoviruses possess various forms of viral
genomes which include double-stranded RNA (dsRNA), single-stranded RNA (ssRNA),
and single-stranded DNA (ssDNA). Currently, the International Committee for the Taxon-
omy of Viruses (ICTV) records 17 taxa, 16 families, and one genus that does not belong to
a family. While most mycoviruses have ds RNA linear genomes, positive-sense ss RNA
linear genomes including reverse transcribing RNA linear genomes, negative-sense ssRNA
linear genomes, or ssDNA circular genomes also exist [212]. Of these, dsRNA segments
most commonly affect fungal organisms. Taxonomically, the fungal dsRNA viruses are
classified into seven families which include Endornaviridae, Chrysoviridae, Megabirnaviridae,
Quadriviridae, Partitiviridae, Reoviridae, and Totiviridae. The transmission of mycoviruses
occurs vertically during cell division, forming asexual and sexual spores called sporogene-
sis, and/or horizontally via mating or hyphal anastomosis through cytoplasmic exchange,
and not during the extracellular phase of the viral life cycle. The latter, however has been
disputed [212]. Some viruses have a unique self-protective or aggressive ability, producing
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defensive substances. These products can have a growth-inhibitory activity against several
bacterial and fungal species. The term ‘killer strains’ describes yeast and fungal species that
can produce ‘killer toxins’ with antimycotic activity for lethal function or self-protection.
This killer phenotype is usually associated with double-stranded (ds)RNA mycoviruses
and linear dsDNA plasmids. It can also be chromosomally encoded. For example, viruses
of the family Totiviridae have a unique ability to produce a killer toxin which is capable of
lysing susceptible neighboring strains, while they themselves remain immune to the toxin.
Four killer toxins, i.e., K1, K2, K28, and Klus, have been reported.

Some dsRNA mycovirus-containing fungal agents have been shown to alter the ex-
pression of genes involved in the ribosomal synthesis and programmed cell death of the
fungal host. Mycoviruses affecting a human pathogen may also have an effect on the in-
fected individual. For example, Malassezia species produce various skin diseases including
dandruff, seborrheic dermatitis, and atopic dermatitis. In one study, this organism was
found to contain MrV40 mycovirus, which belongs to the family Totiviridae. In a reported
study, the viral nucleic acid from MrV40 had induced a Toll-like receptor 3 (TLR3)-mediated
inflammatory immune response in the bone-marrow-derived dendritic cells. This finding
may indicate a role for the included mycovirus in the pathogenicity of Malassezia [213,214].

Mycoviruses are known to be able to alter their fungal host’s phenotype, including but
not limited to pigmentation, morphology, sexual and asexual sporulation, the production
of toxins, and growth. As noted before, the loss of aflatoxin production in A. flavus infected
with mycovirus has been reported [210,211]. If these organisms can exert any changes in hu-
mans or animals infected with mycovirus-containing fungi has not, as yet, been significantly
explored. Viral dsRNA is recognized by Toll-like receptor 3 (TLR-3) and several cytosolic
sensors and can provoke interferon production in a TLR-3 dependent or independent
fashion [215]. An increased rate of cancer in occupations with higher rate of exposure to
fungi, such as agricultural and construction workers, have been found [5,101]. Individuals
with allergies have been reported to have a decreased risk of certain cancers compared with
the general population. In allergic individuals, lower rate of glioma, laryngeal, esophageal,
oral, pancreatic, gastric, colorectal, uterine body cancers, and non-Hodgkin lymphoma have
been reported. Reports regarding leukemia, thyroid, lung, melanoma, and breast cancer in
this group are conflicting. An increased risk of bladder cancer, lymphoma, myeloma, and
prostate cancer in individuals with allergies is reported [68,84,101,215]. It is not clear if in
those individuals with allergies and decreased rates of cancer, their allergens include fungi.
On the other hand, those with greater exposure to fungi have a higher rate of this disorder.
As noted before, patients with acute lymphoblastic leukemia were found to have antibodies
to a certain mycovirus-containing Aspergillus flavus and the exposure of mononuclear blood
cells from patients with ALL in full remission to its products resulted in the redevelop-
ment of genetic and cell surface phenotypes characteristic of ALL [91,92]. Based on these
findings, it has been postulated that this organism may potentially have a correlation with
leukemogenesis [91,92]. Research regarding mycovirus-containing organisms and cancer
may have etiological value.

4. Conclusions

The possible role of various organisms in carcinogenesis and leukemogenesis has been
suspected. While the role of viral agents in the development and progress of a variety of
cancers has often been the subject of these investigations, the carcinogenic effects of fungal
agents have also been explored. Until recently, the latter has been mostly concentrated on
the contamination effects of mycotoxins. These effects result in major toxicities which are
of health and commercial concern. Demonstration of the effects of various viral agents
in carcinogenesis is exemplified by cervical carcinoma. Experiments reveal that DNA
specific to the human papilloma virus is integrated into the host cell genome, and viral
oncoproteins E6 and E7 consequently cause the disruption of natural tumor suppressor
pathways, culminating in the proliferation of cervical carcinoma cells. Mycoviruses have
been shown to alter the biology of their fungal host, such as the secession of aflatoxin
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production in Aspergillus spp. as well as the expression of genes involved in ribosomal
synthesis and programmed cell death in several species. The effects of mycoviruses alone
or in conjunction with their fungal host in human health is poorly evaluated. Recent
studies reveal that patients with acute lymphoblastic leukemia in full remission, and long-
term survivors, uniformly have antibodies to a certain mycovirus-containing A. flavus.
Furthermore, exposure of the mononuclear leukocytes from these patients to the products
of the above organism results in the redevelopment of genetic and cell surface phenotypes
characteristic of active acute lymphoblastic leukemia pointing to the possible cause and
effect relationship. The role of mycoviruses, with and without their hosts in human
disorders, particularly in carcinogenesis and leukemogenesis, needs to be explored.
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