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Abstract: Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endo-
phytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation
since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently,
many studies introduced novel taxa into the order and revised several families separately. In addi-
tion, no ancestral character studies have been conducted for this order. Therefore, in this study, we
re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on
ancestral character evolution, divergence time estimation, and phylogenetic relationships, including
all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony,
and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment.
Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode.
Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early
epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the
Cretaceous period (66–100 Mya), during which Angiosperms also appeared, rapidly diversified and
became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene
periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae,
Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study as-
sessed two hypotheses; the first one being “All Botryosphaeriales species originated as endophytes and
then switched into saprobes when their hosts died or into pathogens when their hosts were under
stress”; the second hypothesis states that “There is a link between the conidial colour and nutritional
mode in botryosphaerialean taxa”. Ancestral state reconstruction and nutritional mode analyses
revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not
provide strong evidence for the first hypothesis mainly due to the significantly low number of studies
reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate
conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial
pigmentation and the pathogenicity of Botryosphaeriales species.
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1. Introduction
1.1. Botryosphaeriales

Botryosphaeriales was introduced to accommodate Botryosphaeriaceae by Schoch et al. [1]. Fol-
lowing consecutive studies, the families Planistromellaceae [2], Phyllostictaceae [3], Aplosporellaceae,
Melanopsaceae, Saccharataceae [4], Septorioideaceae [5], Endomelanconiopsisaceae, and Pseudofusic-
occumaceae [6] were recognized in Botryosphaeriales. In a revision based on morphology and
phylogeny, Phillips et al. [7] synonymized Endomelanconiopsisaceae under Botryosphaeriaceae.
Pseudofusicoccumaceae and Septorioideaceae were also synonymized under Phyllostictaceae and
Saccharataceae, respectively. Currently, six families are accepted in Botryosphaeriales, i.e., Aplosporel-
laceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae, and Saccharataceae [7–9].

Botryosphaeriales is an order with a variety of lifestyles ranging from endophytes to
pathogens and saprobes [10] on a wide range of monocotyledonous and dicotyledonous
hosts [11] and lichens [12,13]. Most of the taxa in Botryosphaeriales are endophytes living
in the healthy tissues of woody plants for extended periods [10]. Species of Botryosphaeria,
Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, Phyllosticta, Pseudofusicoccum and Sac-
charata include endophytes [8,10,14,15]. Some Botryosphaeriales species are important
phytopathogens associated with canker diseases, with a worldwide distribution and
a broad host range, causing severe ecological and economical damage [7]. Pathogenic
species in Botryosphaeriales, such as quiescence pathogens (such as Botryosphaeria and
Lasiodiplodia species) cause diseases following an initial stress factor, such as drought or
infection by another weak pathogen [5,16]. As an example, water stress affects disease
development of Lasiodiplodia theobromae and Sphaeropsis sapinea on Platanus occidentalis
and Pinus resinosa, respectively [17].

1.2. Previous Revisions for the Families in Botryosphaeriales

Theissen and Sydow [18] introduced Botryosphaeriaceae to accommodate Botryosphaeria,
Dibotryon and Phaeobotryon [7,19]. Botryosphaeriaceae species have a range of nutritional
modes from saprobic to parasitic or endophytic [10,20–27]. Members of this family are
cosmopolitan in distribution and occur on a wide range of monocotyledonous and di-
cotyledonous hosts: on woody branches, leaves, stems and culms of grasses, and on twigs
and in the thalli of lichens [12,21,28–30]. Liu et al. [11] accepted 29 genera in Botryosphaeri-
aceae based on morphology and molecular data. Phillips et al. [19] provided detailed
descriptions and keys for 17 genera in Botryosphaeriaceae. Burgess et al. [31] and Gar-
cia et al. [32] included 24 genera in Botryosphaeriaceae based on morpho-molecular data.
However, Dissanayake et al. [33] mentioned that this family consists of 22 genera. This is
the largest family in Botryosphaeriales [8,34]. Nearly 280 species have been described in
Botryosphaeriaceae based on DNA sequence data [35].

Aplosporellaceae was introduced by Slippers et al. [4] to accommodate Aplosporella and
Bagnisiella. Aplosporella are asexual morphs, while Bagnisiella species are known through
their sexual morphs [36]. Sharma et al. [37] introduced Alanomyces in this family, which cur-
rently consist of two genera: Aplosporella and Alanomyces [34]. Melanopsaceae was introduced
with Melanops as the type genus [4] and remains the only genus in the family [34].

Wikee et al. [3] reinstated Phyllostictaceae as a separate family in Botryosphaeriales to
accommodate Phyllosticta, which consists of Phyllosticta and Pseudofusicoccum [34]. Phyl-
losticta species are mostly endophytes, but several are plant pathogens that cause leaf spots
in a broad range of hosts worldwide [38–42]. Barr [43] introduced Planistromellaceae, which
currently comprises two genera, namely, Kellermania and Umthunziomyces [33]. Saccharat-
aceae is another family in Botryosphaeriales introduced by Slippers et al. [4] and consists of
Pileospora, Saccharata and Septorioides [33].
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1.3. Morphologies of Botryosphaerialean Taxa

Morphological characters vary between families in this order. Uni-loculate and
multi-loculate ascostromata can be found in Botryosphaeriales (Figure 1). Aplosporellaceae,
Melanopsaceae and Planistromellaceae are characterized by multiloculate ascostromata, while
Botryosphaeriaceae, Phyllostictaceae and Saccharataceae have uni-loculate ascostromata [7]. In
Saccharataceae and Phyllostictaceae, solitary, uni-loculate ascostromata have been recorded.
In Botryosphaeriaceae, uni-loculate ascostromata are mostly solitary, but in some genera,
such as Botryosphaeria, Diplodia and Neofusicoccum, they can be aggregated, which give the
impression of being multi-loculate [7].
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conidia of Aplosporella thailandica [36]. (d) Brown and septate conidia of Dothiorella viticola. (e) Brown 
and aseptate ascospores of Sphaeropsis sp. (f) Hyaline and aseptate ascospore of Botryosphaeria 
fabicerciana. (g) Hyaline and aseptate ascospore of Neofusicoccum parvum. (h) Brown and aseptate 
ascospore of Barriopsis archontophoenicis. (i) Wing-like appendages of Neodeightonia palmicola 
ascospore (in water). (j) Neodeightonia palmicola ascospore in 100% lactic acid. Scale bars: (a,d,e) = 20 
μm, (b,c,f–j) = 10 μm. 

  

Figure 1. Uni-loculate and multi-loculate ascostromata/conidiomata. (a,b) Uni-loculate conidiomata
of Dothiorella viticola. (c,d) Uni-loculate ascostromata of Sphaeropsis sp. (e,f) Multi-loculate ascostro-
mata of Aplosporella thailandica [36]. Scale bars: (a,c,d) = 200 µm, b = 100 µm, (e,f) = 500 µm.

Ascospores and conidia in Botryosphaeriales have a wide range of morphologies,
such as pigmented or hyaline, septate or aseptate and the presence or absence of a
mucilaginous sheath (Table 1, Figure 2). Botryosphaeriaceae species have a wide range of
conidial morphologies, such as fusiform to ovoid or elliptical, fusicoccum-like, hyaline,
aseptate and thin-walled. Hyaline and, aseptate conidia become one or two septate and
some species become pale brown before germination (Diplodia corticola, D. cupressi and
D. mutila) [19]. Thick-walled and hyaline or brown diplodia-like conidia also occur in
Botryosphaeriaceae. They can be aseptate, one-septate or even two- or multi-septate and
have ovoid conidia with broadly rounded ends [19]. In Diplodia and Lasiodiplodia, conidia
can remain hyaline for a long time and become brown and one-septate only after they
are discharged from the conidiomata [19].

The mucilaginous sheath is one morphological character used to separate the families
in Botryosphaeriales. Ascospores with mucilaginous sheath and gelatinous caps have been
recorded in Melanopsaceae and Phyllostictaceae, respectively [7]. Mature ascospores of some
species such as Botryosphaeria agaves and Melanops tulasnei, and immature ascospores of
Phaeobotryon cercidis, have a mucilaginous sheath [4,7,11]. Neodeightonia palmicola has wing-
like appendages when mounted in water. However, these wing-like appendages are not
observed when mounted in 100% lactic acid (Figure 2i,j). Phillips et al. [7] suggested that
these wing-like structures are a type of membrane surrounding the ascospores that enlarge
and swell when water is absorbed [7].
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Figure 2. Conidial and ascospore colour and septation. (a) Hyaline and aseptate conidia of Lasiodiplo-
dia sp. (b) Hyaline and aseptate conidia of Botryosphaeria dothidea. (c) Brown and aseptate conidia
of Aplosporella thailandica [36]. (d) Brown and septate conidia of Dothiorella viticola. (e) Brown and
aseptate ascospores of Sphaeropsis sp. (f) Hyaline and aseptate ascospore of Botryosphaeria fabicerciana.
(g) Hyaline and aseptate ascospore of Neofusicoccum parvum. (h) Brown and aseptate ascospore of
Barriopsis archontophoenicis. (i) Wing-like appendages of Neodeightonia palmicola ascospore (in water).
(j) Neodeightonia palmicola ascospore in 100% lactic acid. Scale bars: (a,d,e) = 20 µm, (b,c,f–j) = 10 µm.

Spore morphology influences survival in the environment [44]. Spore wall thickness
and pigmentation protect spores from extreme conditions, such as heat, microbial attack
and UV radiation [44,45]. Pigmentation of conidia is due to the melaninization of the
conidial wall or the deposition of oxidized polymers of phenolic compounds [46]. Mainly
three pigments (carotenoids, melanin and mycosporines) occur in fungi, and they act as
antioxidants and reduce the damage from UV exposure [45]. Melanin can be found in
pathogenic, as well as in saprobic taxa, and contributes to survival under harsh environ-
mental conditions [47]. However, melanin production has more of an impact on pathogens
because it is directly linked with virulence and pathogenicity [47,48].

Table 1. Ascospore and conidial morphology (colour and septation) in Botryosphaeriales families.

Character Aplosporellaceae Botryosphaeriaceae Melanopsaceae Phyllostictaceae Planistromellaceae Saccharataceae References
Colour Ascospore Pigmented [3,4,7,36,49]Hyaline

Conidia Pigmented [3,4,50]Hyaline
Septation Ascospore Septate [7]Aseptate

Conidia Septate [7,11,19,50]Aseptate

1.4. Ancestral State Reconstructions for Fungi

There have been relatively few studies on ancestral state reconstructions in fungi to
determine character evolution [4,51–54]. For more than two decades, character evolution
has been highly contentious in lichen systematics [51]. Ekman et al. [51] studied the
evolution of the ascus in Lecanorales using ancestral state reconstruction. Slippers et al. [4]
performed ancestral state reconstructions for selected characters in Botryosphaeriales, such as
ascospore colour, the presence or absence of ascospore septa, conidial colour, the presence
or absence of conidial septa and presence or absence of a mucus sheath. However, they
did not consider all the species of Botryosphaeriales. No studies have been conducted using
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ancestral state reconstruction or nutritional mode evolution with all the families or genera
in Botryosphaeriales.

1.5. Objectives of the Current Study

This study aims to provide an updated phylogenetic tree for Botryosphaeriales using
LSU and ITS sequence data (for ordinal level). Divergence time estimates were performed
using the updated phylogeny of Botryosphaeriales. Furthermore, ancestral state recon-
struction was performed for selected characters, i.e., conidial colour and septation and
nutritional mode in Botryosphaeriales. Two hypotheses were assessed in the current study.
The first hypothesis assessed was that “All Botryosphaeriales species originated as endo-
phytes and then switched into saprobes when their hosts died or into pathogens when their
hosts were under stress”. The second hypothesis tested was that “There is a link between
conidial colour and nutritional mode in botryosphaerialean taxa”. Both hypotheses were
tested based on the results from ancestral state reconstructions.

2. Materials and Methods
2.1. Data Collection and Analyses

Sequences were obtained from the GenBank for taxa reported in the recently published
data on Botryosphaeriales species (Table S1) [7,8,11]. All the reported nutritional modes
of each Botryosphaeriales species were considered for the ancestral state reconstruction
analysis of nutritional mode. For other analyses, i.e., maximum likelihood (ML), maximum
parsimony (MP) and Bayesian inference (BI) and character analysis, one or two strains
of each taxon were used. The tree file resulting from the evolution analysis was used
for ancestral state reconstructions. Sequences of each locus were aligned with MAFFT
v. 7 [55] and edited in BioEdit v. 7.0.9 [56] when necessary. Phylogenetic analyses were
performed using ML, MP and BI as detailed in Dissanayake et al. [57]. The most suitable
models for the ML and BI analyses were estimated using MrModeltest v. 2.3 [58] under
AIC (Akaike Information Criterion) implemented in PAUP v. 4.0b10. The GTR+I+G model
was determined to be the most suitable model for both LSU and ITS gene regions.

The ML analyses were conducted with RAxML-HPC2 on XSEDE v. 8.2.10 [59] in
the CIPRES Science Gateway platform [60] using a GTR+I+G substitution model with
1000 bootstrap replicates. Bayesian inference was performed using MrBayes v. 3.2.6
(GTR+I+G model) [61]. Six simultaneous Markov Chain Monte Carlo analyses were run for
3,000,000 generations. The trees were sampled at every 100th generation. The first 10% of
trees were discarded and the remaining 90% were used to calculate the posterior proba-
bilities (PP) in the majority rule consensus tree. PAUP v. 4.0b10 [62] was used to perform
the MP analysis for the combined dataset. A heuristic search option with 1000 random
replicates and the tree bisection-reconnection (TBR) branch-swapping algorithm was used
in the MP analysis. MaxTrees were set to 1000, branches of zero length were collapsed, and
all multiple parsimonious trees were saved. Descriptive tree statistics for parsimony—tree
length (TL), consistency index (CI), retention index (RI), relative consistency index (RC)
and homoplasy index (HI)—were calculated for trees generated under different optimality
criteria. Phylograms were visualized with the FigTree v. 1.4.0 program [63] and reorganized
in Microsoft PowerPoint (2010). The final alignment and tree were deposited in TreeBASE
under the submission ID: 28667 (http://www.treebase.org; accessed on 20 August 2021).

2.2. Molecular Clock Analysis

Divergence times were estimated using BEAST 1.8.4 [64]. The XML input file was prepared
using BEAUTI v. 1.8.4. The substitution model, clock model and tree prior were set as linked.
The GTR+I+G model was used as the nucleotide substitution model. An uncorrelated relaxed
clock model [65] with the log-normal distribution rates was used for the analysis. Yule speciation
process birth rate was used for the tree prior starting from a randomly generated tree. The
crown age of Botryosphaeriales was set as 110 Mya (SD = 5 Mya) [7].

http://www.treebase.org
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BEAST analyses were run for 60 million generations. Log parameters and trees were
sampled every 10,000th generation. Tracer v. 1.6 [66] was used to check that effective
sample sizes (ESS) were greater than 200. The first 10% of the trees were discarded and the
remaining 5,400 trees were used to generate the maximum clade credibility (MCC) tree
using LogCombiner v1.8.0 and TreeAnnotator v1.8.0. The resulting trees were viewed with
FigTree v.1.4.0 [63] and edited in Microsoft PowerPoint (2010).

2.3. Ancestral State Reconstructions

Bayesian Binary MCMC in RASP 3.2 (Reconstruct Ancestral State in Phylogenies) [67,68]
was used for the ancestral state reconstructions for conidial colour (hyaline or pigmented),
conidial septation (septate or aseptate) and nutritional modes (saprobes, pathogens or endo-
phytes). The evolution tree was generated in BEAST 1.8.4 [64] using the parameters given
under the molecular clock analysis. Dothideomycetes crown group was calibrated using the sec-
ondary calibration data (normal distribution, mean = 290, SD = 30, providing a 95% credibility
interval of 339 Mya) [69]. Botryosphaeriales crown group was calibrated using the secondary
calibration data (normal distribution, mean = 110, SD = 5, providing a 95% credibility interval
of 118 Mya) [7].

BEAST analyses were run for 100 million generations. Log parameters and trees
were sampled at every 10,000th generation. MCC tree was generated by discarding the
first 10% of the trees (1000 trees). The tree file resulting from the evolution analysis was
exported to RASP 3.2. Each terminal in the tree was coded according to Table 2. Bayesian
Binary MCMC trees were constructed using the following settings: 50,000 generations
sampled every 100 generations, 10 chains and 0.1 temperature. State frequencies and
among-site rate variation were set as Estimated (F81) and Gamma (+G), respectively. The
analysis was applied only to Botryosphaeriales species and the character matrix used for this
analysis is provided in Table S1. Two hypotheses were assessed as given below:

Table 2. Parameters of each character used in ancestral state reconstructions.

Character Parameter

Conidial colour Hyaline (A), pigmented (B) and no asexual morph recorded (C)
Conidial septation Aseptate (A), septate (B) and no asexual morph recorded (C)
Nutritional mode Saprobes (A), pathogens (B) and endophytes (C)

Hypothesis 1. All Botryosphaeriales species originated as endophytes and then switched into
saprobes when their hosts died or into pathogens when their hosts were under stress.

Hypothesis 2. There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa.

3. Results and Discussion
3.1. Phylogenetic Analyses

We re-evaluated the phylogenetic relationships within families of Botryosphaeriales
based on LSU and ITS sequence data. In our preliminary phylogenetic analyses, we
used sequence data from LSU, ITS and tef 1 gene regions. Based on the tef 1 resolution,
Pseudofusicoccum and Phyllosticta formed separate groups within Phyllostictaceae, while
Saccharataceae did not form a well-separated clade. Therefore, our final phylogenetic
analyses were performed based on LSU and ITS sequence data.

The combined dataset consisted of 306 strains, representing botryosphaerialean taxa
(Aplosporellaceae = 14, Botryosphaeriaceae = 236, Melanopsaceae = 4, Phyllostictaceae = 19, Planistromel-
laceae = 16, Saccharataceae = 17) and two outgroup taxa, Helicosporium guianense (CBS 269.52) and
Helicomyces roseus (CBS 283.51) from Tubeufiaceae. The aligned dataset comprised 1452 characters
including gaps (LSU = 880, ITS = 572). The best scoring RaxML tree with a final likelihood
value of −19,919.245301 is shown in Figure 3. The matrix had 745 distinct alignment patterns
with 25.42% undetermined characters or gaps. Estimated base frequencies were obtained as fol-
lows: A = 0.240022, C = 0.246955, G = 0.283975, T = 0.229048; substitution rates: AC = 1.641167,
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AG = 3.230258, AT = 1.788585, CG = 1.459944, CT = 7.210110, GT = 1.000000; gamma distribu-
tion shape parameter: α = 0.256314.
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Figure 3. Phylogram generated from ML analysis based on combined LSU and ITS sequence data. 
ML and MP bootstrap support values ≥ 60% and Bayesian posterior probabilities (PP) ≥ 0.90 are 

Figure 3. Phylogram generated from ML analysis based on combined LSU and ITS sequence data.
ML and MP bootstrap support values ≥ 60% and Bayesian posterior probabilities (PP) ≥ 0.90 are
mentioned at the nodes as ML/MP/PP. Strain numbers are noted at the end of the species name. The
tree is rooted to Helicosporium guianense (CBS 269.52) and Helicomyces roseus (CBS 283.51).

In the MP analysis, 775 characters were constant; 173 variable characters were
parsimony-uninformative and 740 (37.28 %) characters were parsimony-informative.
The most parsimonious tree resulted in the following parameters: TL = 6681, CI = 0.261,
RI = 0.825, RC = 0.216, HI = 0.739 (for individual loci, parameters were obtained as fol-
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lows: LSU, TL = 882, CI = 0.385, RI = 0.866, RC = 0.334, HI = 0.615; and ITS, TL = 2303,
CI = 0.283, RI = 0.853, RC = 0.241, HI = 0.717). The average standard deviation of
split frequencies was 0.001 after 3,000,000 generations. In the phylogenetic analyses,
Aplosporellaceae, Melanopsaceae, Planistromellaceae and Saccharataceae segregated with
strong bootstrap support values while, Botryosphaeriaceae and Phyllostictaceae showed
moderate bootstrap support (Figure 3).

Phillips et al. [7] also constructed an ML tree for Botryosphaeriales using ITS and LSU
sequences. However, except for Botryosphaeriaceae and Phyllostictaceae, the arrangement of
Aplosporellaceae, Melanopsaceae, Planistromellaceae and Saccharataceae in the phylogenetic tree
is different from this study. Phillips et al. [7] included 100 strains belonging to 28 genera
in Botryosphaeriales in their analyses, while 306 Botryosphaeriales strains in 32 genera were
used in our study. Even though we used the same loci as Phillips et al. [7], the sequence
alignment was affected by the population size of the samples. This could account for the
topological differences in the ML trees of the two studies.

3.2. Divergence Times

The topology of the MCC tree (Figure 4) resulting from the evolutionary analysis
was similar to the topologies of ML, BI and MP trees. Based on evolutionary analysis,
all six families were established during the Cretaceous period. Botryosphaeriaceae and
Phyllostictaceae diversified during the Cretaceous period, while the remaining four families
diversified during the Paleogene and Neogene periods in the Cenozoic era (0–66 Mya). The
crown and stem ages for each family are tabulated in Table 3.

Table 3. Divergence times of crown age and stem age of families of Botryosphaeriales.

Family Divergence Times of Crown
Age (Mya)

Divergence Times of Stem
Age (Mya)

Aplosporellaceae 42.8 (20.1–68.9) 72.4 (46.9–101.2)
Botryosphaeriaceae 69.9 (50.5–89.5) 81.1 (60.9–102.1)

Melanopsaceae 16.8 (5.1–36.8) 72.9 (49.3–95.7)
Phyllostictaceae 68. 6 (48.4–88.4) 81.1 (60.9–102.1)

Planistromellaceae 53.9 (34.5–72.7) 72.9 (49.3–95.7)
Saccharataceae 52.9 (31.3–79.5) 72.4 (46.9–101.2)

Previously, several studies were conducted to perform the divergence time estimations
for Botryosphaeriales [4,7,70]. The number of taxa, gene regions and calibration points they
used and the resulting crown and stem ages are given in Table 4.

Table 4. Details of the divergence times of crown age and stem age of Botryosphaeriales families in
different studies.

Study Slippers et al. [4] Liu et al. [70] Phillips et al. [7] This Study

No. of taxa 140 364 100 306

Gene regions

SSU, LSU, ITS, tef 1,
β-tubulin and mtSSU

(mitochondrial
ribosomal small

subunit)

LSU, SSU, tef 1 and rpb2 ITS and LSU ITS and LSU

Calibration/s Mean = 0.000113
(SD = 0.000006)

Mean = 582.5 Mya
(SD = 50.15 Mya)

Fossil data
100 Mya

(SD = 150 Mya) fossil
Metacapnodiaceae

Mean = 110 Mya
(SD = 5 Mya)

Mean = 110 Mya
(SD = 5 Mya)

Divergence time of
crown age

(Mya)

Aplosporellaceae - - 40 43
Botryosphaeriaceae 44 44 61 70

Melanopsaceae - - Not estimated 17
Phyllostictaceae 26 27 63 69

Planistromellaceae 38 25 52 54
Saccharataceae - 28 50 53

Divergence time of stem
age

(Mya)

Aplosporellaceae 57 - 94 72
Botryosphaeriaceae 87 52 94 81

Melanopsaceae 75 - 74 73
Phyllostictaceae 87 50 81 81

Planistromellaceae 75 85 81 73
Saccharataceae - 114 74 72
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Figure 4. Maximum clade credibility (MCC) tree for LSU and ITS sequence data using a GTR+G+I 
nucleotide substitution model. The tree was calibrated by setting the crown age of Botryosphaeriales 
at 110 Mya. Values at the nodes are given in millions of years and the blue bars indicate standard 
deviations. 

Figure 4. Maximum clade credibility (MCC) tree for LSU and ITS sequence data using a
GTR+G+I nucleotide substitution model. The tree was calibrated by setting the crown age
of Botryosphaeriales at 110 Mya. Values at the nodes are given in millions of years and the blue
bars indicate standard deviations.

Previous studies of Slippers et al. [4] and Liu et al. [71] revealed that Botryosphaeriales
originated 103 (45–188) Mya. Liu et al. [70] reported the crown age of this order as
114 (73–166) Mya, while Phillips et al. [7] considered it to be at 110 Mya. In our analy-
sis, we used 110 Mya to calibrate Botryosphaeriales. According to results of our analysis,
Botryosphaeriales originated at 109 (99–119) Mya (Figure 4). Generally, the diversification
of Botryosphaeriales may have occurred during the Cretaceous period associated with a
rapid diversification of angiosperms (flowering plants). Liu et al. [70] suggested that orders
of Dothideomycetes evolved within 100–220 Mya (crown age) and according to our study,
Botryosphaeriales evolved within this range. The evolution of families in Botryosphaeriales is
illustrated in Figure 5.

Slippers et al. [4] used SSU, LSU, ITS, tef 1, β-tubulin and mtSSU gene regions for the
molecular clock dating analysis of Botryosphaeriales, while Liu et al. [70] used LSU, SSU,
tef 1 and rpb2 for their analysis (Table 4). However, Liu et al. [70] performed their analysis
for Dothideomycetes and used both secondary data and fossil data for calibrations. In both
studies, most of the crown and stem ages are relatively lower than Phillips et al. [7] and
this study (Table 4).
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In Phillips et al. [7] and this study, the same gene regions and same calibration
points were used to perform the divergence time estimation for Botryosphaeriales with a
different number of taxa. Similar results are shown for crown age and stem age in both
studies. However, there were slight differences (Table 4). Therefore, further studies are
required to investigate how the number of taxa effect crown and stem ages in divergence
time estimation.

Previously, Pseudofusicoccum was placed in Botryosphaeriaceae [4]. Subsequently,
Yang et al. [6] showed that Pseudofusicoccum forms a separate clade at the base of the fam-
ily Botryosphaeriaceae and suggested it as a separate family in Botryosphaeriales. Phillips
et al. [7] accepted Pseudofusicoccum in Phyllostictaceae with support from the morphology
of asexual morphs. The ML and MCC trees (Figures 3 and 4) obtained in this study also
show that Pseudofusicoccum group into Phyllostictaceae as in Phillips et al. [7]. Therefore,
this study accepts Pseudofusicoccum as one of the genera in Phyllostictaceae. Liu et al. [70]
suggested that families should have evolved between 20–100 Mya (crown age) in general.
According to our study, all six families in Botryosphaeriales have evolved within this time
frame (Table 3). Thus, our results support the establishment of the order Botryosphaeriales
and accept Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromel-
laceae and Saccharataceae as families in this order.

3.3. Ancestral State Reconstructions

In ancestral state reconstructions, morphological or ecological data are mapped on
molecular phylogenetic information generated from ML, MP and BI approaches [51]. Ances-
tral state reconstructions for conidial colour and septation, and nutritional mode evolution
in botryosphaerialean taxa used the evolution tree results from BEAST 1.8.4 [64] under the
Bayesian Binary MCMC method in RASP software (Figure 6) [67,68]. Three different nutri-
tional modes were considered, namely endophytic, pathogenic and saprobic to assess the
evolution of nutritional mode analysis. Some botryosphaerialean taxa are hemibiotrophic
(Botryosphaeria dothidea), while some are necrotrophic (Phaeobotryon negundinis). There-
fore, we included hemibiotrophic and necrotrophic modes under the pathogenic mode.
Two hypotheses were tested in the current study as given in the methodology.
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Figure 6. Nutritional modes recorded in Botryosphaeriales taxa.

3.3.1. Ancestral State Reconstructions on Nutritional Modes of Botryosphaeriales Taxa

This analysis was conducted to assess the hypothesis that “All Botryosphaeriales species
originated as endophytes and then switched into saprobes when their hosts died or into
pathogens when their hosts were under stress”. This analysis is based mainly on the results
of previous studies (Table S1). The endophytic nutritional mode in Ascomycota originated
around 590–467 Mya in the stem lineage of Pezizomycotina, and many lineages show an
endophytic ancestral character [72,73]. Based on our analysis, Dothideomycetes evolved with
an endophytic ancestral nutritional mode around 250 Mya. They switched from endophytic
to saprobic around 230 Mya. The supercontinent drift began in the Paleozoic (541–251 Mya),
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followed by the disintegration of the Pangea plate in the Middle Jurassic (176–161 Mya) [74].
These events resulted in the formation of continental amalgamation in the early Cretaceous,
and plants were widely spread during this period. The interaction between plants and
fungi facilitates the fungal colonization on land plants and their ability to adapt to different
environmental conditions [75,76]. This may influence the Dothideomycetes to switch their
nutritional mode from endophytes to saprobic during this period. Promputtha et al. [77]
stated that many endophytes have the capacity to degrade cellulose and lignin. Therefore,
they became part of the decomposer community by switching into saprobes, increasing
saprobic diversity and decomposition rates [78].

This study revealed that most of the botryosphaerialean taxa were pathogens (46%)
and few were recorded as endophytes (26%) (Figure 6). Among the 306 botryosphaerialean
taxa included in the current study, 94 taxa were recorded exclusively as pathogens (31%),
while 68 and 32 taxa were recorded exclusively as saprobes (22%) and endophytes (10%),
respectively (Figure 6). Results of this study indicate that a pathogenic/saprobic ancestral
nutritional mode for Botryosphaeriales evolved at around 109 Mya, which was derived from a
pathogenic/endophytic ancestor around 136 Mya. Later, this pathogenic/saprobic ancestral
nutritional mode diversified into endophytic/pathogenic/saprobic at 100 Mya at the late
epoch of the Cretaceous period. The results of this analysis could not provide support
for our hypothesis, which indicates the endophytic mode to be the ancestral nutritional
mode. These results can be influenced by the fact that most of the botryosphaerialean
taxa recorded and used in this study are pathogens and saprobes (Table S1), which will be
discussed further.

Endophytic species were recorded from all the families of Botryosphaeriales, but the
number of studies is very low compared to the saprobic and pathogenic (Table S1). The
unbalanced taxon sampling for the analysis may exhibit a bias towards the pathogenic
and saprobic modes. Another reason may be that for most of the species in this order, it
is very common to be isolated as a pathogen or a saprobe. This is because pathogenic is
the form where they become obvious, and researchers have focused their efforts on studies
at this stage for economic reasons. Therefore, we do not have evidence to identify their
initial nutritional mode and whether they experience nutritional mode shifts during their
life cycle. For example, Botryosphaeria dothidea has been commonly reported as a serious
plant pathogen, and has also been isolated as an endophyte [10]. Therefore, studies are
needed to check whether we can isolate a species as a pathogen and also as an endophyte
from the same host at different times. Similar to the current study, where unbalanced taxon
sampling exhibits a bias towards the pathogenic and saprobic modes, a study conducted
on Pucciniomycotina has shown mycoparasitism as the ancestral nutritional mode, while
the mycoparasitic mode seems to be the most widespread in Pucciniomycotina [79–81]. This
demonstrates that the taxon sampling for the study and the family composition might
influence the results of ancestral nutritional mode studies.

In addition, warm environmental conditions that existed in the early epoch of the
Cretaceous period (145–100.5 Mya) might also influence the ancestral endophytic taxa
to become saprobic. Therefore, this event of diversifying endophytic taxa to saprobic
should have occurred at around 109 Mya. In a fossil study at the Deccan Intertrappean
Beds of India, both saprobic and pathogenic fungi were recorded in the late Cretaceous
(100.5–66 Ma) [82], providing evidence for the occurrence of saprobic and pathogenic fungi
in the late Cretaceous period other than endophytes. These may be the reasons why
Botryosphaeriales have a pathogenic/saprobic nutritional mode in their ancestors. However,
it is difficult to identify the fungal endophytes in fossil materials because it is hard to
determine whether the host was alive and functioning or was going through senescence or
decay at the time of colonization [83,84].

A study conducted by Schoch et al. [85] using the phylogeny of extant lineages found
saprobic and parasitic modes among the ancestral characters of Pezizomycotina. Similarly,
Savile [86] proposed the existence of parasitic fungi on vascular plants in the early stages
of territorialization. Using this evidence, Lücking et al. [87] formulated the ‘green scenario’
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which stated that parasitic fungi from freshwater bodies co-evolved with the ancestors
of land plants and diversified to many lifestyles [81]. Together, with all these facts and
evidence for the existence of pathogenic and saprobic ancestral modes, we can explain that
the pathogenic/saprobic nutritional mode resulted as the ancestral nutritional mode for
Botryosphaeriales in our analysis.

As time progresses, the nutritional mode of botryosphaerialean taxa diversified into
all three nutritional modes, i.e., endophytes/saprobes/pathogens (around 100 Mya), sug-
gesting multiple switching events during their evolution (Figure 7). Flowering plants and
other flora, such as deciduous trees (modern plants), ferns and grasses were abundant
during the Cretaceous and Paleogene periods [88,89]. Angiosperms diversified rapidly
during the Cretaceous period and Botryosphaeriaceae species are mostly diverse on An-
giosperms [4]. Batista et al. [90] mentioned that the high host diversity may affect the
fungal diversity in different plant functional groups. Therefore, the diversity of the plant
hosts is one of the reasons for the change in the nutritional modes in botryosphaerialean
species. This is also evident in other fungal lineages. Some studies have shown that the
nutritional mode switch from the ancestral insect-parasitic or plant-pathogenic fungi to en-
dophytic ascomycetes [91,92], and some show a switch from lichen-forming, endolichenic
and saprotrophic fungi to endophytic fungi [93].

Stress or pressure on plants is a factor that changes with climatic conditions or ex-
treme weather conditions (high temperatures, cold, drought or extreme rain) and the effect
of herbivores or pests on plants [10]. Under this stress or pressure, many endophytic
fungi became pathogenic to plants [10,73]. According to the results of our analysis, en-
dophytic/pathogenic botryosphaerialean taxa diversified into pathogenic taxa at around
78 Mya in the late epoch of the Cretaceous (Figure 7). During the Cretaceous period,
warmer and humid environments that existed caused increased stress on plants and led to
botryosphaerialean taxa changing their nutritional mode from endophytic to pathogenic.
Endophytic taxa also become saprobic when environmental conditions are unfavourable to
the host or when the host dies [73,94].

In their study, Hyde et al. [73] suggested two scenarios for the evolution of
Diaporthomycetidae, i.e., (1) The ancestors of Diaporthomycetidae had endophytic lifestyles
that colonized inside the plants similar to some aquatic hyphomycetes that also share
endophytic ancestors. These endophytic fungi become active when the plants are under
stress or senesced and convert into either saprobes to decay the dead plant parts or
pathogens to cause disease. (2) The ancestors of Diaporthomycetidae had non-specific
saprobic lifestyles and at some point, they became plant pathogens in specific plants to
cause diseases. Based on our results, we also can accept the first hypothesis for the class
Dothideomycetes. However, for Botryosphaeriales, none of the hypotheses are applicable.

However, with only a few studies on endophytic botryosphaerialean taxa, we were
unable to provide conclusive evidence for our hypothesis that the endophytic nutritional
mode could be ancestral for Botryosphaeriales species, and later they diversified into saprobic
and pathogenic modes. Therefore, further studies are required related to endophytic species
in Botryosphaeriales to investigate this hypothesis.

3.3.2. Ancestral State Reconstructions for Conidial Colour and Septation in
Botryosphaeriales Taxa

In this analysis, we assessed our second hypothesis that “There is a link between
the conidial colour and nutritional mode in botryosphaerialean taxa”. The evolution
of two morphological characters, conidial colour and septation, was reconstructed by
employing the tree generated from the evolution analysis (Figure 7). Two parameters were
considered: hyaline and pigmented. All light brown, brown and dark brown conidia were
considered as pigmented. Septate and aseptate parameters were used for conidial septation.
All conidia with one or more septa were included under the septate parameter.
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terminals show the most likely states (MLS) only and the internal nodes represent the marginal 
probabilities for each ancestral area. 

  

Figure 7. Ancestral character state analysis for nutritional mode (left) and conidial colour and
septation (right) in Botryosphaeriales, using Bayesian Binary MCMC approaches. Pie charts at terminals
show the most likely states (MLS) only and the internal nodes represent the marginal probabilities
for each ancestral area.
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Ancestral character analyses of conidial colour and septation indicate the hyaline
and aseptate conidia as the common ancestral character in both Botryosphaeriales and
Dothideomycetes. This is not the first study to show hyaline fungal structures as an ancestral
form. The hyaline appressoria are considered ancestral in appressorial fungi [54]; similarly,
hyaline ascospores in Xylariomycetidae are regarded as ancestral [95].

At around 49 Mya and 47 Mya in the Eocene of the Paleogene (33.9–56 Mya), botryosphaeri-
alean taxa diversified their conidial colour from hyaline to pigmented and conidial septation
from aseptate to septate, respectively. Hyaline to pigmented and septate to aseptate conidia occur
among taxa in Botryosphaeriaceae. Most of the conidia in Phyllostictaceae are hyaline and aseptate,
while few are pigmented and septate [3,39,41,96]. Phyllosticta philoprina and Pseudofusicoccum
artocarpi have pigmented conidia and among them, P. artocarpi has septate conidia (Table S1).
Both Pseudofusicoccum ardesiacum and P. kimberleyensis have hyaline, septate conidia [19,97].
Hyaline and pigmented conidia occur in Melanopsaceae and Aplosporellaceae, respectively, and
are aseptate in both families. Planistromellaceae have both septate and aseptate hyaline conidia.
In Saccharataceae, most of the species have hyaline, aseptate conidia, while few have hyaline,
septate conidia (Table S1).

The fossil records of Diplodia (Sphaeropsis) have been recorded from permineralized
chert from the Deccan Intertrappean bed, India [98]. Two-celled spores 13 µm long and
thick-walled, oval and pycnidia have been recorded in the permineralized specimens
of D. intertrappea [99]. Therefore, septate conidia were recorded in D. intertrappea in
ancient times. Similarly, fossil records of Diplodites rodei (Basionym: Diplodia rodei) and
D. sahnii (Basionym: Diplodia sahnii) have been recorded from the Mohgaonkalan locality
in Chhindwara District, Madhya Pradesh, India [100]. These fossils belonged to the Late
Cretaceous period [100]. According to the fossil records, Diplodites had one-septate dark
brown or aseptate light brown conidia [100,101]. Fossils of Diplodites are morphologically
similar to the extant fungi of Diplodia, Dothiorella and Macrophoma [100]. This provides
evidence that in the late Cretaceous period, ancestors of Diplodia had aseptate or one-
septate, light to dark brown conidia [100].

The evolutionary study (Figure 4) indicates Botryosphaeriales originated and evolved during
the Cretaceous (66–145 Mya) and Paleogene periods (23–66 Mya). A warm environment existed
during the Cretaceous period, which may be in response to volcanic activity and increased
atmospheric greenhouse gas concentrations [88]. The temperature of the sea surface during the
Cretaceous period varied between 37–42 ◦C [88]. During the Paleogene period, the temperature
dropped to about 23–29 ◦C (±4.7 ◦C) and formed a cool and dry environment [89]. According
to Hagiwara et al. [102], temperature mainly affects conidial pigmentation. As they suggested,
most species produce pigmented conidia at 25 ◦C or 37 ◦C [102].

At around 49 Mya, some members of Botryosphaeriales diversified from hyaline conidia
to pigmented, while others remained as hyaline. Melanized spores survive under extreme
environmental conditions, such as excessive heat or cold, extremely dry conditions, extreme
pH or osmotic conditions, hypersaline environments, polychromatic radiation, radionu-
clides and UV radiation [47]. Non-pigmented spores die under hard UV radiation within a
few minutes, but melanized spores survive [46,47]. Based on these observations and our
results, we conclude that hyaline conidia diversified to pigmented during the Eocene epoch
of the Paleogene period for survival under harsh environmental conditions, such as high
temperature variation. The Paleocene–Eocene was considered as the most significant time
period of global warming and was followed by a long cool and dry period [103].

In addition, we evaluated sexual morph characters, i.e., ascospore colour and septation
in preliminary studies. Due to a lack of variation and representative data, reliable results
were not obtained. Therefore, we did not include ascospore characters for the ancestral
character analyses in this study.

Belozerskaya et al. [47] showed that both saprobic and pathogenic taxa have melanized
conidial walls that appeared as pigmented conidia. Our study confirmed that there was
link between conidial colour and nutritional mode in botryosphaerialean taxa, which
supports our second hypothesis. Based on the results of the ancestral character analyses,
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the genera with pigmented conidia show pathogenic and saprobic nutritional modes
(Figure 8). Exceptions to this are Endomelanconiopsis species that have pigmented conidia,
even though most of them are endophytic (Figure 8). Most Botryosphaeria and Neofusicoccum
species are pathogenic and unlike others, most of them have hyaline conidia. Therefore,
our second hypothesis is not applicable for all the genera in Botryosphaeriales. Most of the
pathogenic genera have pigmented conidia in this order.
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4. Conclusions

In this study, updated phylogenetic analyses (ML, MP and BI), evolutionary diver-
gence times, ancestral character analyses for conidial colour and septation and nutritional
mode analyses are provided for all families in Botryosphaeriales. Based on our findings,
we conclude: (1) Six families, namely, Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae,
Phyllostictaceae, Planistromellaceae and Saccharataceae in this order were well-separated in
our phylogenetic analyses. (2) According to divergence times, Botryosphaeriales may have
originated in the Cretaceous period in the Mesozoic era, and all six families evolved dur-
ing this period. Later, Botryosphaeriaceae and Phyllostictaceae divided into genera during
the Mesozoic era (66–251.90 Mya), while other families divided during the Cenozoic era
(66 Mya–present). Thus, the results of our divergence times estimation also support es-
tablishing Botryosphaeriales as an order and accepting Aplosporellaceae, Botryosphaeriaceae,
Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae as families in this or-
der. (3) Ancestral character analyses of conidial colour and septation and nutritional
mode revealed that the common ancestor in Botryosphaeriales had hyaline, aseptate conidia
and a pathogenic/ saprobic nutritional mode. Later, at 100 Mya in the late Cretaceous
period, this pathogenic/saprobic ancestral nutritional mode diversified into an endo-
phytic/pathogenic/saprobic. Botryosphaerialean taxa diversified their conidial colour
from hyaline to pigmented and conidial septation from aseptate to septate in the Paleo-
gene period. During evolution, Botryosphaeriales species diversified their conidial colour,
septation and nutritional mode in response to harsh environmental conditions. Here, we
investigated the hypothesis that the common ancestor of botryosphaerialean taxa had an
endophytic nutritional mode and later deviated into saprobic or pathogenic when their
hosts died or were under stress. However, due to the very low number of endophytic
studies compared to the saprobic and pathogenic data, it was not possible to draw strong
conclusions for the above hypothesis. This study revealed that further studies of endo-
phytic taxa are required and suggested that the taxon sampling and the family composition
might have affected the results of ancestral nutritional mode studies. (4) We also tested
another hypothesis that related to the link between conidial colour and nutritional mode
in botryosphaerialean taxa. Under this hypothesis, we considered the linkage between
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conidial pigmentation and the pathogenicity of Botryosphaeriales taxa. We suggest that the
above correlation is applicable for most of the pathogenic genera in Botryosphaeriales, but
not for all genera.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof9020184/s1, [104–293]. Table S1: Nutritional mode
variation and conidial characters (colour and septation) and GenBank accession numbers of the
sequences used in phylogenetic analysis.
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