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Abstract: The complex microbial community found in the human gut consist of members of multiple
kingdoms, among which are bacteria and fungi. Microbiome research mainly focuses on the bacterial
part of the microbiota, thereby neglecting interactions that can take place between bacteria and fungi.
With the rise of sequencing techniques, the possibilities to study cross-kingdom relationships has
expanded. In this study, fungal-bacterial relationships were investigated using the complex, dynamic
computer-controlled in vitro model of the colon (TIM-2). Interactions were investigated by disruption
of either the bacterial or fungal community by the addition of antibiotics or antifungals to TIM-2,
respectively, compared to a control without antimicrobials. The microbial community was analyzed
with the use of next generation sequencing of the ITS2 region and the 16S rRNA. Moreover, the
production of SCFAs was followed during the interventions. Correlations between fungi and bacteria
were calculated to investigate possible cross-kingdom interactions. The experiments showed that
no significant differences in alpha-diversity were observed between the treatments with antibiotics
and fungicide. For beta-diversity, it could be observed that samples treated with antibiotics clustered
together, whereas the samples from the other treatments were more different. Taxonomic classification
was done for both bacteria and fungi, but no big shifts were observed after treatments. At the level of
individual genera, bacterial genus Akkermansia was shown to be increased after fungicide treatment.
SCFAs levels were lowered in samples treated with antifungals. Spearman correlations suggested that
cross-kingdom interactions are present in the human gut, and that fungi and bacteria can influence
each other. Further research is required to gain more insights in these interactions and their molecular
nature and to determine the clinical relevance.

Keywords: gut microbiota; fungi; bacteria; in vitro model; cross-kingdom relations

1. Introduction

In the past decades, the development of techniques for the analysis of the microbial
community in the human gut has led to new insights in this ecosystem. The use of next-
generation sequencing allowed the study of microorganisms that are culture-independent
and showed the complexity of the gut microbiota [1]. The majority of research on the
human gut microbiota is focused on the bacterial component, but the use of sequencing
techniques has also shown that fungi are an important component of the microbiota [2].
Several studies have described the gut fungal community, also named mycobiome, and how
these can be linked to several diseases, not only gastrointestinal (GI), but also metabolic
diseases [3–6]. Both bacteria and fungi can be influenced by external factors, such as diet
or antibiotic use [7–9]. Since these two communities share the same environment, the
influence on one kingdom is hypothesized to also lead to a change in the other. These
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fungal-bacterial cross-kingdom interactions are largely unknown, and with that, also the
influence of these interactions on host health.

An example of a disturbance of these fungal-bacterial interactions is the disruption of
the bacterial community by antibiotic use that can lead to dysbiosis, which can subsequently
lead to the overgrowth of opportunistic pathogenic fungi, such as Candida [10]. The
development of antibiotic-induced dysbiosis has been described before [11]. The removal of
not only pathogenic microbes but also commensals by antibiotic use has led to a disruption
of the complex microbial community, which can lead to risks for the human health, such as
Clostridioides difficile infection after antibiotic use [12]. The widespread use of antibiotics
has also led to a rise in fungal infections that occur after this treatment. These fungal
infections are often difficult to treat and have a high mortality rate [13]. Similarly, treatment
with anti-fungal treatment leads to disruptions in the bacterial community [14]. More
information on how these communities interact and how this is influenced when one or the
other community is disrupted can possibly aid in the prevention of some fungal infections
that are a problem, particularly in e.g., hospitalized or immunocompromised patients.

The use of sequencing techniques has helped in the study of the microbial community
in the gut, but there are still challenges. The diet is an important source of fungi, and it is
not always clear if the fungi found through sequencing of fecal samples are fungal species
that can colonize the gut or are transient species from the diet that only pass through the
GI tract [15]. This makes it difficult to interpret results and to show interactions between
bacteria and fungi. A tool that can give additional information on these two kingdoms
within the gut microbiota and how these are modulated is an in vitro model [16]. There
are several examples of in vitro models of the GI tract (stomach, small intestine, and large
intestine). The majority of the microbial community in the gut is found in the large intestine,
and therefore the complex computer-controlled in vitro model of the colon (TIM-2) was
used in this study to investigate the bacterial and fungal communities and how these
interact [17]. The TIM-2 system has been used previously for the study of the bacterial
microbiota in the human colon [18,19]. The model allows for the control of environmental
factors such as temperature, pH, and oxygen levels, and it has a complex filtration system
that prevents the accumulation of metabolites, thereby maintaining physiological levels of
these metabolites. TIM-2 is inoculated with a pooled microbiota to allow all experiments
to start with the same starting microbiota [20]. After an adaptation period where the
microbiota can get used to the new environment, an intervention can be performed, usually
for a test period of 72 h. This allows for the study of the mycobiome and microbiome over a
longer period of time than just a single time-point of a fecal sample, which could give more
insights into the interactions between these kingdoms. The aim of this study therefore was
to use TIM-2 to study fungal-bacterial interactions, and to investigate what happens if one
or the other of these communities is disrupted.

2. Materials and Methods
2.1. TNO’s In Vitro Model of the Colon (TIM-2)

To mimic the realistic conditions of the colon, a sophisticated computer-controlled
in vitro model (TIM-2) was used. The model is explained in detail in [17]. In short, in the
model’s pH and temperature are controlled to resemble the circumstances in the colon of a
healthy adult, at 5.8 and 37 ◦C, respectively. The pH is controlled by the addition of 2M
NaOH. An anaerobic environment is created by a constant flush of N2 through the model
and produced metabolites are removed with the use of a dialysis system. At the start of
the experiment, the model is inoculated with a fecal pool mixed with a dialysis solution
(explained below), which is the start of the adaptation period, to allow the microbiota to
adapt to its new environment. The standard growth medium (described below) is added
automatically at a constant rate. After the adaptation period, the test period is started where
the different treatments are introduced. The model has been validated and extensively
used for studying the bacterial component of the microbiota.
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2.2. Fecal Pool

From healthy adult volunteers (n = 6, 50% female), fecal samples were collected and
homogenized under anaerobic conditions. The samples were mixed, and after snap-freezing
in liquid nitrogen, samples were stored at −80 ◦C until the start of the experiment. All
experiments were performed with the same fecal pool. Preparation of the fecal pool is
described in more detail in [20]. Before the start of the experiment, the tubes containing
the fecal pool were thawed at a constant temperature (37 ◦C) in a water bath. Next, they
were mixed 1:1 with dialysis solution that contained 2.5 g/L K2HPO4·3H2O, 4.5 g/L NaCl,
0.005 g/L FeSO4·7H2O, 0.5 g/L MgSO4·7H2O, 0.45 g/L CaCl2·2H2O, 0.05 g/L bile and
0.4 g/L cysteine-HCl, plus 1.5 mL vitamin mixture (containing 1 mg/L menadione, 2 mg/L
D-biotin, 0.5 mg/L vitamin B12, 10 mg/L pantothenate, 5 mg/L nicotinamide, 5 mg/L
p-aminobenzoic acid and 4 mg/L thiamine). This fecal-dialysate mixture was introduced
anaerobically in the TIM-2.

2.3. Test Products

During the adaptation period, the standard growth medium was used as feeding. This
is the simulated ileal efflux medium (SIEM), which was created to resemble the undigested
dietary components that reach the colon [21], and contains 100 g CHO-medium (containing
12 g/L pectin, 12 g/L xylan, 12 g/L arabinogalactan, 12 g/L amylopectin, 100 g/L starch),
25 g TBCO 6.25× (containing 270 g/L Tween 80, 375 g/L bactopepton, 375 g/L casein,
6.25 g/L ox-bile), 2 g MgSO4 (50 g/L), 2 g cysteine (20 g/L), 0.2 mL vitamin mixture as
described above, 4 mL salts solution (containing 4.7 g/L K2HPO4·3H2O, 8.4 g/L NaCl,
0.8 CaCl2·2H2O, 0.009 g/L FeSO4·7H2O, 0.02 g/L haemin) and 1 mL antifoam emulsion.
During the test period, SIEM was also used as growth medium, with the addition of
fungicide or antibiotics. The fungicide used was cycloheximide, which was added as a
shot (1.5 mg) at the start of the test period, and added to the SIEM (0.75 mg/day) and
the dialysate (10 mg/L). As antibiotics, an equal mixture of ampicillin, oxytetracyclin and
kanamycin was added at the same level as the fungicide, with in the shot a total of 1.5 mg
antibiotics. The experiment with SIEM without any addition was run as a control.

2.4. Test Design

The experiment started with the inoculation of the fecal pool in the model, which
marked the start of the adaptation period for 16 h. After the adaptation period, the test
period was started, which lasted 72 h. Samples were taken from the lumen and the dialysate
at the start of the experiment and every 24 h. The interventions of SIEM, SIEM+fungicide
and SIEM+antibiotics were done in duplicate.

2.5. Gut Mycobiota and Microbiota Composition

For the determination of both the fungal and bacterial composition, DNA was isolated
from TIM-2 samples. The DNA isolation was started with a bead-beating step as described
before [22], in combination with the QIAamp Fast DNA stool mini kit from Qiagen (Venlo,
The Netherlands). To measure the DNA concentration, the Qubit HS Assay and a Qubit 3.0
Fluorometer (Invitrogen, Waltham, MA, USA) were used.

For the mycobiota composition, the internal transcribed spacer unit 2 (ITS2) was se-
quenced with barcoding according to the Fungal Metagenomic Sequencing Demonstrated
protocol of Illumina with some changes (Nextera XT DNA Library Preparation Kit, Nex-
tera XT Index Kit v2 Set A, Illumina, Eindhoven, The Netherlands). Input DNA was
50 ng/µL and the PCRI program was set at 30 cycles. The primer set used was ITS F (5′-
GCATCGATGAAGAACGCAGC-3′) and ITS R (5′-TCCTCCGCTTATTGATATGC-3′) [23].
Fragment sizes were analyzed using the Bioanalyzer with the DNA1000 kit (Agilent, CA,
USA), and quantification, normalization, and equimolar pooling was done before loading
the library on the Illumina Miseq system (Miseq reagent kit v3, Illumina). For the microbiota
composition, the V3-V4 region of the 16S rRNA gene was sequenced according to the Illu-
mina protocol with barcoding (Nextera XT DNA Library Preparation Kit, Nextera XT Index
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Kit v2 Set A, Illumina). The primer set used was 341F (5′-CCTACGGGNGGCWGCAG-3′)
and 785R (5′-GACTACHVGGGTATCTAATCC-3′). The library was loaded on the Illumina
Miseq system according to the manufacturer’s protocol (Miseq reagent kit v3, Illumina).
Both libraries were sequenced on the Miseq system with the use of the Local Run Manager
Generate FastQ Analysis Module v3 to generate fastq files. Further analysis of fastq files
was performed with the Quantitative Insights Into Microbial Ecology 2 (QIIME2) software
package (version 2019.7) [24,25]. For the ITS2 sequences, the QIIME2 plugin Q2-ITSxpress
was used to trim ITS sequences [26]. Demultiplexing, quality filtering, and denoising was
performed with the dada2 plugin [27]. The UNITE database (version 02-02-19) was used
as reference database for the classification of ITS2 sequencing data. The SILVA database
(version 132) was used as reference database for the classification of 16S rRNA sequencing
data. QIIME2 was used to obtain alpha diversity indexes (observed features and effective
Shannon diversity). Further analysis was done using Rstudio (R version 4.0.4) using the
packages qiime2R, phyloseq, ggplot2, ggpubr, FSA and complexHeatmap. Groups were
compared using the Kruskal–Wallis test, with Dunn’s test as post-hoc analysis. Beta di-
versity was visualized as Bray Curtis dissimilarity and Jaccard similarity and visualized
as principal coordinate (PCoA) plots. Differences between groups were analyzed using
PERMANOVA. GraphPad Prism version 9.3.0 was used for the visualization of SCFA data.

2.6. Short-Chain Fatty Acid (SCFA) Analysis

SCFAs (acetate, propionate, and butyrate) in the lumen and dialysate samples were
analyzed with gas chromatography–mass spectrometry (GC-MS). Samples were prepared
for GC-MS as described before [28]. In short, the samples were centrifuged and formic acid,
2-ethyl butyric acid (internal standard) and methanol were added to the supernatant. The
analysis was carried out on a GC-MS (8890 GC System; Agilent Technologies, Amstelveen,
The Netherlands) equipped with a PAL3 RSI 85 autosampler (Agilent) by injecting 1 µL
sample on a DB-FATWAX Ultra Inert column (30 m, 0.25 mm, 0.25 µm, Agilent). The
temperature settings of the injector port, oven, flame-ionization detector, and mass spec-
trometer detector were 250, 200, 275 and 225 ◦C, respectively. The flow rate over the column
was 1.2 mL/min. With the use of calibration curves of known quantities of standards,
quantities of SCFAs in the samples were determined.

3. Results and Discussion

To investigate the fungal-bacterial interactions in TIM-2, the fungal and bacterial
populations were analyzed on diversity, and perturbations were investigated when one
of the populations was disrupted with the antimicrobials. In Figure 1, the alpha-diversity
for the microbiota and mycobiota were compared for the different time points to see how
time influences these diversity indexes and if this was different for bacteria and fungi. In
Figure 1a,b, the observed features are shown at ASV level. As described before in other
studies, the observed features for bacteria are much higher when compared to fungi, with
a median of 242 and 14, respectively. In the fungal population, for observed features, a
small decrease can be observed over time. Different time points were compared with the
Kruskal-Wallis test and for fungi this change was significant (p < 0.05). Post-hoc Dunn’s
test was performed and showed that t0 vs. t72 and t24 vs. t72 were significantly different.
The effective Shannon index was also determined for both bacteria and fungi (Figure 1c,d),
with a median of 1470 and 11, respectively, and this was also higher for bacteria compared
to fungi. The effective Shannon did not change significantly between the different time
points for bacteria and fungi.
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Figure 2. Alpha diversity measures different treatments ‘observed features’ and ‘effective Shannon’;
(a) + (c) = bacteria, (b) + (d) = fungi.

To see if the samples would cluster together for the different time points or the
treatments, the beta diversity was analyzed for both bacterial and fungal communities. The
Bray Curtis dissimilarity and Jaccard similarity scores for bacteria are shown as a PcoA plot
in Figure 3a,b. It can be observed that the samples that were treated with antibiotics cluster
together, whereas the samples with SIEM and fungicide as intervention were more spread
out. The Bray Curtis dissimilarity scores for the different inventions were compared using
PERMANOVA, and samples treated with antibiotics were significantly different compared
to both other inventions (p < 0.05). For the Jaccard index, all pairwise comparisons were
significant (p < 0.05). The t0 samples treated with antibiotics and fungicide are more close
together, after which they move away from each other when the experiment continues.
From the Bray Curtis and Jaccard indexes for fungi (Figure 4a,b), clustering for the different
treatments was less clear. The Bray Curtis dissimilarity scores were not significantly
different when compared (PERMANOVA), but the pairwise comparison of the Jaccard
index between the fungicide and the antibiotic treatment was significant (p < 0.05). For the
different time points, there is variation observed. This greater variability in the mycobiome
is similar to what was found before.

Antibiotic treatment has been linked to the disruption of the commensal bacterial
community found in the gut, which could lead to a reduction in beneficial species and an
increase in antibiotic-resistant and/or pathogenic bacteria [29]. This is especially the case
when broad-spectrum antibiotics are used that can affect a wide range of Gram-negative
and Gram-positive bacteria. Antibiotic treatment has also been shown to affect the fungal
community found in the gut. Treatment with antibiotics can be followed by an increase
in fungal species, which can lead to fungal infections [30,31]. These data suggest that
bacteria can have an inhibitory effect on the growth of fungi. This could be because they
compete for nutrients, but also metabolites produced by bacteria could have an effect on
the mycobiota [32–34]. These findings are confirmed in a mouse model, where normal mice
were more resistant to pathogenic fungi than mice treated with antibiotics [35]. It was also
shown that mice treated with antibiotics showed significant changes in their gut microbiota,
and it takes a considerable amount of time for the microbiota to return to the state before
the treatment [36,37].

The effect of anti-fungal treatment on gut bacterial and fungal species is less investi-
gated. Human data is scarce, but several studies on mice show that anti-fungal treatment
could have an effect on the bacterial component of the gut microbiota. In a mouse model
where mice were treated with anti-fungal treatment, the fungal diversity was decreased,
whereas bacterial diversity was increased compared to controls [14]. Another study in
mice showed that mice treated with anti-fungal drugs showed changes in the bacterial
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composition [38]. The introduction of five species of fungi in gnotobiotic mice induced
alterations in the gut bacteria [39].
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In addition to the diversity analyses, taxonomic classification of samples was also
done. In Figure 5, the bacterial relative abundance for the different samples is shown at the
phylum and genus level. The most abundant phyla found in all samples were Bacteroidetes
and Firmicutes (Figure 5a). No big shifts could be seen for the different treatments. The
20 most abundant genera are also shown; in these genera also, no significant differences
between the treatments were observed (Figure 5b). Other studies on the effect of fungicides
on the microbiota do describe an effect. In a study on the effect of oral exposure to the
fungicide carbendazim, disturbances were observed in mice treated with this fungicide. A
reduction of the relative abundance of Bacteroidetes and an increase of Firmicutes, Actinobac-
teria, and Proteobacteria was found [40]. In another study on mice, on the effect of exposure
to propamocarb on gut microbiota, changes were observed. The relative abundances of the
genera Oscillospira, Parabacteroides, Desulfovibrio, Ruminococcus, Bacteroides, Dehalobacterium,
Butyricimonas, Prevotella, and Dorea were different after exposure to the fungicide [41]. Here,
cycloheximide was used, which may have led to different results.
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With the use of a Kruskall–Wallis test, significant differences for the genera were
checked between the different treatments. From this, it was shown that Akkermansia was
higher in the samples treated with fungicide (Figure 6). The increase of Akkermansia after
fungicide treatment was also seen in mice [42]. Here, mice were treated with tebuconazole,
after which significant changes in the gut microbiota were observed, with in particular
an increase in Akkermansia. Akkermansia is found in the outer mucus layer of the gut and
plays an important role in maintaining the mucus layer [43]. In addition, it regulates tight
junction proteins, thereby regulating the intestinal barrier function [44]. A reduction in
Akkermansia levels could have an effect on the barrier of the intestine and could thereby
induce colonic inflammation.

Taxonomic classification was also done for the mycobiota (Figure 7). Here, the phyla
Ascomycota and Basidiomycota were most abundant, but some variation in the ratio between
the two phyla can be seen (Figure 7a). The 20 most abundant genera are shown in Figure 7b.
The dominance of Candida can be observed in several samples, but especially in the treat-
ment with antibiotics, this genus becomes dominant over the course of the experiment. The
outgrowth of Candida after antibiotic treatment is also described in literature. E.g., Gutierrez
et al. describe the colonization of C. albicans after broad-spectrum use of antibiotics in
mice [45]. Gut bacteria can have an influence on fungal proliferation of Candida or other
fungi by the production of metabolites, e.g., cell wall components, thereby directly influ-
encing the fungi. The effect could also be indirect, where bacteria influence host responses,
which in turn affect fungal growth [46]. An example of how bacterial metabolites can influ-
ence fungi is the promotion of C. albicans hyphal growth after antibiotic treatment in mice,
caused by the release of bacteria peptidoglycan in the gut lumen [47]. In another study, the
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proliferation of C. albicans was inhibited in a continuous-culture bioreactor system, when
bacterial metabolites derived from 50 strains from human fecal samples were added [33].
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Moreover, short-chain fatty acids (SCFAs) have shown to have an effect on fungal
growth, therefore next to the gut microbiota, the SCFAs (acetate, propionate and butyrate)
were also determined in the lumen and dial samples of the TIM-2 experiments. These SCFA
levels were compared for the different treatments (Figure 8).
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Figure 8. Cumulative SCFA levels (mmol/L) for the different treatment groups.

As has been described in the literature, mainly acetate was found in the samples,
along with smaller amounts of propionate and butyrate. The disruption of the bacterial
community after fungicide treatment can lead to altered SCFA levels in the gut. In line
with this, levels found in the treatments SIEM and antibiotics were slightly higher when
compared with fungicide treatment. Wu et al. found that after exposure with the fungicide
propamocarb, the SCFA propionate and the BCFA isobutyrate were significantly increased
in fecal samples of mice [41]. Research on the effect of fungicides on SCFAs is scarce. The
effect of antibiotic use on SCFA production was previously studied using TIM-2, where the
SCFA levels were also not effected, similar to what was observed in the current study [48].
The interplay between bacteria, fungi, and SCFAs should be further investigated to get
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more insights into these processes. There are some examples where SCFAs were shown to
have an inhibitory effect on fungal growth. For instance, SCFAs have been shown to have
an inhibitory effect on C. albicans growth in vitro by influencing germ tube formation and a
reduction of fungal metabolic activity in biofilms [49].

The results above suggest that interactions between bacteria and fungi are present
in the gut. Correlations were studied between bacteria and fungi to see if interactions
between specific species were present. The correlations were performed in the groups
with the different treatments. The correlations between fungal and bacterial genera are
shown in Figures 9 and 10. In the samples treated with antibiotics, several correlations
between genera were found (when these were present in at least 20% of samples; Figure 9).
The fungal genera Agaricus and Pichia were positively correlated with Ruminococcus and
Erysipelotrichaceae. One of the members of the genus Agaricus is A. bisporus, also known as
the white mushroom. Members of this genus possibly have prebiotic properties [50]. In
pigs fed with Agaricus, levels of Ruminococcaceae were increased, suggesting that Agaricus
can have a positive effect on the growth of these bacteria [51]. The family Erysipelotrichaceae
is commonly described as an inhabitant of the human gut, and in this study, it is positively
correlated with the fungal genus Pichia. Previous research shows that this bacteria can
potentially grow out after treatment with broad-spectrum antibiotics [52]. The fungal genus
Aureobasidium was shown to be negatively correlated with Lachnospira in the group treated
with antibiotics. Aureobasidium is a yeast that can be found in diverse habitats. They show
antimicrobial activity against bacteria and fungi and are therefore used in agriculture and
industry [53]. The abundance of Lachnospira is positively correlated with the consumption
of fruits and fiber [54]. They are known fiber and pectin degraders, and with the products
released with this degradation, Lachnospira can influence the growth of other bacteria via
cross-feeding [55,56].
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samples were included.

In the group treated with fungicide, the fungal genus Cladosporium was positively
correlated with several bacteria (Figure 10): Erysipelothrichaceae, Clostridiales vadin BB60
group, Eubacterium coprostanoligenes group, and Desulfovibrio. The fungus Malassezia was
positively correlated with the Ruminococcus gauvreauii group, Eubacterium rectale group, and
Turicibacter, whereas Candida was negatively correlated with these bacteria.

These correlations were found after treatment with antibiotics or fungicide and not
in the samples without treatment. This suggests that these treatments can cause a shift in
the microbiota. The correlations that were found in this study should be explored further
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to see if they have biological relevance and if they can be replicated in vivo. More in vitro
experiments could help in unraveling mechanisms.
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4. Conclusions

In conclusion, in the experiment with human fecal samples performed in TIM-2
where the microbiota was treated with antibiotics or fungicide, the bacterial communities
were more diverse compared to fungi. No significant differences in alpha diversity were
observed between the different treatment groups. From the beta diversity analyses, it could
be observed that samples treated with antibiotics clustered together, whereas SIEM and
fungicide samples were more spread. Taxonomic classification of both bacteria and fungi
was performed, but no big shifts were seen after treatment. The bacteria Akkermansia
was increased after fungicide treatment. SCFAs levels were determined, and these were
slightly lower in samples treated with fungicide. Correlations between fungi and bacteria
were made. These correlations suggest that cross-kingdom relations are present and that
they can influence each other. Further research is needed to gain more insight into these
relationships. For instance, absolute numbers of taxa should be evaluated rather than just
relative abundance to see if the total (viable) count of bacteria and/or fungi changed upon
antimicrobial treatment.
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