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Abstract: Genomic analysis has demonstrated that many fungi possess essential gene clusters for
the production of previously unobserved secondary metabolites; however, these genes are normally
reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become
treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters
under stress or special conditions can improve the titers of known compounds or the production of
novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a
powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors
of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in
the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene
clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic
modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic
acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical
epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive
natural products through external cues of fungi, mainly based on the research progress in the period
from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be
induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological
activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.

Keywords: fungal biosynthetic gene cluster; cryptic secondary metabolite; chemical epigenetic modification;
biosynthetic regulation; DNA methyltransferase; histone deacetylase; biological activities

1. Introduction

The discovery of novel natural compounds with diverse structures and biological
activities is an important aspect in new drug research and development [1,2]. Fungal
secondary metabolites are highly complex and have a rich diversity that makes fungi a
treasure of bioactive secondary metabolites. Traditional methods used to discover bioactive
natural products from fungi usually include sample collection, the cultivation of fungal
strains, extraction, bioassay-guided isolation, structural elucidation, and bioactivity eval-
uation. The genomic analyses of fungi have shown that a large number of gene clusters
controlling the expression of secondary metabolites are usually kept in silent status un-
der traditional laboratory culture conditions [3,4]. It is urgent to activate the expression
of these silenced genes to obtain more secondary metabolites with novel structures and
remarkable biological activities [5]. Focusing on silencing gene activation, a variety of
successful strategies have been achieved such as the one strain many compounds (OSMAC)
method by changing cultivation parameters (i.e., carbon source, nitrogen source, light
intensity, ambient pH, shaking, aeration, incubation temperature, redox status, and metal
ions), global regulation, epigenetic manipulation, and genome mining strategies [6–11].
Among these, chemical epigenetic manipulation has been demonstrated to be an effective
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method for enhancing secondary metabolite expression without altering genes or causing
the hereditable manipulation of organisms [12]. Notably, epigenetic modification was
proven to be effective to the host to trigger the latent biosynthetic pathways to yield cryptic
natural products [13].

Molecular and chemical epigenetic modifications are two aspects in search of sec-
ondary metabolites from fungi. The molecular epigenetic modification method is mainly
through the knockout or overexpression of coding genes of epigenetic related enzymes,
while chemical epigenetic modification method is the exogenous addition of chemical epi-
genetic modification enzyme inhibitors such as DNA methyltransferase (DNMT) inhibitors,
histone deacetylase (HDAC) inhibitors, and histone acetyltransferase (HAT) inhibitors.
These inhibitors can promote gene transcription, then activate silent biosynthetic gene
clusters, and improve the chemical diversity of secondary metabolites of fungi [14,15].

In the past decade, biosyntheses of diverse compounds were successfully activated by
treating fungi with epigenetic modifiers. Some reviews were published about natural fungal
product development under chemical epigenetic modulation [16–19]. In this mini-review,
we focused on the production of secondary metabolites by using chemical epigenetic
modifiers according to the epigenetic-related enzymes to summarize the effects of these
chemical modifiers on the biosynthesis of secondary metabolites in fungi.

2. Chemical Epigenetic Modifiers and Their Action Mechanisms

Chemical epigenetic modifiers are natural or synthetic small molecular compounds
that target epigenetic enzymes, leading to epigenetic alterations of the organisms [17,20,21].
The structures of commonly used chemical epigenetic modifiers for generating specialized
metabolism in fungi are shown in Figure 1 with their names and action mechanisms listed
in Table 1. Many of these compounds act by inhibiting enzyme machinery essential for
transferring methyl, acetyl, and alkyl groups to DNA or histones. The target sites of
DNMT, HDAC, and proteasome inhibitors are DNA, heterochromatin, and proteasome,
respectively [18,22,23].

2.1. DNA Methyltransferase Modifiers

DNA methyltransferases (DNMTs) are a conserved family of cytosine 5′-carbon atom
methylases that play an essential role in maintaining DNA methylation patterns, tran-
scriptional activation, and silencing [24]. Inhibition by DNMT inhibitors results in pas-
sive demethylation through consecutive DNA replication cycles [17]. DNMT inhibitors
include 5-azacytidine (5-Aza, 1), 5-aza-2′-deoxycytidine (decitabine, 2), hydralazine hy-
drochloride (3), N-acetyl-D-glucosamine (GlcNAc, 4), procainamide (5), procaine (6), and
N-phthalyl-L-tryptophan (RG-108, 7) (Table 1).
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in fungi.

The typical DNMT inhibitor is 5-Aza (1), which is a derivative of the nucleoside
cytidine; 5-Aza (1) can be incorporated into DNA and less into RNA, resulting in the
trapping and inactivation of DNMT. Additionally, 5-Aza (1) rapidly depletes cellular
DNMT and reduces the methylation level of the genomic DNA [25]. Therefore, 5-Aza (1) is
widely used as a potent DNMT inhibitor in the field of epigenetics [24], including fungal
secondary metabolism [26].

2.2. Histone Deacetylase Modifiers

Histone deacetylases (HDACs) are a group of enzymes that remove the acetyl group
from the lysine residue(s) of histones and non-histone proteins and thereby regulate the
gene transcription level. Transcriptional regulation in eukaryotes occurs within a chromatin
setting and is strongly influenced by the post-translational modification of histones. HDACs
act as transcription repressors and consequently promote chromatin condensation in cells.



J. Fungi 2023, 9, 172 4 of 29

HDACs are divided into three classes, namely classes I, II, and III [27]. HDAC inhibitors
alter gene expression patterns and endorse changes in nonhistone proteins occurring at the
post-translational level [26,28]. They are structurally classified into four groups, including
hydroxamates, cyclic peptides, aliphatic acids, and benzamides [29]. HDAC inhibitors applied
in fungal secondary metabolisms mainly include entinostat (MS-275, 8), octanoylhydroxamic
acid (OHA, 9), suberoylanilide hydroxamic acid (vorinostat, SAHA, 10), suberoylbishydrox-
amic acid (SBHA, 11), trichostatin A (TSA, 12), sodium butyrate (NaBut, 13), sodium valproate
(SVP, 14), valproic acid (VPA, 15), dihydrocoumarin (16), 5-methylmellein (17), mellein (18),
nicotinamide (19), quercetin (20), and 2-hexyl-4-pentynoic acid (HPTA) (21) (Table 1).

SAHA (10), TSA (12), and sodium butyrate (13) are frequently used as HDAC in-
hibitors in fungi. Both SAHA (10) and TSA (12) present a hydroxamic group that binds to
the zinc ion of class I and II HDAC inhibitors, thus preventing HDAC activities. Sodium bu-
tyrate (13) inhibits the histone deacetylase activity, leading to differentiation in eukaryotic
cells [17]. TSA (12) and other HDAC inhibitors such as SAHA (10), sodium butyrate (13),
and valproic acid (15) have been shown to enhance the chemical diversity of secondary
metabolites produced by fungi from the genera Clonostachys, Diatrype, and Verticillium [26].
Valproic acid (15) is frequently used to inhibit class I HDACs and also induces the proteo-
somal degradation of class II HDACs [30].

2.3. Other Chemical Epigenetic Modifiers

Other chemical epigenetic modifiers applied in fungal secondary metabolisms include
histone acetyltransferase inhibitors (i.e., anacardic acid, 22) [31], histone methytransferase
inhibitors (i.e., BRD4770, 23) [32], and proteasome inhibitors (i.e., bortezomib, 24) [33].
NPD938 (25) is an epigenetic modifier with an unclear action mechanism that is consid-
ered to enhance the production of fungal secondary metabolites via the global regulator
LAE1 [34].

Table 1. Commonly used chemical epigenetic modifiers for generating specialized metabolism
in fungi.

Modifier Mechanism of Action Ref.

5-Azacytidine (1) Inhibition of DNA methyltransferase [26,35]
5-Aza-2′-deoxycytidine (2) Inhibition of DNA methyltransferase [36]

Hydralazine hydrochloride (3) Inhibition of DNA methyltransferase [13]
N-Acetyl-D-glucosamine (4) Inhibition of DNA methyltransferase [25]

Procainamide (5) Inhibition of DNA methyltransferase [32]
Procaine (6) Inhibition of DNA methyltransferase [37]

N-Phthalyl-L-tryptophan (7) Inhibition of DNA methyltransferase [38]
Entinostat (8) Inhibition of HDAC of class I [39]

Octanoylhydroxamic acid (9) Inhibition of HDAC of classes I and II [40]
Suberoylanilide hydroxamic acid (10) Inhibition of HDAC of classes I and II [41,42]

Suberoylbishydroxamic acid (11) Inhibition of HDAC of classes I and II [42]
Trichostatin A (12) Inhibition of HDAC of classes I and II [43]

Sodium butyrate (13) Inhibition of HDAC of classes I and II [25]
Sodium valproate (14) Inhibition of HDAC of classes I and II [44]

Valproic acid (15) Inhibition of HDAC of classes I and II [44]
Dihydrocoumarin (16) Inhibition of NAD+-dependent HDAC of class III [45]
5-Methylmellein (17) Inhibition of NAD+-dependent HDAC of class III [46]

Mellein (18) Inhibition of NAD+-dependent HDAC of class III [46]
Nicotinamide (19) Inhibition of NAD+-dependent HDAC of class III [47]

Quercetin (20)
Inhibition of NAD+-dependent HDAC of class III;
inhibition of protein kinases; inhibition of DNA
topoisomerases; regulation of gene expression

[18]

2-Hexyl-4-pentynoic acid (21) Inhibition of histone deacetylase [48]
Anacardic acid (22) Inhibition of histone acetyltransferase [31]

BRD4770 (23) Inhibition of histone methytransferase [32]
Bortezomib (24) Inhibition of proteasome [33]

NPD938 (25) The action mechanism was not clear [34,49]
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3. Effects of DNA Methyltransferase Modifiers

The chemical modifiers of DNA methyltransferase (DNMT), which include 5-azacytidine,
5-aza-2′-deoxycytidine, and procaine, have been reported to display effects on the produc-
tion of fungal secondary metabolites.

3.1. Effects of 5-Azacytidine

One of the main DNA methyltransferase modifiers is 5-Azacytidine (5-Aza), which has
been used in the chemical epigenetic regulation of fungal secondary metabolism [16,18,26,50].
The addition of 5-Aza in the media could activate or inhibit the production of secondary
metabolites of many fungi. Some examples of 5-Aza affecting the production of fungal
secondary metabolites are listed in Table S1. The structures of compounds 26–132 isolated
from fungi treated with 5-Aza are shown in Figure S1.

The supplementation of 5-Aza in the culture medium of the endophytic fungus
Alternaria sp. at 250 µM induced the production of mycotoxins, including alternariol
(26), alternariol-5-O-methyl ether (27), 3′-hydroxyalternariol-5-O-methyl ether (28), al-
tenusin (29), tenuazonic acid (30), and altertoxin II (31) [51].

The cultures of the gorgonian-derived fungus Aspergillus sp. XS-20090066 were
treated with 5-Aza at 100 µM in rice medium. The production of six bisabolane-type
sesquiterpenoids, including (7R)-hydroxysydonic acid (32), (7S)-sydonic acid (33), (S)-5-
(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H-pyran-2-yl)phenol (34), (7S,11S)-12-
hydroxysydonic acid (35), (7S)-11-dehydrosydonic acid (36), and (S)-sydowic acid (37),
was activated. Compounds (7R)-hydroxysydonic acid (32), (7S)-sydonic acid (33), and
(S)-5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H-pyran-2-yl)phenol (34) showed a
broad spectrum of activities against five tested bacteria, Staphylococcus aureus, Bacillus cereus,
Kocuria rhizophila, Pseudomonas putida, and P. aeruginosa, with MIC ≤ 25 µM. In particular,
(S)-5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H-pyran-2-yl)phenol (34) showed
pronounced antibacterial activity against S. aureus with an MIC value of 3.13 µM, which
was close to the positive control ciprofloxacin (MIC, 2.5 µM) [52].

When 5-Aza was added to the medium of Aspergillus clavatus at 2 µM, the production
of cytochalasin E (38), patulin (39), and pseurotin A (40) significantly increased [25].

Aflatoxins are a group of potent mycotoxins with carcinogenic, hepatotoxic, and
immunosuppressive properties, and they are mainly produced by Aspergillus flavus and A.
parasiticus. A. flavus is a common saprophyte and opportunistic pathogen for producing
aflatoxins and many other secondary metabolites. 5-Aza was found to inhibit aflatoxin
B1 (41) biosynthesis of A. flavus at 1 mM [53–55]. 5-Aza also inhibited aflatoxin B1 (41)
biosynthesis of A. parasiticus at 1 mM [56].

The production of both (Z)-9-octadecenoic acid (42) and 12-methyl-tetradecanoic
acid methylester (43) was stimulated by the addition of 5-Aza at 1 µM to the cultures of
endophytic fungus A. niger isolated from the roots of Terminalia catappa [15].

The addition of 5-Aza at 100 µM to the culture broth of A. sydowii changed its pro-
file of secondary metabolites. The analysis of the extract of culture broth led to the
isolation of three new bisabolane-type sesquiterpenoids, namely (7S)-sydonic acid (33),
(7S)-7-O-methylsydonol (44), (7S,11S)-12-hydroxysydonic acid (45), and 7-deoxy-7,14-
didehydrosydonol (46), along with eight known compounds including (S)-sydonol (47),
anhydrowaraterpol B (48), (E)-5-(hydroxymethyl)-2-(6′-methylhept-2′-en-2′-yl)phenol (49),
AGI-B4 (50), sydowinin A (51), sydowinin B (52), and diorcinol (53). The isolated com-
pounds were evaluated for their anti-diabetic and anti-inflammatory activities. Among
them, (S)-sydonol (47) not only increased insulin-stimulated glucose consumption but also
prevented lipid accumulation in 3T3-L1 adipocytes. Additionally, (S)-sydonol (47) exhib-
ited significant anti-inflammatory activity through inhibiting superoxide anion generation
and elastase release by fMLP/CB-induced human neutrophils [57].

The addition of 5-Aza at 50 µM in rice medium of A. terreus GZU-31-1 led to the
discovery of five butanolide derivatives, namely asperbutyrolactones A (54) and B (55), as-
pulvinone E (56), butyrolactone I (57), and butyrolactone VI (58), and four known diphenyl
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ether derivatives, namely asterric acid (59), penicillither (60), methyl asterrate (61), and 4′,6′-
dichloroasterric acid (62). Of these, asperbutyrolactones A (54) and B (55) were previously
undescribed compounds. The isolated metabolites were tested for their anti-inflammatory
effects on the production of nitric oxide in lipopolysaccharide-induced microglial cells
(RAW 264.7 cells). Asperbutyrolactone A (54), penicillither (60), methyl asterrate (61),
and 4′,6′-dichloroasterric acid (62) exhibited more potent anti-inflammatory activity with
IC50 values of 16.31, 20.16, 9.53, and 21.64 µM, respectively, than the positive control
(indomethacin, IC50, 24.0 µM) [58].

Two endophytic fungi Botryosphaeria rhodina and Phomopsis sp. MD 86 from Nothapodytes
nimmoniana (Icacinaceae) were screened to produce camptothecine (CPT, 63). The produc-
tion of CPT (63) was greatly increased when two endophytic fungi were treated with
10 mg/L of 5-Aza, respectively [59].

Treatment of Chaetomium sp. with 5-Aza at 6 mM resulted in an enhanced accumulation
of isosulochrin (64) [60].

Four novel compounds, including two cyclopentenones, globosporins A (65) and
B (66), and two monoterpenoid indole alkaloids, globosporines C (67) and D (68), as
well as three known compounds, pseurotin A (40), mappianine E (69), and 19(20)Z-5-
carboxymethylvallesiachotamine (70), were isolated from the endophytic fungus Chaetomium
globosporum from Euphorbia humifusa by exposure to 5-Aza at 120 mg/L. Two indole al-
kaloids, globosporines C (67) and D (68), showed antimicrobial activities against three
phytopathogenic bacteria, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Pseu-
domonas syringae pv. lachrymans with MIC values in the range of 14–72 µg/mL. Mostly,
globosporine D (68) was proven to have potent anti-phytopathogenic activity against X.
oryzae pv. oryzae in vitro and in vivo, which suggests that globosporine D (68) has the
potential to be developed as a bactericidal candidate for the prevention of rice bacterial leaf
blight disease [61].

The treatment of Cladosporium cladosporioides with 5-Aza at 0.1 µM–10 mM elicited the de
novo production of several oxylipins, which were identified as (9Z,12Z)-11-hydroxyoctadeca-
9,12-dienoic acid (71), its methyl ester (72), and glycerol conjugate (73), in substantial
yields [26].

The cultivation of Cochliobolus lunatus TA26–46 with 5-Aza at 10 µM led to the isolation
of seven new diethylene glycol phthalate esters, cochphthesters A–G (74–80), along with
four known analogues: 1,2-benzenedicarboxylic acid,1,2-bis [2-(2-hydroxyethoxy) ethyl] es-
ter (81), 1,2-benzenedicarboxylic acid, 1,1-(oxydi-2,1-ethanediyl) 2,2-bis [2-(2-hydroxyethoxy)
ethyl] ester (82), 1,2-benzenedicarboxylic acid, 1,2-bis [2-[[2-[[2-(2-hydroxyethoxy) ethoxy] car-
bonyl] oxy] ethoxy] ethyl] ester (83), and 1,2-benzenedicarboxylic acid, oxydi-2,1-ethanediyl
dimethyl ester (84) [62].

The cultivation of Cochliobolus lunatus TA26-46 with 5-Aza at 10 µM in Czapek-Dox
liquid medium led to the isolation of induced compounds, including two α-pyrones,
namely cochliobopyrones A (85) and B (86), three isocoumarins, namely 3-methyl-6,8-
dihydroxyisocoumarin (87), 6-hydroxy-8-methoxy-3-methylisocoumarin (88), and (S)-
orthosporin (89), and one chromone, altechromone A (90) [63].

The treatment of Cophinforma mamane with 5-Aza at 1 µM significantly reduced the pro-
duction of thiodiketopiperazines (TDKPs) botryosulfuranols A (91), B (92), and C (93) [64].

Treatment of the culture broth of Cordyceps indigotica with 5-Aza at 100 µM led to the
production of aromatic polyketide glycosides indigotides A (94) and B (95) [65].

Endophytic fungus Diaporthe perseae from Gloriosa superba tubers was treated with
5-Aza at 1 µM. The production of colchicine (96) was found to be increased [66].

Two new glycosylated polyketides, namely lunalides A (97) and B (98), were produced
in the cultures of Diatrype sp. treated with 0.1–10 µM of 5-Aza [26].

Dimorphosporicola tragani CF-090383 was found to produce three dendrodolide myco-
toxins, namely dendrodolides E (99), G (100), and I (101), when 5-Aza was added to the
fermentations at 100 µM [67].
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Lophiotrema sp. F6932 was fermented in CF02LB medium supplemented with 5-Aza
at 50 µM, which led to the identification of two spirobisnaphthalenes, palmarumycins
CP30 (102) and C8 (103). Palmarumycin C8 (103) showed inhibitory activity against Staphy-
lococcus aureus with an IC90 value of 18 µg/mL and also possessed antiproliferative activities
with IC50 values of 1.1 µg/mL and 2.1 µg/mL against MIA PaCa-2 and PANC-1 cell lines,
respectively [68].

When the cultures of Muscodor yucatanensis Ni30 were treated with 5-Aza at 50 µM,
the growth rate, mycelia morphology, and pigmentation were defected, and the production
of VOCs, ergosterol (104), and xylaguaianol C (105) was enhanced [69].

Two new polyketides modified with a rare methylsulfonyl group, 3-methoxy-6-methyl-
5-(methylsulfonyl)benzene-1,2,4-triol (106) and neosartoryone A (107), were isolated from
Neosartorya udagawae HDN13-313 cultivated with 5-Aza at 73 mg/L. Their methylsulfonyl
group was proven to be derived from DMSO, which was used as the solvent to dissolve
5-Aza. Neosartoryone A (107) showed lipid-lowering activity in vitro comparable to the
positive control simvastatin [70].

The guttates collected from cultures of Penicillium citreonigrum treated with 50 µM
of 5-Aza were highly enriched in secondary metabolites, including sclerotiorin (108),
ochrephilone (109), dechloroisochromophilone III (110), dechloroisochromophilone IV (111),
6-((3E,5E)-5,7-dimethyl-2-methylenenona-3,5-dienyl)-2,4-dihydroxy-3-methylbenzaldehyde
(112), sclerotioramine (113), pencolide (114), atlantinones A (115), and B (116). While pen-
colide (114) was detected in the exudates of both the control and 5-Aza-treated cultures,
all of the other metabolites were found exclusively in the guttates of the 5-Aza-modified
fungus. Both sclerotiorin (108) and sclerotioramine (113) caused modest inhibition on
Staphylococcus epidermidis. Only sclerotioramine (113) was active against the growth of
Candida strains [35].

The cultivation of Penicillium minioluteum with 5-Aza at 500 µM led to the isolation
of a novel type of aspertetronin dimers, named miniolins A–C (117–119), along with their
precursor aspertetronin A (120). The miniolins showed moderate cytotoxic activity against
HeLa cell lines [71].

Penicillium variabile HXQ-H-1A was isolated from the mangrove rhizosphere soil
collected from Fujian, China. An addition of 5-Aza at 0.2 mM in the medium led to
production of a highly modified fatty acid amide, varitatin A (121). It displayed significant
cytotoxicity against HCT-116 cells with an IC50 value of 2.8 µM. Moreover, it exhibited 50%
and 40% inhibitory activity against tyrosine kinases PDGFR-β and ErbB4 at a concentration
of 1 µM, respectively [72].

An addition of 5-Aza at 500 mM to the culture medium of the plant endophytic
fungus, Pestalotiopsis crassiuscula, obtained from the leaves of Fragaria chiloensis, dra-
matically induced the production of 4,6-dihydroxy-3,7-dimethylcoumarin (122), pestalo-
tiopyrone G (123), and 2′-hydroxy-6′-hydroxy-methyl-4′-methylphenyl 2,6-dihydroxy-3-(2-
isopentenyl)benzoate (124) [73].

Analysis of the culture broth extract of the endophytic fungus Pestalotiopsis microspora
treated with 5-Aza at 500 µM led to the isolation of a new compound, 4′-formamidophenyl-
5-methoxybenzoate (125), along with seven known polyketides, pestalotiopyrone G (123), 4-
hydroxybenzoic acid (126), LL-P880α (127), 2′-hydroxy 6′-hydroxymethyl-4′-methylphenyl-
2,6-dihydroxy-3-(2-isopentenyl)benzoate (128), pestalotiollide B (129), endocrocin (130),
and 1′-hydroxy-4-methoxy-6-pentyl-2H-pyran-2-one (131). The compounds, except for
1′-hydroxy-4-methoxy-6-pentyl-2H-pyran-2-one (131), belonged to the newly induced
secondary metabolites [74].

It was found that resveratrol (132) was enhanced in case of treatment with 5-Aza at
10 µM to yield 48.94 µg/mL in the culture of Xylaria psidii, which was an endophytic fungus
isolated from the leaves of Vitis vinifera [75].

Some fungal species such as Cladosporium reesinae, Hypoxylon sp., and Neurospora
crassa were also treated with 5-Aza, and the production of secondary metabolites was
induced. Unfortunately, the increased metabolites have not been structurally identified.
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Treatment of 5-Aza at 10 µM to the cultures of Cladosporium reesinae NRL-6437 increased
the production of unidentified antimicrobial metabolites [76]. The cultures of Hypoxylon sp.
CI-4 were treated with 5-Aza at 100 µM to induce the production of VOCs (volatile organic
compounds) which composed of terpenes, alkanes, alkenes, organic acids, and benzene
derivatives [77]. 5-Aza was added in the cultures of Neurospora crassa at 30 µM, and it
stimulated the light-induced carotenoid synthesis by 30%, whereas a higher concentration
of 5-Aza was toxic to carotenoid synthesis and mycelial growth [78].

3.2. Effects of Other DNA Methyltransferase Modifiers

Except for 5-Aza, other DNA methyltransferase modifiers, including 5-aza-2′-deoxycytidine,
N-acetyl-D-glucosamine (GlcNAc), and procaine, were also found to activate the production
of fungal secondary metabolites. The structures of compounds 133–138 isolated from fungi
treated with other DNA methyltransferase modifiers are shown in Figure S2.

Three new α-pyrone derivatives, namely (S)-6-(sec-butyl)-5-(hydroxymethyl)-4-methoxy-
2H-pyran-2-one (133), (5S,7R)-7-ethyl-4,5-dimethoxy-7-methyl-5,7-dihydro-2H-furo [3,4-b]pyran-
2-one (134), and(5R,7R)-7-ethyl-4,5-dimethoxy-7-methyl-5,7-dihydro-2H-furo [3,4-b]pyran-2-
one (135), were induced by 5-aza-2′-deoxycytidine at 10 mg/L in fermentation culture of the
endophytic fungus Penicillium herquei, which was obtained from the fruiting body of Cordyceps
sinensis [79].

N-Acetyl-D-glucosamine (GlcNAc) is a chitin compound. For the cultures of As-
pergillus clavaus, GlcNAc at 0.5 µM significantly increased the production of pseurotin
A (40) compared to the control [25].

The addition of procaine at 1 µM in the cultures of marine-derived fungus Aspergillus
unguis DLEP2008001 induced the production of three metabolites, namely aspergillusidone
F (136), unguinol (137), and unguisin A (138) [37].

3.3. Effects of Combinational Treatment with Two DNA Methyltransferase Modifiers

Combinational treatment with two DNA methyltransferase modifiers can increase
the production of secondary metabolites of fungi. The structures of compounds 139–149
isolated from fungi treated with two DNA methyltransferase modifiers are shown in
Figure S3.

When Aspergillus clavatus was treated with the combination of N-acetyl-D-glucosamine
(GlcNAc, 5 µM) with 5-Aza (0.5 µM), the production of pseurotin A (40) was significantly
increased. It was possible that both GlcNAc and 5-Aza had synergistic effects on the
production of pseurotin A, which should be further studied in detail (40) [25].

Four new polyketide derivatives, pestalotiopols A–D (139–142), together with seven
known compounds, (S)-6-(hydroxymethyl)-4-methyl-5,6-dihydro-2H-pyran-2-one (143),
heterocornols A (144), E (145), and F (146), pestalotiophol B (147), dendocarbin B (148),
and 2α-hydroxyisodrimeninol (149), were isolated from the chemical-epigenetic cultures of
Pestalotiopsis sp. containing 5-aza-2′-deoxycytidine (10 µM) and RG-108 (10 µM). Among
these compounds, pestalotiopols A (139) and B (140) and heterocornols A (144) and E (145)
exhibited cytotoxicity against four human cancer cell lines (i.e., carcinoma cell line BGC-823,
hepatocellular carcinoma cell line SMMC-7721, carcinoma cell line Ichikawa, and kidney
cancer cell line 7860), with IC50 values of 16.5–56.5 mM [80].

4. Effects of Histone Deacetylase Modifiers

Histone deacetylase modifiers that activate the production of fungal secondary metabo-
lites include octanoylhydroxamic acid (OHA), trichostatin A (TSA), SAHA, SBHA, sodium
valproate, and nicotinamide.

4.1. Effects of Suberoylanilide Hydroxamic Acid

Suberoylanilide hydroxamic acid (SAHA) is also called vorinostat. It is the most
widely used histone deacetylase modifier for the induction of the secondary metabolite
production of fungi [29]. Some examples of SAHA affecting the production of fungal



J. Fungi 2023, 9, 172 9 of 29

secondary metabolites are listed in Table S2. The structures of compounds 150–290 isolated
from fungi treated with SAHA are shown in Figure S4.

The production of two new 3-(4-oxopyrano)-chromen-2-ones, namely aspyranochromenones
A (150) and B (151), along with nine known metabolites, namely 6,7-dihydroxymellein (152),
terrein (153), (3R)-6-hydroxymellein (154), (R)-orthosporin (155), 6,7-dimethoxymellein (156),
6-methoxymellein (157), (2E,6E,10E)-12-hydroxyfarnesol (158), 5,6-dihydroxymellein (159),
and ethyl 3-methylorsellinate (160), was induced when the cultures of the endophytic
fungus Aspergillus sp. AST0006 were treated with 250 µM of SAHA [81].

When SAHA (100 µM) was added in the fermentation of Aspergillus calidoustus and
Aspergillus westerdijkiae, respectively, the diketopiperazine alkaloid phenylahistin (161) in
A. calidoustus and the polyketide penicillic acid (162) in A. westerdijkiae were found to be
increased [82].

The fungus Aspergillus nidulans treated with SAHA at 100 µM obviously induced
the production of fellutamides fellutamide B (163), antibiotic 1656G (164), and antibiotic
3127 (165) [83]. When A. nidulans was treated with SAHA at 100 µM, the production of
other metabolites aspercryptins A1 (166) and A2 (167) was also induced [84].

Nygerone A (168) is a new fungal metabolite featuring a unique 1-phenylpyridin-
4(1H)-one core. It was obtained from Aspergillus niger ATCC1015 treated with SAHA at
10 µM [41].

Aspergillus terreus PF26 from the marine sponge Phakellia fusca was treated with SAHA
at 500 µM. The production of terrein (153) was then enhanced. The production of (3R)-6-
hydroxymellein (154) as the precursor of terrein (153) was also promoted [85].

SAHA was applied in the cultures of the marine-derived fungus Aspergillus terreus
RA2905 at a concentration of 100 µM. It was found that the metabolic profile was sig-
nificantly changed. Four new compounds, including a pair of enantiomers, (+)- and (-)-
asperfuranones (169 and 170), together with two benzyl pyrones, asperpyranones A (171)
and B (172), were identified from its ethyl acetate extract. These four compounds displayed
antifungal activities against Candida albicans with MIC values of 32, 16, 64, and 64 µg/mL
and PTP1B inhibitory activities with the IC50 values of 45.79, 17.32, 35.50, and 42.32 µM,
respectively. Asperpyranone A (171) exhibited antibacterial activity against Pseudomonas
aeruginosa with a MIC value of 32 µg/mL [86].

Cultivation of the marine-derived Aspergillus versicolor MCCC 3A00080 with the ad-
dition of SAHA significantly enhanced the diversity of the secondary metabolites. From
the cultures treated with SAHA at 20 mg/L, a new biphenyl derivative, named versiperol
A (173), along with two known compounds, diorcinol (53) and 2,4-dimethoxyphenol (174),
were isolated. Among the isolated compounds, versiperol A (173) exhibited modest inhibi-
tion on the bacterium Staphylococcus aureus growth with an MIC value of 8 µg/mL [87].

The marine algicolous fungus Aspergillus versicolor OUCMDZ-2738 was treated with
SAHA at 10 µM. Eight metabolites, diorcinol (53), 3-[6-(2-methylpropyl)-2-oxo-1H pyrazin-
3-yl] propanamide (175), brevianamide X (176), brevianamide R (177), brevianamide
Q (178), diorcinol C (179), diorcinol E (180), and methyl diorcinol-4-carboxylate (181),
were induced for production. Both diorcinol (53) and methyl diorcinol-4-carboxylate (181)
showed selective antibacterial activities against Pseudomonas aeruginosa, with minimum
inhibitory concentrations (MICs) of 17.4 µM and 13.9 µM, respectively [88].

Through the addition of SAHA at 20 µM in the cultures of the Aspergillus wentii strain
(na-3) isolated from the tissue of the brown alga Sargassum fusiforme, two new aromatic
norditerpenes, aspewentins A (182) and B (183), along with an oxygenated derivative,
aspewentin C (184), were obtained [89].

The addition of SAHA at 100 µM in the cultures of Aspergillus westerdijkiae induced the
production of polyketide penicillic acid (162) [82]. A broad spectrum of biological activities
including antibacterial, antifungal, antiviral, antitumor, and herbicidal activity has been
reported for penicillic acid (162). This illustrates the potential of epigenetic manipulation
for improving the fermentation efficiency of penicillic acid (162) [90].
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The addition of SAHA at 100 µM in cultures of Asteromyces cruciatus led to the induced
production of primarolides A (185) and B (186) [91].

The addition of SAHA at 500 µM to the culture of the filamentous fungus Beauveria
felina significantly changed its secondary metabolite profile and led to the isolation of eight
cyclodepsipeptides, including desmethylisaridin E (187), isaridin E (188), desmethylisaridin
C2 (189), isaridin C2 (190), isaridin F (191), destruxin A (192), reseotoxin B (193), and
roseocardin (194). Among them, desmethylisaridin E (187) inhibited superoxide anion
production, and desmethylisaridin C2 (189) inhibited elastase release, with IC50 values of
10.00 µM and 10.01 µM, respectively [92].

The addition of SAHA at 300 µM in the cultures of Bjerkandera adusta led to the
induced production of six tremulane sesqiterpenoids, namely 11,12-dihydroxy-1-tremulen-
5-one (195), (3S,6R,7R)-tremul-1-ene-6,11,12-triol (196), ceriponol A (197), conocenol B (198),
and conocenolides A (199) and B (200) [93].

The chemical epigenetic manipulation of Botrytis cinerea strain B05.10 with SAHA at
concentrations ranging from 50 to 200 µM led to the isolation of a new cryptic metabolite,
botrycinereic acid (201). This compound was also overproduced by inactivating the stc2
gene, which encodes an unknown sesquiterpene cyclase [10].

Treatment of Chaetomium sp. with SAHA at 6 mM resulted in an enhanced accumula-
tion of isosulochrin (64) [60].

The addition of SAHA at 1 mM to the cultures of Chalara sp. 6661 resulted in the
production of four new modified xanthones, which were aniline-modified chalanilines A
(202) and B (203) and adenosine-coupled xanthones A (204) and B (205). The aniline moiety
in chalanilines A (202) and B (203) was verified to be derived from SAHA (vorinostat) [94].

The cultures of Cladosporium cladosporioides were treated with SAHA at a concentration
of 10 mM to produce a complex series of perylenequinones, two of which were characterized
as new metabolites, cladochromes F (206) and G (207), along with five known cladochromes
A (208), B (209), D (210), and E (211) and calphostin B (212) [26].

When the cultures of Cladosporium reesinae NRL-6437 were treated with SAHA at 10 µM,
the production of antimicrobial metabolites was activated. However, their structures have
not been characterized [76].

The treatment of SAHA at 300 µM on the cultures of Cladosporium sphaerospermum L3P3
led to the induced production of cladosins H–K (213–216) and a related known compound
cladodionen (217). The aniline moiety in cladosins H–K (213–216) was considered to be
derived from the degradation of SAHA, indicating that the well-known histone deacetylase
inhibitor SAHA could be metabolized by L3P3 and provide aniline as a precursor for the
biotransformation of chemically reactive polyketides. Cladosin I (214) showed promising
cytotoxicity against the HL-60 cell line with an IC50 value of 2.8 µM [95].

SAHA was found to significantly enhance the alkaloid production of Claviceps purpurea
Cp-1 strain. Particularly, the titers of total ergot alkaloids gradually increased with the
increase of SAHA concentration in the fermentation medium, and the highest production of
ergot alkaloids could be achieved at the concentration of 500 µM SAHA. Specially, the titers
of ergometrine (218) and total ergot alkaloids were as high as 95.4 mg/L and 179.7 mg/L,
respectively, which were twice of those of the control. Furthermore, mRNA expression
levels of the most functional genes in the ergot alkaloid synthesis (EAS) gene cluster were
up-regulated under SAHA treatment. It was proposed that SAHA might increase histone
acetylation in the EAS gene cluster region in the chromosome, which would loosen the
chromosome structure and subsequently up-regulate the mRNA expression levels of genes
involved in the biosynthesis of ergot alkaloids, thereby resulting in the marked increase in
the production of ergot alkaloids [96].

The basidiomycete Cyathus stercoreus (Nidulariaceae) was treated with SAHA at
200 µM. Nine novel sesquiterpenoids were identified as cystercorolide (219), cystercorodiol
A (220), 4-O-acetylcybrodol (221), 14-dehydroxycybrodol (222), cystercorodiol B (223), 4-
O-acetylcystercorodiol B (224), 1-O-methoxycystercorodiol B (225), cystercorodiol C (226),
and cystercorotone (227), along with four known sesquiterpenes, epicoterpene D (228),
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russujaponol F (229), riparol B (230), and cybrodol (231). Among these, cystercorodiol A
(220), 4-O-acetylcybrodol (221), cystercorotone (227), and cybrodol (231) all at concentration
of 200 µM showed weak antibacterial activity against Escherichia coli ATCC25922, with the
inhibitory rates of 34.7%, 33.0%, 32.3%, and 29.6%, respectively [97].

A novel chlorinated pentacyclic polyketide, daldinone E (232) was induced from a
Daldinia sp. fungal isolate treated with SAHA at 800 µM. Daldinone E (232) exhibited DPPH
radical scavenging activities with potency comparable to the positive control, ascorbic
acid [98].

SAHA (500 µM) was added in the medium of the dark septate endophytic fun-
gus Drechslera sp., inducing the release of hexosylphytosphyngosine (233) to the culture
medium [40].

When the endophytic fungus Lachnum palmae from Przewalskia tangutica was treated with
SAHA at 500µM, the production of eighteen dihydroisocoumarins, including seven previously
undescribed halogenated ones, namely palmaerones A–G (234–240), along with 11 known
ones, which were mellein (18), (3R)-6-hydroxymellein (154), (R)-6-methoxymellein (157)
(R)-5-cholro-6-hydroxymellein (241), (3R,4R)-5-cholro-4,6-dihydroxymellein (242), pal-
maerin A (243), palmaerin B (244), palmaerin D (245), trans-4-hydroxymellein (246), cis-4-
hydroxymellein (247), and (R)-5-hydroxymellein (248), was induced. Palmaerones A–G
(234–240) were screened against three fungal strains (Cryptococcus neoformans, Penicillium
sp. and Candida albicans) and two bacteria strains (Bacillus subtilis and Staphylococcus aureus).
Among them, palmaerone E (238) exhibited potential antimicrobial activities against all the
test strains, with MIC values in the range of 10–55 mg/mL. Generally, the brominated dihy-
droisocoumarins showed better antimicrobial activities than the chlorinated dihydroiso-
coumarins. Furthermore, palmaerones A (234) and E (238) exhibited moderate inhibitory
effects on NO production in LPS-induced RAW 264.7 cells, with IC50 values of 26.3 mM
and 38.7 mM, respectively, and no obvious toxicities were observed at 50 mM. Palmaerone
E (238) showed weak cytotoxicity against HepG2 with an IC50 value of 42.8 mM [99].

SAHA at 100 µM was added into the cultures of Microascus sp. from the Floridian
marine sediment. A cyclic pentadepsipeptide named EGM-556 (249) was isolated [42].

SAHA was added in the cultures of Muscodor yucatanensis Ni30 at 50 µM and led to the
enhanced production of bioactive VOCs. Two main induced compounds, ergosterol (104)
and xylaguaianol C (105), were isolated from the epivariant [69].

The cultures of plant endophytic fungus Penicillium sp. HS-11 in modified Martin’s
medium supplemented with SAHA at 80 mg/L led to the isolation and identification of
two induced metabolites, 4-epipenicillone B (250) and (R)-chrysogine (251) [100].

Cultivation of the endophytic fungus Penicillium sp. KMU18029, with the addition of
SAHA at 100 µM, led to the isolation of two pairs of meroditerpenoids, pyrandecarurins
A (252) and B (253) and pileotins A (254) and B (255), along with their potential precursor
decaturenoid (256) as well as the known meroterpenoids 15-hydroxydecaturin A (257),
oxalicines A (258) and B (259), and penisarin B (260). Decaturenoid (256) showed moderate
activity against AChE with an IC50 value of 13.9 µM [101].

The addition of SAHA at 200 µM in the cultures of Penicillium brasilianum led to
biosynthesis reduction of brasiliamide A (261), verruculogen TR2 (262), and penicillic
acid (162) [27].

Four secondary metabolites, sclerotiorin (108), sclerotioramine (113), and isochro-
mophilones XIV (263) and XV (264), were isolated from Pencillium mallochii CCH01 treated
with SAHA at 1 mM. Sclerotiorin (108) showed broad and important inhibition activi-
ties against Curvularia lunata, Curvularia clavata, Fusarium oxysporum f. sp. mornordica,
and Botryosphaeria dothidea, with IC50 values of 2.1 µg/mL, 21.0 µg/mL, 40.4 µg/mL,
and 27.8 µg/mL, respectively. Both sclerotioramine (113) and isochromophilone XV (264)
showed selective antifungal activity on Colletotrichum graminicola, with IC50 values of 29.9
µg/mL and 9.7 µg/mL, respectively. Furthermore, both sclerotiorin (108) and sclerotio-
ramine (113) exhibited strong antibacterial activities on Bacillus subtilis [102].
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Seven polyketides, including four new ones, namely varilactones A (265) and B (266)
and wortmannilactones M (267) and N (268), as well as three biogenetically related known
wortmannilactones E (269), F (270), and H (271), were isolated from the fungus Penicillium
variabile HXQ-H-1 cultivated in potato-based medium with SAHA at 300 µM [103].

SAHA (500 µM) was added to the culture broth of the endophytic fungus Phoma
sp. LG0217 isolated from Parkinsonia microphylla. The metabolite profile was changed
and resulted in the production of (10′S)-verruculide B (272), vermistatin (273), and dihy-
drovermistatin (274). When the fungus was cultured in the absence of SAHA, it produced
(S,Z)-5-(3′,4′-dihydroxybutyldiene)-3-propylfuran-2(5H)-one (275) and nafuredin (276).
(10′S)-Verruculide B (272) showed inhibitory activity on protein tyrosine phosphatases
(PTPs) [104].

Spiromastix sp., a deep-sea sediment-derived fungus, was treated with SAHA at
500 µM. Nine new guaine-type sesquiterpenes named spiromaterpenes A (277), B (278), C
(279), D (280), E (281), F (282), G (283), H (284), and I (285) were isolated. Among them, spiro-
materpenes D (280), E (281), and F (282) exhibited significant effects against NO production
on lipopolysaccharide (LPS)-induced microglia cells BV2. In addition, spiromaterpene
E (281) was the most active guaine-type sesquiterpene to show anti-neuroinflammatory
activity [105].

A highly modified fatty acid ester named funitatin A (286) was firstly isolated from
the Yellow River wetland-derived fungus Talaromyces funiculosus HPU-Y01 cultivated with
300 µM of SAHA. Funitatin A (286) featured a rare dimeric cyclopaldic acid structure and
showed promising antimicrobial activity against both Proteus species and Escherichia coli,
with MIC values of 3.13 µM [106].

Talaromyces wortmannii treated with SAHA at 100 µM resulted in the isolation of
four new wortmannilactones derivatives, namely wortmannilactones I–L (287–290). These
four compounds showed potent inhibitory activity against NADH-fumarate reductase,
with IC50 values ranging from 0.84 to 1.35 µM [107].

Resveratrol (132) is an important stilbene that has a high demand due to its therapeutic,
cosmeceutical, and nutraceutical activities. Xylaria psidii was an endophytic fungus isolated
from the leaves of Vitis vinifera. The addition of SAHA (5 µM) to the medium of Xylaria
psidii increased the production of resveratrol (132) [75].

Some fungal species such as Aspergillus niger, Botryosphaeria mamane, Cladosporium
reesinae, and C. reesinae were also treated with SAHA, and the production of their secondary
metabolites was induced. However, the induced metabolites were not identified. Treatment
of SAHA at 100 µM to the cultures of A. niger induced the production of new secondary
metabolites confirmed by HPLC, but they were not further identified [108]. The cultures
of Botryosphaeria mamane were treated with SAHA at 100 µM to induce the production of
eight main unidentified metabolites detected by HPLC [44]. The treatment of SAHA at
10 µM of the cultures of C. reesinae NRL-6437 increased the production of antimicrobial
metabolites, which were not further structurally identified [76]. The cultures of Hypoxylon
sp. CI-4 were treated with SAHA at 50 µM. The production of VOCs was induced, and
they were preliminarily identified as terpenes, alkanes, alkenes, organic acids, and benzene
derivatives by GC-MS [77].

4.2. Effects of Suberoylbishydroxamic Acid

Suberoylbishydroxamic acid (SBHA) is also called suberohydroxamic acid, and its
structure is similar to that of SAHA. Some examples of SBHA affecting the production of
fungal secondary metabolites are listed in Table S3. The structures of compounds 291–351
isolated from fungi treated with SBHA are shown in Figure S5.

Supplementation of SBHA (500 µM) to the culture medium of the endophytic fungus
Alternaria sp. induced the production of mycotoxins, including alternariol (26), alternariol-5-
O-methyl ether (27), 3′-hydroxyalternariol-5-O-methyl ether (28), altenusin (29), tenuazonic
acid (30), and altertoxin II (31) [51].
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The addition of SBHA at 500 µM to the culture medium of Arthrobotrys foliicola induced
the production of a coumarin-type secondary metabolite represented by a single intensive
peak in the HPLC profile of the ethyl acetate extract. The compound was identified as
4-ethyl-7-hydroxy-8-methyl-2H-chromen-2-one (291) [109].

The addition of SBHA at 500 µM in the cultures of Chaetomium indicum led to the produc-
tion of chaetophenols A–F (292–297) [110]. Two spirolactone polyketides spiroindicumides A
(298) and B (299) were also isolated from C. indicum cultivated in the presence of SBHA at
500 µM [111].

The treatment of Cladosporium cladosporioides with SBHA at 0.1–10 mM elicited the
production of cladochromes A (208), B (209), D (210), E (211), F (206), and G (207), and
calphostin B (212) [26].

The addition of SBHA at 500 µM to the culture medium of Cladosporium colocasiae
dramatically altered the production of two new acetylenic sterols, namely (3β,7α)-cholest-5-
en-23-yne-3,7-diol (300) and (3β,7α)-cholest-5-en-23-yne-3,7,25-triol (301). (3β,7α)-Cholest-
5-en-23-yne-3,7-diol (300) showed antibacterial activity against Bacillus subtilis, affording a
zone of inhibition of 12 mm at 100 µg/disk [112]

Four 2,3-dihydrobenzofurans, annullatins A–D (302–305), and one aromatic polyke-
tide, annullatin E (306), were isolated from the entomopathogenic fungus Cordyceps annul-
lata by the addition of SBHA at 500 µM in the medium [113].

Six novel aromatic polyketides, namely indigotides C–F (307–310), 13-hydroxyindigotide
A (311), and 8-O-methylindigotide B (312) along with indigotides A (94) and B (95), were
induced from the entomopathogenic fungus Cordyceps indigotica by the addition of SBHA
at 1 mM in the medium [114].

The cultivation of a deep-sea-derived fungus Eutypella sp. MCCC 3A00281 by SBHA
at 1 mM led to the isolation of 26 eremophilane-type sesquiterpenoids, namely eutyper-
emophilanes A–Z (313–338). Among these compounds, eutyperemophilanes I (321) and
J (322) showed significant inhibitory effects on the nitric oxide (NO) production that was
induced by lipopolysaccharide (LPS) in RAW 264.7 macrophage cells [115].

Fusarium oxysporum sp. conglutinans was treated with SBHA at 500 µM. Two fusaric
acid derivatives, namely 5-butyl-6-oxo-1,6-dihydropyridine-2-carboxylic acid (339) and
5-(but-9-enyl)-6-oxo-1,6-dihydropyridine-2-carboxylic acid (340), were induced [116].

The addition of SBHA (1 mM) to the culture medium of Gibellula formosana significantly
enhanced the production of isariotin A (341) [38]

The addition of SBHA (500 µM) to the culture medium of Paraconiothyrium brasiliense
activated the production of one pyridinone named JBIR-54 (342) [117].

Seven metabolites, including a new one, 13-angeloyloxy-diplosporin (343), and six
known ones 3-methoxymethyl-agistatine D (344), gynuraone (345), mellein (18), cytosporone
B (346), dothiorelone A (347), and dothiorelone C (348), were isolated from the endophytic
fungus Phomopsis sp. 0391 that was cultivated in the presence of SBHA at 500 µM. Both
cytosporone B (346) and dothiorelone A (347) displayed significant lipase inhibitory activi-
ties with IC50 values of 115 µg/mL and 275 µg/mL, respectively, compared to the positive
control (tetrahydrolipstatin, IC50, 43 µg/mL) [118].

The addition of SBHA to the medium at 1 µM led to significant changes in the
secondary metabolite profile of the entomopathogenic fungus, Torrubiella luteorostrata,
and induced production of three new prenylated tryptophan analogs, luteorides A–C
(349–351) [119].

4.3. Effects of Valproic Acid and Sodium Valproate

Both valproic acid (VPA) and sodium valproate (SVP) have very similar structures
and the same epigenetic regulation effects [44]. Some examples of VPA or SVP that affect
the production of fungal secondary metabolites are listed in Table S4. The structures of
compounds 352–371 isolated from fungi treated with VPA or SVP are shown in Figure S6.

When the cultures of Aspergillus clavatus were treated with VPA at 60 µM, cytochalasin
E (38) was significantly enhanced production [25].
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VPA at 500 µM induced the production of fumiquinazoline C (352) in the endophytic
fungus Aspergillus fumigatus GA-L7 isolated from Grewia asiatica L. It was further revealed
that all the genes involved in the biosynthesis of fumiquinazoline C (352) were overex-
pressed significantly, resulting in the overall enhancement of fumiquinazoline C (352)
production by about ten-fold [120].

The weekly supplementation of VPA at 50 µM to the cultures of Cordyceps militaris
significantly improved cordycepin (353) production by 41.2% compared to the untreated
control, and the gene regulatory network of C. militaris was also adapted [121].

The addition of VPA (100 µM) to the cultures of the endophytic fungus Diaporthe sp.
isolated from Datura inoxia significantly altered its secondary metabolic profile and resulted
in the isolation of three novel cytotoxic secondary metabolites, namely xylarolide A (354),
diportharine A (355), and xylarolide B (356), along with one known compound, xylarolide
(357). Among these compounds, both xylarolide A (354) and xylarolide (357) displayed
significant growth inhibition on pancreatic cancer MIAPaCa-2 cells with IC50 values of
20 µM and 32 µM, respectively, and against prostate cancer PC-3 cells with IC50 values of
14 µM and 18 µM, respectively. Moreover, xylarolide A (354) displayed significant DPPH
scavenging activity with an EC50 value of 10.3 µM [122].

When the endophytic fungus Diaporthe sp. PF20 from Piper nigrum was treated with
VPA at 100 µM, piperine (358) production was enhanced [123].

Dimorphosporicola tragani CF-090383 was examined to produce three mycotoxins when
VPA was added to the fermentation at 100 µM. The induced mycotoxins were identified as
dendrodolides E (99), G (100), and I (101) [67].

The treatment of VPA at 50 µM in the cultures of Doratomyces microspora resulted in
the enhanced production of seven antimicrobial compounds, p-hydroxy benzaldehyde
(359), phenyl acetic acid (360), phenyllactic acid (361), indole-3-carboxylic acid (362), indole-
3-acetic acid (363), cyclo-(proline-methionine) (364), and cyclo-(phenylalanine-proline)
(365) [27].

The cultures of Drechslera sp. were treated with VPA at 500 µM. The production of
benzophenone (366) was increased [40].

Incorporating SVP at 1 mM affected the metabolite profile of the endophytic fungus
Macrophomina phaseolina from the roots of Brugmasnsia aurea. Two compounds induced
production and were identified as 3-acetyl-2-methyl dihydro-furan-2(3H)-one (367) and
2-methyl-3-methylthio-butanoic acid (368) [124].

By treating with SVP at 10 µM in the sponge-associated Penicillium chrysogenum
HLS111, three new heterodimeric tetrahydroxanthone–chromanone lactones, chrysoxan-
thones A–C (369–371), were isolated. They exhibited moderate antibacterial activities
against Bacillus subtilis with MIC values of 5–10 µg/mL [125].

The induced compounds by SVP or VPA in the cultures of Botryosphaeria mamane and
Phomopsis heveicola were only detected by LC-MS or GC-MS and were not further identified.
Botryosphaeria mamane was an endophytic fungus isolated from Bixa orellana. An addition of
SVP at 100 µM induced the production of two metabolites in the cultures of B. mamane by
LC-MS analysis [44]. VPA at 0.5–25 µg/mL increased the production of volatile compounds
secreted by the endophytic fungus P. heveicola of the tropical plant Piper longum. These
increased volatile compounds were only preliminarily identified by GC-MS analysis [126].

4.4. Effects of Sodium Butyrate

Some examples of sodium butyrate (NaBut) that affect the production of fungal
secondary metabolites are listed in Table S5. The structures of compounds 372–410 isolated
from fungi treated with NaBut are shown in Figure S7.

NaBut at 9 µM significantly increased the production of cytochalasin E (38), patulin
(39), and pseurotin A (40) compared to the control in the suspension culture of Aspergillus
clavaus [25].

Two novel brominated resorcylic acid lactones, namely 5-bromozeaenol (372) and 3,5-
dibromozeaenol (373), together with four known analogues, aigialomycin B (374), zeaenol
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(375), LL-Z1640-1 (376), and LL-Z1640-2 (377), were produced by the marine-derived
fungus Cochliobolus lunatus TA26-46 treated with NaBut at 10 mM [127].

When Diaporthe sp. PF20, the endophytic fungus from Piper nigrum, was treated with
NaBut at 100 µM, the production of piperine (358) was enhanced [123].

When NaBut was added in the medium of the mangrove-derived endophytic fungus
Leucostoma persoonii at 100 µM, the production of cytosporones B (346), C (378), and E (379)
was enhanced, and the novel cytosporone R (380) was induced. These cytosporones showed
antibacterial activities on methicillin-resistant Staphylococcus aureus (MRSA) [128].

The marine-derived Penicillium brevicompactum was treated with NaBut at 10 mM. The
production of both anthranilic acid (381) and ergosterol peroxide (382) was enhanced [129].

The addition of NaBut at 1 mM in the medium of endophytic fungus Phomopsis
sp. XP-8 isolated from the bark of Tu-Chung (Eucommia ulmoides) decreased yields of
pinoresinol (383), pinoresinol monoglucoside (384), and pinoresinol diglucoside (385) [130].

Two new compounds, named phaseolorin J (386) and phomoparagin D (387), along
with three known chromones, phaseolorin D (388), chaetochromone B (389), and pleospo-
ralin D (390), and six known compounds, cytochalasins J (391), J1 (392), J2 (393), J3 (394), H
(395), and phomopchalasin D (396), were isolated from the cultures of Phomopsis asparagi
DHS-48 treated with NaBut at 50 µM. Both phaseolorin J (386) and cytochalasin J2 (393)
moderately inhibited the proliferation of concanavalin A-induced T and lipopolysaccharide-
induced B murine spleen lymphocytes. Phomoparagin D (387) exhibited significant in vitro
cytotoxicity against the tested human cancer cell lines HeLa and HepG2, which was com-
parative to the positive controls adriamycin and fluorouracil [131].

When the coral-derived fungus Trichoderma harzianum XS-20090075 was treated with
10 µM NaBut, the production of terpenoids was induced, including three new terpenoids,
namely harzianolic acid (397), harzianone E (398), and 3,7,11-trihydroxy-cycloneran (399),
together with 11 known sesquiterpenoids, methyl 3,7-dihydroxy-15-cycloneranate (400),
catenioblin C (401), ascotrichic acid (402), cyclonerotriol (403), (10E)-12-acetoxy-10-cycloneren-
3,7-diol (404), cyclonerodiol (405), cyclonerodiol oxide (406), epicyclonerodiol oxide (407),
ophioceric acid (408), ent-trichoacorenol (409), and trichoacorenol (410). Both harzianone
E (398) and methyl 3,7-dihydroxy-15-cycloneranate (400) exhibited weak antibacterial
activity against Photobacterium angustum [132].

4.5. Effects of Nicotinamide

Nicotinamide belongs to the NAD+-dependent HDAC inhibitor. Some examples of
nicotinamide affecting the production of fungal secondary metabolites are listed in Table S6.
The structures of compounds 411–439 isolated from fungi treated with nicotinamide are
shown in Figure S8.

The addition of nicotinamide at 62.5 µg/mL in the cultures of Aspergillus awamori
induced the production of secondary metabolites based on LC-MS analysis. Some differen-
tial metabolites were speculated according to the accurate molecular weight data. These
putative metabolites need further identification [133].

Nicotinamide at 50 µM was added to the medium, in which the fungus Chaetomium
cancroideum was cultured. It significantly enhanced the production of five polyketides,
including chaetophenols B (293) and C (294), chaetophenol G (411), and cancrolides A (412)
and B (413) [134].

The cultivation of Chaetomium mollipilium with nicotinamide at 100 µM stimulated
its secondary metabolism, leading to the production of new polyketides, mollipilin A–E
(414–418), along with two known compounds, mollipilin F (419) and aureonitol (420). Both
mollipilins A (414) and B (415) exhibited moderate growth inhibitory effects on human
colon cancer (HCT-116) cells [135].

The endophytic fungus Eupenicillium sp. LG41 from the Chinese medicinal plant
Xanthium sibiricum was treated with nicotinamide at 1.5 mg/L. Two decalin-containing
compounds, eupenicinicols C (421) and D (422), along with their biosynthetic precursors,
eujavanicol A (423) and eupenicinicol A (424), were isolated. Among them, eupenicinicol D
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(422) was active against the bacterium Staphylococcus aureus with an MIC value of 0.1 µg/mL
and also showed marked cytotoxicity against the human acute monocytic leukemia cell
line THP-1 [136].

The production of both ergosterol peroxide (382) and deoxynivalenol (DON, 425) was
significantly reduced by nicotinamide at 500 µg/mL in Fusarium head blight pathogen
Fusarium graminearum of wheat plants [137].

Cultures of the endophytic fungus Graphiopsis chlorocephala from Paeonia lactiflora
were treated with nicotinamide at 10 µM. This led to the activated production of ben-
zophenones, which were identified as cephalanones A–F (426–431) and 2-(2,6-dihydroxy-4-
methylbenzoyl)-6-hydroxybenzoic acid (432) [138].

The addition of nicotinamide at 100 µM in the cultures of Penicillium brasilianum led to
the decreased production of brasiliamide A (261), verruculogen TR2 (262), and penicillic
acid (162) [27].

The production of nine phenolic metabolites, namely p-hydroxybenzaldehyde (359),
phenyl acetic acid (360), p-anisic acid (433), p-anisic acid methyl ester (434), benzyl anisate (435),
syringic acid (436), sinapic acid (437), acetosyringone (438), and gentisaldehyde (439) was
induced by nicotinamide at 100 µM in fermentation of the marine-derived fungus Peni-
cillium brevicompactum. Among them, syringic acid (436), sinapic acid (437), and acetosy-
ringone (438) exhibited potent in vitro free radical scavenging with IC50 values from 20 to
30 µg/mL and antiproliferative activities with IC50 values from 1.14 to 1.71 µM against the
HepG2 cancer cell line [129].

4.6. Effects of Trichostatin A

The structures of compounds 440–451 isolated from fungi treated with trichostatin
A (TSA) are shown in Figure S9. TSA at 1 µM was found to increase the production of
secondary metabolites in the cultures of Alternaria alternata and Penicillium expansum with
TLC examination. However, the increased compounds were not further identified [28].

TSA at 0.5 µM significantly increased the production of cytochalasin E (38), patulin (39),
and pseurotin A (40) in the cultures of Aspergillus clavatus [25].

The histone deacetylase gene rpdA expression was stimulated by TSA at 1 µM in
Aspergillus nidulans. Unfortunately, the fungal secondary metabolism was not further
studied [139].

Four new meroterpenoids identified as (R)-4-((2,2-dimethylchroman-6-yl)methyl)-3-
(4-hydroxyphenyl)-5-methoxyfuran-2(5H)-one (440), 1-(2,2-dimethylchroman-6-yl)-3-(4-
hydroxyphenyl)propan-2-one (441), (R,E)-3-(2,2-dimethylchroman-6-yl)-4-hydroxy-5-((2-(2-
hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)methylene)furan-2(5H)-one (442), and
methyl (R)-2-(2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl) acetate (443), along
with nine known compounds, including ergosterol (104), flavipesolides A–C (444–446),
rubrolide S (447), 5-[(3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-yl)-methyl]-3-hydroxy-
4(4-hydroxyphenyl)-2(5H)-furanone (448), (3R,4R)-3,4-dihydro-4,8-dihydroxy-6,7-dimethoxy-
3-methylisocoumarin (449), (3R)-3,4-dihydro-6,8-dimethoxy-3-methylisocoumarin (450),
and terretonin C (451), were isolated from the cultures of Aspergillus terreus OUCMDZ-2739
with 10 µM of TSA in the medium. Under the same condition, without TSA, A. terreus
OUCMDZ-2739 produced different compounds, supporting that the chemical-epigenetic
modification of fungi could enrich the chemodiversity of the fungal products [140].

TSA was applied to the liquid medium of Trichoderma atroviride at 300 nM. The pro-
duction of antimicrobial compounds was induced, and the expression of two secondary
metabolism-related genes pbs-1 and tps-1, which encoded a peptaibol synthase and a ter-
pene synthase, respectively, were activated. The induced antimicrobial compounds could
be further identified [43].

4.7. Effects of Other Histone Deacetylase Modifiers

Except for the histone deacetylase (HDAC) modifiers mentioned above, other HDAC
modifiers, including dihydrocoumarin (DHC), entinostat (MS-275), 2-hexyl-4-pentynoic
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acid, 5-methylemellein, quercetin, and octanoylhydroxamic acid (OHA), were also screened
to have obvious effects on fungal secondary metabolism. Some examples of other histone
deacetylase modifiers affecting the production of fungal secondary metabolites are listed
in Table S7. The structures of compounds 452–462 isolated from fungi treated with other
histone deacetylase modifiers are shown in Figure S10.

Dihydrocoumarin was an inhibitor of the sirtuin family of NAD+-dependent histone
deacetylases. When the cultures of Monascus ruber M7 were treated with dihydrocoumarin
at 5 mM, the production of monasfluol B (452), acetyl-monasfluol B (453), and azaphilone
C (454) increased. However, the production of citrinin (455) decreased [45].

Hypomyces sp. CLG4 was cultured in the presence of entinostat (MS-275) at 500 µM.
Six metabolites were significantly induced and identified as (3R)-6-hydroxymellein (154),
(3R)-6-methoxymellein (157), 6-demethylkigelin (456), (3R)-6,7-dimethoxymellein (457),
pyrolin (458), and terrain (459) [141].

When the fungus Aspergillus versicolor was treated with 2-hexyl-4-pentynoic acid
(HPTA) at concentrations of 12.5 mg/L, 37.5 mg/L, and 62.5 mg/L, respectively, the
production of three metabolites were greatly increased when HPTA was added in the
medium at 37.5 mg/L. They were identified as diorcinol (53), curvularin (460), and cyclo-
(L-Trp-L-Phe) (461) [48].

Sirtuin is an NAD+-dependent histone deacetylase (HDAC) that is highly conserved
in prokaryotes and eukaryotes. 5-Methylmellein and its structurally related compound,
mellein, inhibited SirA activity with IC50 values of 120 µM and 160 µM, respectively.
Adding 5-methylmellein to Aspergillus nidulans cultures increased the production of sec-
ondary metabolites. Unfortunately, the stimulated metabolites were not identified [46].

The cultures of Drechslera sp. were treated with octanoylhydroxamic acid (OHA) at
500 µM. The production of benzophenone (366) increased [40].

Quercetin, which was at a concentration of 100 µM, induced the biosynthesis of
vinblastine (462) as a target product in the endophytic fungi Aspergillus amstelodami VR177L
and Penicillium concavoradulozum VE89L [142].

4.8. Effects of Combinational Treatment with Two Histone Deacetylase Modifiers

The structures of compounds 463 and 464 isolated from fungi treated with two histone
deacetylase modifiers are shown in Figure S11. Nicotinamide is a class III inhibitor of
HDAC, and SAHA is a class I and II inhibitor of HDAC. Under the combination addition
of SAHA (200 µM) and nicotinamide (100 µM) in the cultures of Penicillium brasilianum,
penicillic acid (162) production was significantly suppressed [27].

When the fungus Stagonospora nodorum was co-treated with 50 µM of nicotinamide and
500µM of SAHA, the production of alternariol (26), 4′-methoxy-(2S)-methylbutyrophenone (463),
and (3R)-mellein methyl ether (464) was induced [143].

5. Effects of Other Chemical Epigenetic Modifiers

Other effective chemical epigenetic modifiers screened for a fungal secondary metabolism
included histone acetyltransferase modifiers (i.e., anacardic acid) [31], histone methyltrans-
ferase modifiers (i.e., BRD4770) [32], proteasome modifiers (i.e., bortezomib) [33,144], and
modifiers with unclear mechanisms (i.e., NPD938) [34,49].

5.1. Effects of Histone Acetyltransferase Modifier Anacardic Acid

Anacardic acid was a histone acetyltransferase inhibitor and was first found in the
nutshells of Anacardium occidentale [145]. The structures of compounds 465–467 isolated
from fungi treated with anacardic acid are shown in Figure S12.

In fermentation culture of the endophytic fungus Anteaglonium sp. FL0768, anacardic
acid at 500 µM slightly affected the metabolite profile, affording scorpinone (465) as the
major metabolite together with 1-hydroxydehydroherbarin (466) and a different methylated
hexaketide, ascochitine (467) [31].
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5.2. Effects of Histone Methyltransferase Modifier BRD4770

Methyl-2-(benzoylamino)-1-(3-phenylpropyl)-1H-benzimidazole-5-carboxylate, which
was named BRD4770, is a histone methyltransferase inhibitor. The structures of compounds
468–470 isolated from fungi treated with BRD4770 are shown in Figure S13.

The crude extract of the endophytic fungus Diaporthe longicolla was found to have
potent antioxidant and antibacterial activity, which were selected for the treatment of the
epigenetic modulator BRD4770. The dose of 100 nM BRD4770 used to treat the cultures
of endophytic fungus D. longicolla was noted as an effective concentration in inducing the
isolation of bioactive cryptic metabolites, thereby increasing antibacterial and antioxidant
activities. A comparative study of BRD4770-treated and non-treated crude chromatograms
of RP-HPLC with standard solutions of berberine (468), caffeine (469), and theobromine
(470) confirmed the presence of respective compounds in treated cultures. This study
successfully established the importance of BRD4770, which also interacted with epigenetic
targets and significantly induced and downregulated the production of cryptic metabolites
in the endophytic fungus D. longicolla [32].

5.3. Effects of Proteasome Modifier Bortezomib

Many natural products were screened to have proteasome regulatory activities. How-
ever, they were rarely used for the regulation of fungal secondary metabolism [18,20]. The
structures of compounds 471–475 isolated from fungi treated with proteasome modifier
bortezomib are shown in Figure S14.

The addition of the proteasome modifier bortezomib at 300 µM to the fermentation
broth of the sponge-derived fungus Pestalotiopsis maculans 16F-12 led to the isolation of
four new bergamotene sesquiterpenes, xylariterpenoids H–K (471–474), which belong to
sesquiterpenoids [144].

The fungus Pleosporales sp. was treated with bortezomib at 125 µg/mL. An ad-
ditional metabolite was isolated and identified as (R)-2-(2-hydroxypentyl)-5-carboxy-7-
methoxychromone (475) [33].

5.4. Effects of the ModifierNPD938 with Unclear Mechanisms

NPD938 was an epigenetic modifier with an unclear action mechanism. The struc-
tures of the compounds 476–486 isolated from fungi treated with NPD938 are shown in
Figure S15.

The addition of NPD938 at 30 µM to the cultures of Fusarium sp. RK97-94 led to the in-
duced production of three lucilactaene analogures, namely dihydroNG391 (476), dihydrolu-
cilactaene (477), and 13α-hydroxylucilactaene (478). Among these, dihydroNG391 (476)
exhibited weak in vitro antimalarial activity (IC50 value as 62 µM). Both dihydrolucilactaene
(477) and 13α-hydroxylucilactaene (478) showed very potent antimalarial activity (IC50
values of 0.0015 µM and 0.68 µM, respectively) on Plasmodium falciparum. The structure–
activity relationship showed that the removal of epoxide from NG391 (479) to obtain dihy-
drolucilactaene (477) resulted in a 1200-fold increase of antimalarial activity, suggesting that
this epoxide was extremely detrimental for antimalarial activity. In addition, the opening
of the tetrahydrofuran ring of 13α-hydroxylucilactaene (478) to form dihydrolucilactaene
(477) resulted in a 100-fold increase of activity, confirming that the tetrahydrofuran ring was
not more important for activity than the intact pyrrolidone ring and removal of epoxide.
Furthermore, dihydrolucilactaene (477) exhibited weak cytotoxic activity against HeLa and
HL-60 cells with IC50 values of 21 µM and 37 µM, respectively [49].

NPD938 enhanced tenuazonic acid (30) production in the rice blast fungus Pyricularia
oryzae [34]. NPD938 also induced the production of P-pyridoxatin (480), M-pyridoxatn
(481), F14329 (482), terpendoles C (483) and K (484), paspaline (485), and emindole SB (486)
in the fungus Tolypocladium album [34].
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6. Effects of Two Types of Chemical Epigenetic Modifiers

Some examples of two types of chemical epigenetic modifiers affecting the production
of fungal secondary metabolites are listed in Table S8. The structures of compounds 487–570
isolated from fungi treated with two types of chemical epigenetic modifiers are shown in
Figure S16.

The supplementation of 5-Aza (250 µM) and SAHA (500 µM) to the culture medium
of the endophytic fungus Alternaria sp. induced the production of mycotoxins, includ-
ing alternariol (26), alternariol-5-O-methyl ether (27), 3′-hydroxyalternariol-5-O-methyl
ether (28), altenusin (29), tenuazonic acid (30), and altertoxin II (31). Furthermore, in the
presence of both 5-Aza (250 µM) and SAHA (500 µM) in the medium of Alternaria sp., the
yield of tenuazonic acid (30) from the endophytic fungus more than doubled, as compared
with the only 5-Aza (250 µM) or SAHA (500 µM) addition in the medium [51].

Three new eremophilane-type sesquiterpenes, dihydrobipolaroxin B (487), dihydro-
bipolaroxin C (488), and dihydrobipolaroxin D (489), along with one known analogue,
dihydrobipolaroxin (490), were isolated from the cultures of the deep marine-derived
fungus, Aspergillus sp. SCSIOW2, treated with a combination of 1 mM of SBHA and 1
mM of 5-Aza. All four dihydrobipolaroxins exhibited moderate nitric oxide inhibitory
activities [146].

One new diphenylether-O-glycoside named diorcinol 3-O-α-D-ribofuranoside (491)
along with seven known compounds, (7S)-sydonic acid (33), (S)-sydowic acid (37), diorci-
nal (492), 3,3′-dihydroxy-5,5′-dimethyldibenzofuran (493), cordyol (494), gibellulin B (495),
and cyclo-(L-Trp-L-Phe) (496), were isolated from the culture of the deep marine-derived
fungus Aspergillus sp. SCSIOW3 treated with a combination of 1 mM of SBHA and 1 mM of
5-Aza. Both diorcinal (492) and cordyol (494) exhibited significant biomembrane protective
effects on erythrocytes. Diorcinal (492) also showed algicidal activity against Chattonella
marina, a bloom forming alga responsible for large-scale fish deaths [147].

The combination of N-acetyl-D-glucosamine (GlcNAc) (0.5 µM) with sodium butyrate
(NaBut) (9 µM) significantly increased production of pseurotin A (40) compared to the
control in the cultures of Aspergillus clavatus [25].

5-Aza (500 µM) in combination with SBHA (500 µM) was applied on an endophytic
fungus Aspergillus fumigatus isolated from the terrestrial plant Cynodon dactylon. They signif-
icantly changed the metabolic profile and resulted in the production of nineteen compounds,
including ten alkaloids: 3-dehydroxymethylbisdethio-3,10a-bis(methylthio) gliotoxin (497),
bisdethiobis (methylthio) gliotoxin (498), fumitremorgin C (499), fumiquinazoline J (500),
pyripyropene A (501), chaetominine (502), fumigaclavine A (503), 9-deacetoxyfumigaclavine
C (504), fumigaclavine C (505), and 3-hydroxyacetyl indole (506); six polyketides: helvolinic
acid (507), rhizoctonic acid (508), monomethylsulochrin (509), 3-hydroxy-1,6-dimethoxy-8-
methyl 9H-xanthen-9-one (510), questin (511), and 6-hydroxy-8-methoxy-3-methylisocoumarin
(512); and three benzene derivatives: circinoporic acid (513), koaburaside (514), and methyl
shikimate (515). Among them, three known alkaloids, namely bisdethiobis (methylthio)
gliotoxin (498), fumitremorgin C (499), and 3-(hydroxyacetyl) indole (501), were enhanced
in production to show immunosuppressive activities. Three compounds, namely helvolinic
acid (507), 6-hydroxy-8-methoxy-3-methylisocoumarin (512), and koaburaside (514), be-
longed to the newly induced metabolites. Other compounds were increased for their
production [148].

The supplementation of SAHA (100 µM) and 5-Aza (100 µM) to Czapek-Dox liquid
medium of the endophytic fungus Aspergillus versicolor induced the production of 17 com-
pounds, including two new nucleoside derivatives, kipukasins K (516) and L (517), and
one new bisabolane sesquiterpene, aspergillusene E (518), along with four known nucle-
oside derivatives, kipukasin I (519), kipukasin H (520), kipukasin D (521), and kipukasin
E (522), and ten known bisabolane sesquiterpenes, (7R)-hydroxysydonic acid (32), (7S)-
sydonic acid (33), (E)-5-(hydroxymethyl)-2-(6′-methylhept-2′-en-2′-yl)phenol (523), (Z)-5-
(hydroxymethyl)-2-(6′-methylhept-2′-en-2′-yl)phenol (524), 7-deoxy-7,14-didehydrosydonol
(525), (7R)-sydonol (526), (7R)-methoxysydonol (527), (7S)-sydonol (47), (7S)-methoxysydonol
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(528), and aspergiterpenoid A (529). Both kipukasins K (516) and aspergillusene E (518)
displayed antibacterial activities against Staphylococcus epidermidis and Staphylococcus aureus
with MIC values of 8–16 µg/mL [149].

The deep-sea-derived fungus Eutypella sp. by the co-treatment with 5-Aza (1 mM)
and SBHA (1 mM) resulted in the activation of a sesquiterpene-related biosynthetic gene
cluster to produce at least 21 sesquiterpenes, including 17 undescribed eutypeterpenes
A-Q (530–546). Four known sesquiterpenes were identified as xylariterpenoids A (547)
and B (548), eudesma-3-en-11,15-diol (549), and eudesma-4-en-11,15-diol (550). Among
the compounds, eutypeterpene N (543) was the most active to inhibit LPS-induced NO
production in RAW 264.7 macrophage cells with an IC50 value of 8.6 µM. Ten compounds,
eutypeterpenes B (531), C (532), E (534), M (542), O (544), P (545), and Q (546), xylariter-
penoids A (547), eudesma-3-en-11,15-diol (549), and eudesma-4-en-11,15-diol (550), showed
similar inhibitory effects, with IC50 values from 11.5 µM to 18.7 µM against NO production
compared to that (IC50, 17.0 µM) of the positive control quercetin [150].

The concomitant addition of SBHA (1 mM) and RG-108 (1 mM) to the cultures of
Gibellula formosana, an entomopathogenic fungus, induced the production of two new highly
oxidized ergosterols, formosterols A (551) and B (552), and five new isariotin analogs, 12′-
O-acetylisariotin A (553), 1-epi-isariotin A (554), and isariotins K–M (555–557), together
with six known compounds, isariotin A (341), formosterol C (also named 22,23-epoxy-
3,12,14,16-tetrahydroxyergosta-5,7-dien-11-one, 558), isariotin C (559), isariotin E (560),
TK-57-164A (561), and beauvericin (562) [38].

The concomitant addition of SBHA (500 µM) and RG–108 (500 µM) to the culture
medium of the entomopathogenic fungus Isaria tenuipes led to the isolation of a novel
polyketide tenuipyrone (563) along with two plausible precursors, cephalosporolides B
(564) and F (565) of tenuipyrone (563) [151].

The concomitant addition of 5-Aza (50 µM) and sodium butyrate (100 µM) to the cul-
ture medium of marine fungus Leucostoma persoonii altered the production of cytosporones
B (346), C (378), and E (379), as well as the production of the previously undescribed
cytosporone R (380). Cytosporone E (379) displayed inhibitions with an IC90 value of 13
µM toward the severe malaria Plasmodium falciparum and an MIC value of 72 µM against
methicillin-resistant Staphylococcus aureus (MRSA) [128].

The combination of 5-Aza (50 µM) with SAHA (50 µM) inhibited mycelial growth rate
and pigmentation, and enhanced the production of bioactive VOCs, ergosterol (104), and
xylaguaianol C (105) in the cultures of Muscodor yucatanensis Ni30 [69].

Concomitant supplementation of SAHA (500 µM) and 5-Aza (500 µM) to the culture
medium of the plant endophytic fungus, Pestalotiopsis acaciae, dramatically altered its metabolic
profiles. Three novel aromatic compounds, 20-hydroxy-6′-hydroxymethyl-4′-methylphenyl-2,6-
dihydroxy-3-(2-isopentenyl)benzoate (566), 4,6-dihydroxy-7-hydroxymethyl-3-methylcoumarin
(567), and 4,6-dihydroxy-3,7-dimethylcoumarin (568) were identified [152].

The production of two glycolipids, ustilagic acids B (569) and C (570), was induced
when 5-Aza (500 µM) and SBHA (500 µM) were supplemented into the liquid medium of
Ustilago maydis. Both glycolipids displayed weak antifungal activities against Aspergillus
terreus and Candida albicans [153].

The addition of 5-Aza (5 µM) and SAHA (10 µM) to the cultures of Xylaria psidii
increased the production of resveratrol (132) [75].

7. Conclusions

In summary, chemical-epigenetic modifiers can effectively trigger silent or low-expressed
biosynthetic pathways of fungal secondary metabolites. Since the cultures of Alternaria
alternata and Penicillium expansum treated with trichostatin A to activate the production of
secondary metabolites were first reported by the group of Nancy P. Keller in 2007 [28], great
progress has been achieved. The most impressive advantage of using chemical epigenetic
modifiers is that there is no need to know the target genome features. Furthermore, this
low-cost technique is relatively easy to apply in high-throughput screening operations.
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Thus, the chemical-epigenetic method has been considered a powerful approach for new
bioactive natural product discovery from fungi [14,16–19,154–156].

In addition to the frequently used chemical epigenetic modifiers mentioned in the
review, many natural products have been screened to show chemical epigenetic regulating
activities. They are an important source for chemical epigenetic modifiers applied in fungal
secondary metabolisms [20,21].

Chemical epigenetic and molecular epigenetic modifications are two strategies used
to convert a heterochromatic structure to euchromatin in order to induce the expression of
biosynthetic gene clusters for the secondary metabolism [157]. If a certain type of chemical
epigenetic modifier, such as histone deacetylase inhibitors, was found to be very effective
for secondary metabolism to a certain fungus, it may guide us to either knock out or
overexpress histone acetyltransferase genes in order to activate the production of fungal
secondary metabolites.

The following aspects should be focused on in future research. (1) More natural prod-
ucts should be screened as soon as possible for their chemical epigenetic regulating function
in fungal secondary metabolisms. (2) The number of fungal species treated with epigenetic
modifiers needs to be increased. There is a great potential to identify new bioactive natural
products from fungi. (3) Some chemical modifiers usually lead to the incremental changes
in secondary metabolite contents, while others usually stimulate production of the novel
compounds. Some chemical modifies may have other functions on fungal cells besides their
epigenetic regulation function in fungal secondary metabolism. For examples, GlcNAc was
considered as the DNA methyltransferase modifier [25]. It also regulated the expression of
many virulence genes of pathogens to provide a survival advantage to the pathogens in
the host [158]. Nicotinamide was an inhibitor of NAD+-dependent HDAC of class III in
epigenetic regulation of fungal secondary metabolism [47]. Addition of nicotinamide in the
medium, the production of fungal secondary metabolites was often promoted. In addition,
nicotinamide enhanced the antifungal activities of amphotericin B against Candida albicans
Cryptococcus neoformans. It also enhanced anti-biofilm activity of amphotericin B [159].
Some chemicals such as metal ions [160,161] and two-phse solvents [162,163] could en-
hanced production of fungal secondary metabolties. These chemicals might not be acted
as the epigenetic modifiers to affect production of fungal secondary metabolites. So the
action mechanisms of chemicals on fungal secondary metabolism are very complicatated,
which should be studied in detail. (4) With the popularity of fungal genome sequencing
technology, we can easily realize the gene clusters of secondary metabolite biosynthesis
by coupling with the bioinformatics prediction. Thus, epigenetic regulations to activate
cryptic biosynthetic gene clusters of secondary metabolism should be easily revealed. (5)
Epigenetic engineering of secondary metabolisms based on epigenetic regulation is emerg-
ing as a powerful strategy for the management of either mycotoxin-producing fungi or
plant pathogenic fungi that synthesize phytotoxins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof9020172/s1, Figure S1: Structures of the compounds 26–132 isolated from fungi treated
with 5-azacydidine; Figure S2: Structures of the compounds 133–138 isolated from fungi treated
with other DNA methyltransferase modifiers; Figure S3: Structures of the compounds 139–149
isolated from fungi treated with two DNA methyltransferase modifiers; Figure S4: Structures of the
compounds 150–290 isolated from fungi treated with suberoylanilide hydroxamic acid; Figure S5:
Structures of the compounds 291–351 isolated from fungi treated with suberoylbishydroxamic acid;
Figure S6: Structures of the compounds 352–371 isolated from fungi treated with valproic acid
or sodium valproate; Figure S7: Structures of the compounds 372–410 isolated from fungi treated
with sodium butyrate; Figure S8: Structures of the compounds 411–439 isolated from fungi treated
with nicotinamide; Figure S9: Structures of the compounds 440–451 isolated from fungi treated
with trichostatin A; Figure S10: Structures of the compounds 452–462 isolated from fungi treated
with other histone deacetylase modifiers; Figure S11: Structures of the compounds 463 and 464
isolated from fungi treated with two histone deacetylase modifiers; Figure S12: Structures of the
compounds 465–467 isolated from fungi treated with histone acetyltransferase modifier anacardic
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acid; Figure S13: Structures of the compounds 468–470 isolated from fungi treated with histone
methyltransferase modifier BRD4770; Figure S14: Structures of the compounds 471–475 isolated from
fungi treated with proteasome modifier bortezomib; Figure S15: Structures of the compounds 476–486
isolated from fungi treated with NPD938; Figure S16: Structures of the compounds 487–570 isolated
from fungi treated with two types of chemical epigenetic modifiers; Table S1: The examples of 5-Aza
affecting production of fungal secondary metabolites; Table S2: The examples of SAHA affecting
production of fungal secondary metabolites; Table S3: The examples of SBHA affecting production of
fungal secondary metabolites; Table S4: The examples of VPA or SVP affecting production of fungal
secondary metabolites; Table S5: The examples of NaBut affecting production of fungal secondary
metabolites; Table S6: The examples of nicotinamide affecting production of fungal secondary
metabolites; Table S7: The examples of other histone deacetylase modifiers affecting production of
fungal secondary metabolites; Table S8: The examples of two types of chemical epigenetic modifiers
affecting production of fungal secondary metabolites. All the references cited in the supplementary
tables are listed in the section References of the text.
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