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Abstract: Gibberella ear rot (GER) caused by Fusarium graminearum (teleomorph Gibberella zeae)
is one of the most destructive diseases in maize, which severely reduces yield and contaminates
several potential mycotoxins in the grain. However, few efforts had been devoted to dissecting
the genetic basis of maize GER resistance. In the present study, a genome-wide association study
(GWAS) was conducted in a maize association panel consisting of 303 diverse inbred lines. The
phenotypes of GER severity were evaluated using kernel bioassay across multiple time points in
the laboratory. Then, three models, including the fixed and random model circulating probability
unification model (FarmCPU), general linear model (GLM), and mixed linear model (MLM), were
conducted simultaneously in GWAS to identify single-nucleotide polymorphisms (SNPs) significantly
associated with GER resistance. A total of four individual significant association SNPs with the
phenotypic variation explained (PVE) ranging from 3.51 to 6.42% were obtained. Interestingly, the
peak SNP (PUT-163a-71443302-3341) with the greatest PVE value, was co-localized in all models.
Subsequently, 12 putative genes were captured from the peak SNP, and several of these genes
were directly or indirectly involved in disease resistance. Overall, these findings contribute to
understanding the complex plant–pathogen interactions in maize GER resistance. The regions and
genes identified herein provide a list of candidate targets for further investigation, in addition to the
kernel bioassay that can be used for evaluating and selecting elite germplasm resources with GER
resistance in maize.

Keywords: maize; Gibberella ear rot; Fusarium graminearum; genome-wide association study; kernel
bioassay

1. Introduction

Maize is a cereal crop well adapted to many ecoregions, where a large propor-
tion of people rely on it as their primary staple food. However, maize production and
quality is often limited by fungal diseases, such as Gibberella ear rot (GER) caused by
Fusarium graminearum (Schwabe) [1,2]. Serious yield losses can be caused by the disease,
especially in the high temperate and humid regions in the world [3]. In southwest China,
severe occurrences of GER in maize-growing areas cause yield loss [4]. Agronomic and
chemical practices preventing the disease are currently insufficient when climatic condi-
tions are favorable for the pathogen. The preferred method for controlling GER disease is to
breed and cultivate resistant maize genotypes [5]. However, totally immune genotypes are
not available, and commercial hybrids always have less resistance to the GER [6–9]. So, it
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becomes urgent to select resistant maize germplasm resources and identify broad-resistant
genes for improving GER resistance.

Fusarium graminearum (F. graminearum) is a common fungal pathogen that infects many
plant species, including maize, wheat, and rice [10]. In maize, the spores of F. graminearum
could naturally infect maize upon conveyance through wind, rain splash, or insect infesta-
tion. Infected kernels are observed with a reddish-pink mold starting at the tip of a rotten
ear [11]. Not only can the F. graminearum-caused disease reduce yield, but, also, the fungal
infection produces diverse mycotoxins in the grain, including deoxynivalenol (DON) and
zearalenone (ZEN), which threaten human and livestock health [3,5].

Accurate phenotypic assessment is the major bottleneck in identifying resistant genes
and conducting genetics research on diseases [12]. A precise and convenient phenotypic
evaluation method for GER resistance is challenging, owing to multiple factors influencing
disease resistance scoring: inoculation time, inoculation method, and environmental condi-
tions [13]. Under natural conditions, the unstable disease symptoms make it difficult to
distinguish resistance differences among genotypes [14–16]. Therefore, development of a
reliable phenotypic evaluation system is an essential step for improving breeding of maize
resistance to F. graminearum. Most previous studies concerning phenotypic performance
of maize ear rot were focused on the field evaluation [6–8,17–20]. Nevertheless, the field
evaluation is time consuming, labor intensive, and influenced by numerous environmental
factors. As an alternative method to precisely evaluate GER phenotypes, a kernel bioassay
was developed for testing GER severity in laboratory [21–23]. Herein, healthy mature seeds
were incubated with a fungal suspension to survey seed rot caused by occurring pathogens.
The assay can be completely controlled under laboratory conditions to achieve more ac-
curate phenotypic results, and it has been successfully applied in maize to evaluate the
resistance to Fusarium spp. [24,25]. However, this method was based on a heavy workload
and patience for calculating the number of spores, especially for a large population [21].

Previous efforts to characterize GER resistance indicated that the trait is generally
considered as a quantitative inheritance with a complex genetic basis and is influenced
by various environmental factors [5,12]. In recent years, much progress has been made in
GER resistance, including the detection of quantitative trait loci (QTL), identification of
resistant genes, and characterization of defense responses [6–9,13–19,26–30]. For instance,
a previous study detected eleven QTLs, including a stable QTL, qGER4.09, conferring
resistance to GER [23]. Although QTL mapping and omics research have identified a series
of candidate regions or genes associated with disease resistance, the molecular mechanism
of those genes underlying GER resistance have only been identified in a few cases due to
inconsistent results from different populations and environments. To our knowledge, only
limited research existed until recently on the genetic complexity of GER resistance and the
identification of underlying genes, particularly for GER resistance in maize. Recently, the
use of high-density single nucleotide polymorphism (SNP) datasets in combination with a
genome-wide association study (GWAS) has emerged as a powerful alternative strategy to
acquire target genes associated with desired traits [31]. This efficient approach can rapidly
detect valuable natural variations in trait-associated loci as well as allelic variations in genes
underlying quantitative and complex traits [32]. In maize ear rot, previous efforts were
mainly focused on SNPs conferring resistance to Fusarium verticillioides ear rot (FER) [33–36],
whereas there are very few reports on GER [5]. A previous study was conducted to detect
significantly associated SNPs involved in resistance to maize GER [7]. However, no close-
association SNPs were obtained in their research. In another study, a GWAS was performed
in an association panel consisting of 316 diverse inbred lines and 10 co-localized association
SNPs linked to GER resistance, including a peak SNP, and ten candidate genes were
obtained [30].

In order to accurately estimate phenotypes of GER resistance, a maize association
panel was evaluated for its resistance using the kernel bioassay. Then, we performed GWAS
to identify SNPs and putative genes that may contribute to GER resistance. Moreover, we
analyzed the alleles that can be potentially used to improve GER resistance for the next
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breeding programs. To our knowledge, this is the first time to dissect the genetic basis for
maize GER resistance using a large-scale kernel bioassay indoors.

2. Materials and Methods
2.1. Maize Germplasm

The association panel containing core maize breeding materials from China, Interna-
tional Maize and Wheat Improvement Center (CIMMYT), and U.S.A. were evaluated for
GER resistance using kernel bioassay in the laboratory. Detailed information regarding the
plant materials has been reported in a previous study [30]. Due to seed availability, a total
of 303 inbred lines were used for the experiment.

2.2. Experimental Procedure for Kernel Bioassay

For each line, mature seeds with similar sizes and shapes, without visible damage and
without inoculation or infection, were selected for the experiment. To accurately evaluate
the presence of the contaminating fungal infection, the healthy kernels of each line were
surface disinfested with 70% ethanol for 2 min and then 0.6% sodium hypochlorite for
10 min and rinsed five times with sterile distilled water. To provide an infection court, the
kernels were wounded by cutting the embryo side with a razor blade, with a cut depth of
about 0.5 mm. Subsequently, the kernels were blotted dry and then placed in a 20 mL glass
scintillation vial (diameter 2.8 cm and high 6.0 cm) with a screw cap (Wheaton Science,
Head Biotechnology Co., Ltd., Beijing, China) and finally inoculated with 200 µL of a final
concentration of approximately 1.0 × 105 mL−1 spore suspension of F. graminearum (strain
Fg 12002). The strain was isolated from naturally infected kernels using the single-spore
isolation method and was kindly provided by Prof. P. Qi (Sichuan Agricultural University,
China) for the present experiment. Control seeds were received an equal amount of
sterilized distilled water. For each line, four seeds were placed into a vial as one biological
replicate, with three replicates per experiment. The vials were kept in a humidity chamber
under controlled conditions (27 ± 1 ◦C and 14:10 light/dark photoperiod). In view of no
robust standards for kernel bioassay at present, we chose spore enumeration at different
time points for the GER severity, according to the described study [21]. In current study,
the vials were surveyed at 7, 14, 21, and 28 days after the F. graminearum inoculation for
spore enumeration. Finally, the average number of spores across multiple time points was
calculated to comprehensively evaluate the final GER severity of each line.

2.3. Phenotypic Analysis

Descriptive phenotypic analysis of the GER severity at different time points, including
the range, mean, standard deviation (SD), and coefficient of variation (CV), were performed
using the software SPSS 21.0 (http://www.spss.com, accessed on 29 September 2023). The
SD was analyzed according to a one-way analysis of variance (ANOVA) model, and the CV
(%) was calculated with 100 × SD divided by the mean. Due to strict controllable laboratory
conditions, the effect of each line with environment interaction was absent, resulting in lack
the analysis of the broad-sense heritability of GER.

2.4. GWAS Analysis

The association panels were genotyped, and detailed information on the population
structure, kinship matrix, principal component analysis (PCA) matrix, and linkage disequi-
librium (LD) decay distance have previously been described [37]. A total of 43,735 SNPs
were obtained with a minor allele frequency (MAF) of less than 0.05 and a missing rate and
heterozygosity greater than 20% for the present study. The average distance of LD decay
was approximately 220 kb at r2 = 0.2. The LD attenuation distance around each SNP was
used to search for candidate genes according to significant SNPs in GWAS. To identify SNPs
with robust associations with GER, three models, the fixed and random model circulating
probability unification model (FarmCPU), general linear model (GLM), and mixed linear
model (MLM), were simultaneously applied in the GWAS analysis using the rMVP package
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in R software (version 1.0.7). Herein, the PCA and Kinship were added into the models
for controlling false positive signals associated with traits [38]. The phenotype variance
explained (PVE) of the SNPs was calculated as the following formula:

r2 =
∑n

i=1 (ŷi − ŷ)2

∑n
i=1 (yi − y)2

A Bonferroni test (0.05/N) was employed to select the SNPs significantly associated
with GER, and a total of 24,535 (N) effective SNPs were ultimately obtained by the simpleM
program in R [39]. Considering that the GER was determined by multiple minor effective
genes, a moderated stringency threshold of −log (0.5/24,535) = 2.04 × 10−5 was chosen to
determine the significant SNPs in FarmCPU and GLM. On the other side, a less stringent
threshold of 1.0 × 10−4 for MLM was reasonable, according to previous reports [33,40].
Genes within the LD regions of significantly associated SNPs were considered as candidate
genes governing GER resistance and then captured and annotated according to the B73
reference genome (B73 RefGen_v4) in the MaizeGDB database (https://www.maizegdb.org,
accessed on 29 September 2023).

3. Results
3.1. Phenotypic Evaluation of GER Severity

The association panel consisting of 303 diverse inbred lines were evaluated for GER
severity at 7-, 14-, 21-, and 28-days post-inoculation (dpi) using a kernel bioassay. The means
of the spore values among the panel were 0.71 (7 dpi, ranging from 0.00 to 14.40 × 106 mL−1),
2.77 (14 dpi, ranging from 0.00 to 64.00 × 106 mL−1), 4.67 (21 dpi, ranging from 0.00 to
108.96 × 106 mL−1), and 7.25 (28 dpi, ranging from 0.00 to 84.70 × 106 mL−1), respectively
(Table S1). The outcomes of spore enumeration revealed that the number of spores increased
gradually with the extension of the time-course inoculation (Table 1, Figure S1). Meanwhile,
the vials observed that the hyphae also grew gradually during the inoculation process
(Figure 1). Furthermore, their standard deviation (SD) and coefficient of variation (CV)
were shown with high variation among the association panel (Table 1), implying that a high
proportion of the phenotypic variation was exhibited during the F. graminearum infection.
Overall, the spores’ number, hyphae growth, and variation were found with different
types of response to F. graminearum infection, displaying that the laboratory-inoculated
kernel method was available for quantifying fungal growth and biomass, evaluating the
phenotypic performance in GER severity. The description on GER severity using a kernel
bioassay in a large population was a first.

Table 1. Phenotypic description among the association panel using the kernel bioassay.

Days Post-Inoculation (dpi) Range (×106 mL−1) a Mean ± SD (×106 mL−1) b CV (%) c

7 0.00–14.40 0.71 ± 1.47 207
14 0.00–64.00 2.77 ± 6.18 223
21 0.00–108.96 4.67 ± 9.38 200.8
28 0.00–84.70 7.25 ± 12.27 169

a Range represents the number of spores with the concentration ×106 mL−1. b Values are given as the mean ± SD
(standard deviation). c The percentage of CV (coefficient of variation) represents the coefficient of phenotypic variation.

Considering the complexity of plant–pathogen interactions during F. graminearum
infection, the final GER severity of each line was evaluated with an average number of
spores across multiple time points. Based on the comprehensive evaluation, the top ten
lines were obtained from the association panel with low spore concentration, including
SCML1950 (0.48 × 105 mL−1), Qi533 (0.52 × 105 mL−1), JD7275 (0.74 × 105 mL−1), End28
(0.81 × 105 mL−1), 5Gong (0.83 × 105 mL−1), CG698C102 (1.19 × 105 mL−1), Su95-1
(1.28 × 105 mL−1), Lin-1 (1.34 × 105 mL−1), CLWN251 (1.41 × 105 mL−1), and BJ005
(1.45 × 106 mL−1) (Table S1). The identified germplasms could be potentially utilized in a
maize disease-resistance breeding program for GER. In general, these outcomes suggested

https://www.maizegdb.org
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that the kernel assay may provide a new way to screen resistant germplasm sources or
detect specific loci associated with resistance to GER in maize.
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3.2. Association Analysis and SNPs Discovery

According to the above comprehensive evaluation, the phenotypic data of 303 lines
were ultimately obtained and further utilized to perform GWAS using the three models:
FarmCPU, GLM, and MLM. In FarmCPU, only two significant association SNPs (PUT-163a-
71443302-3341 and SYN9515) were identified with an adjusted threshold of 2.04 × 10−5,
distributed on the chromosomes 1 and 2, respectively (Table 2, Figure 2a). In GLM, two
SNPs (PUT-163a-71443302-3341 and PZE-110014176) were also found with significant
association and localized on the chromosomes 1 and 10, respectively (Table 2, Figure 2b).
For MLM, three significant association SNPs (PUT-163a-71443302-3341, SYN9515 and PZE-
104154469) were detected with the threshold of 1.0 × 10−4, distributed on chromosomes 1,
2, and 4, respectively (Table 2, Figure 2c). The average PVE value of the identified SNPs was
5.6%, ranging from 3.51 to 6.42% (Table 2). Among them, the association SNP (PUT-163a-
71443302-3341) had the greatest PVE value of 6.42%. A combination of the GWAS analysis
from the three models revealed that only four significant SNPs were obtained associated
with GER resistance. In detail, the SNPs PUT-163a-71443302-3341 on chromosome 1 and
SYN9515 on chromosome 2 were repeatedly detected in different models, indicating that
the two loci were reliable. Interestingly, the peak SNP (PUT-163a-71443302-3341) with the
greatest PVE value was detected in all models (Figure 2), suggesting that the co-localized
SNP was considered as a stable resistant locus. The peak region might contain important
genetic components affecting GER resistance, and the useful SNP should be concerned for
discovering candidate-resistant genes.

Table 2. Significant association SNPs for GER resistance through GWAS with three models.

Model a SNP Chr. b Position Allele MAF c p Value PVE (%) d

FarmCPU PUT-163a-71443302-3341 1 226,136,399 G/A 0.29 2.06 × 10−6 6.42
FarmCPU SYN9515 2 194,393,324 C/A 0.36 1.32 × 10−5 5.54

GLM PUT-163a-71443302-3341 1 226,136,399 G/A 0.29 1.53 × 10−6 6.42
GLM PZE-110014176 10 13,338,854 A/C 0.43 1.65 × 10−5 3.51
MLM PUT-163a-71443302-3341 1 226,136,399 G/A 0.29 5.12 × 10−6 6.42
MLM SYN9515 2 194,393,324 C/A 0.36 2.46 × 10−5 5.54
MLM PZE-104154469 4 238,758,660 A/G 0.49 8.28 × 10−5 5.35

a Model: FarmCPU, fixed, and random model circulating probability unification model. GLM, general linear
model. MLM, mixed linear model. b Chr., chromosome. c MAF, minor allele frequency. d PVE, phenotypic
variation explained.

3.3. Genes Associated with GER Resistance

To identify genes with potential resistance to GER, candidate genes were explored
within 220 kb upstream and downstream of the peak SNP (PUT-163a-71443302-3341).
Finally, the focused SNP was adjacent to 12 putative genes according to the annotation
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information of the B73 reference genome (Table 3). Of these candidate genes, including the
LRR-repeat protein and hydroxycinnamoyl transferase, several of them may have different
roles in response to pathogen infection. Even though these genes were not described
absolutely associated with GER resistance, the findings from this study suggest that the
candidate SNP and linked genes should be taken into account and targeted to dissect
functions involved in disease resistance.
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Figure 2. Manhattan plot of genome-wide association analysis (GWAS) for GER resistance with three
models. (a) GWAS analysis using a fixed and random model circulating probability unification model
(FarmCPU). (b) GWAS analysis using a general linear model (GLM). (c) GWAS analysis using a mixed
linear model (MLM). The Y-axis value corresponds to -log10 (p) of p-value scores, and the X-axis
indicates chromosomes and physical positions of SNPs. The red dashed lines show genome-wide
significance at the adjusted thresholds of 2.04 × 10−5 for FarmCPU and GLM and 1.0 × 10−4 for
MLM, respectively. The most significant association SNP PUT-163a-71443302-3341 was marked and
co-localized by the combined FarmCPU, GLM, and MLM models.
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Table 3. The genomic regions of the peak SNP (PUT-163a-71443302-3341) and candidate genes
associated with GER resistance a.

Physical Position Candidate Genes Annotation

229515984-229517919 Zm00001d032527 hydroxycinnamoyltransferase13
229718687-229725690 Zm00001d032530 F-box/LRR-repeat protein
229758635-229765316 Zm00001d032531 Membrane steroid-binding protein 1
229766139-229766442 ENSRNA049476973 Plant signal recognition particle RNA
229816856-229817035 ENSRNA049476978 Plant signal recognition particle RNA
229829797-229830137 Zm00001d032533 --
229830451-229831175 Zm00001d022929 --
229831273-229832169 Zm00001d032534 --
229847655-229849510 Zm00001d022930 --

229847655-229849510 Zm00001d032535 Tetratricopeptide repeat (TPR)-like
superfamily protein

229900429-229901097 Zm00001d032538 --
229992052-229992483 Zm00001d032542 plant/MXO21-9 protein

a The relative physical positions on chromosome 1 were determined according to the B73 reference genome.
Candidate genes were annotated in the region based on the B73 reference genome.

3.4. Distribution of Favorable Alleles

As the ten elite resistant lines were obtained from the association panel via kernel
bioassay evaluation, the favorable alleles of the association SNPs were estimated for fur-
ther utilization. Herein, genotypes associated with a lower level of GER severity were
defined as favorable alleles for GER resistance. The identified four association SNPs were
distributed across the ten lines, and the favorable alleles percentages of these SNPs ranged
from 10.0% to 90.0%, with two SNPs (PUT-163a-71443302-3341 and PZE-104154469) con-
taining more than 50% favorable alleles, whereas the remaining two SNPs were no less
than 50% (Figure 3). Moreover, each of the elite lines contained different favorable alleles,
ranging from 1 to 4. In detail, the seven lines (5Gong, End28, SCML1950, JD7275, CLWN251,
CG698C102, and Qi533) contained at least two favorable alleles, whereas the remaining
three lines (Su95-1, Lin-1, and BJ005) contained only one favorable allele (Figure 3). No-
tably, the peak SNP (PUT-163a-71443302-3341) contained the nine most favorable alleles,
suggesting that the significant SNP may have important effect on GER resistance.
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4. Discussion

Disease severity caused by F. graminearum, particularly for GER, is often influenced
by environmental conditions, host genotypes, and pathogenic races [5,12,26]. The estab-
lishment of a precise and convenient phenotypic evaluation method for GER resistance,
capable of accommodating large populations, is a prerequisite for conducting genetics
research in future [5,8]. Given the genotype and environmental interactions, field phe-
notypes of pathogen-caused diseases must be conducted in multiple environments over
several years [12]. Thus, a reliable way for evaluating GER resistance is urgently necessary
for eliminating external environmental factors. To achieve this goal, the GER severity of
the maize association panel was evaluated through laboratory inoculation in the present
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study. This is the first large-scale phenotypic evaluation for GER severity indoors. Thus
far, previous efforts on evaluating GER resistance for a large population were mainly on
the field-inoculated test, and few efforts have been made indoors [7,26,30]. Although the
indoor assay has been applied to assess disease severity for a few samples, not much
progress has been reported on a large population due to the tedious process for spore
enumeration at each inoculated time point [22,30,41].

In order to accurately describe GER severity, spore enumeration was performed across
multiple time points during the F. graminearum infection. The results revealed a wide
variation in GER severity among the lines (Table 1, Figure 1), suggesting that the indoor
assay could effectively distinguish resistant variation for a large population. It should be
noted that their SDs and CVs were showed with a big variation range among the association
panel, demonstrating that the number of spores varied evidently at each time point. The
most likely reason was that the assay found it difficult to control the seeds’ viability and
nutrients, thus meaning that the F. graminearum could not produce spores steadily [13,21].
Furthermore, given no previous reports on resistant rating scales or grades for kernel
bioassay, we assumed that the final GER severity should be evaluated comprehensively
during F. graminearum infection. Indeed, the spores at each time point were only a partial
reflection of the final resistance [13]. Thus, we considered the average spores across multiple
time points as the phenotypic data for the final GER severity in the current study. However,
this was just an initial tentative strategy in evaluating phenotypes of GER resistance for a
large population. A further, prior approach on the phenotypic evaluation of GER severity
through a kernel assay should be worthwhile. With the comprehensive evaluation, ten elite
lines with low spore concentrations were obtained from the association panel, indicating
that kernel assay offered an alternative way to evaluate phenotypes of GER resistance, and
it could also accelerate to obtain resistant germplasms for improving resistance of maize
GER disease. When compared with our previous study [30], only one inbred line, End28,
was co-identified in both evaluations. The repeatability of the two methodologies was not
very well. The possible reason is that different resistance mechanisms may be involved
between the developing kernels and mature seeds during the infection process.

Plant resistance to pathogens is a complex interaction regulated by polygenic networks.
In this study, GWAS was conducted by three models, FarmCPU, GLM, and MLM, to identify
the candidate genomic regions and SNPs conferring GER resistance. Only four individual
significant association SNPs with a range of PVE were identified in GWAS (Table 2, Figure 2).
In a previous study, a total of 57 associated SNPs were obtained, and three interesting
genes were identified conferring Fusarium verticillioides seed rot (FSR) resistance in their
GWAS analysis [25]. That research provided much information on dissecting the genetic
architecture for FSR resistance using the inoculated seed methodology. The results were
different from previous similar studies [7,30]; fewer loci were obtained in the current study.
The reason for this phenomenon largely relied on the different phenotypic data between
the field and indoors. As mentioned earlier, most of the previous studies concerning
phenotypic performances of GER severity were focused on the field evaluation, and the
field phenotypic data varied widely, resulting in the detection of more variation loci
conferring resistance [7,30]. On the contrary, the kernel assay was strictly controlled
under laboratory conditions, thus leading to the phenotypic data varying more gently
with a smaller variation than those in the field [21]. Despite the fact that fewer SNPs
were obtained for our GWAS, two of them were repeatedly detected in different models,
indicating that the identified loci were reliable to help understanding the complex genetic
basis of GER resistance.

Furthermore, a combination analysis of GWAS results was performed to capture stable
genomic region or key loci significantly associated with GER resistance. Interestingly, the
peak SNP (PUT-163a-71443302-3341) with the greatest PVE value of 6.42% was co-localized
in all models. Then, the significant SNP hit 12 specific genes, and several of them may have
been involved in response to the pathogen infection (Table 3). For instance, a candidate gene
Zm00001d032530 was annotated as LRR-repeat protein, which was widely reported to be
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involved in plant immunity [42]. Another candidate gene, annotated as hydroxycinnamoyl
transferase (Zm00001d032527), was tightly associated with plant metabolism, playing
an important role in the interaction between plants and pathogens [43]. In addition,
ENSRNA049476973 and ENSRNA049476978, annotated as plant signal recognition particles
(SRPs), were responsible for recognizing external pathogens in plant immunity [44]. The
candidate gene Zm00001d032535 was annotated as a tetratricopeptide repeat (TPR)-like
protein, playing an important role in regulation of growth and in response to environmental
stimuli of plants [45]. Overall, further investigation on these candidate regions and the
significant association of SNPs linked to candidate genes with potential resistance to
GER in addition to the unknown genes is required. According to the distributions of the
favorable alleles among the ten elite inbred lines, two SNPs were found containing more
than 50% favorable alleles, suggesting that the SNPs should be emphasized in marker-
assisted selections for a GER breeding program (Figure 3). Especially for the peak SNP
(PUT-163a-71443302-3341), nine favorable alleles were observed across the ten lines. These
findings implied that the detected alleles might have an important effect in response to
GER resistance. In addition, the seven lines harboring more than two favorable alleles that
exhibited low disease severity could be potentially utilized in maize disease-resistance
breeding in the future.

5. Conclusions

In summary, we conducted a GWAS based on a laboratory-inoculated phenotypic
evaluation to provide new and useful genetic information on maize GER resistance. We
obtained four significant association SNPs through the GWAS, containing a peak significant
SNP following 12 candidate genes. To our knowledge, this is the first large-scale GWAS
focusing on the candidate regions and linked genes contributing to GER resistance by
using a kernel bioassay indoors. These findings will help to better understand the genetic
complexity of GER resistance mechanisms in maize.
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bioassay. Figure S1: Macroconidia characters of Fusarium graminearum at different time points.
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