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Abstract: Beauveria bassiana is a dimorphic and entomopathogenic fungus with different ecological
roles in nature. In pathogenic fungi, yeast-to-mycelial conversion, which is controlled by environ-
mental factors, is required for virulence. Here, we studied the effects of different stimuli on the
morphology of two B. bassiana strains and compared the toxicities of culture filtrates. In addition, we
explored the role of volatiles as quorum sensing-like signals during dimorphic transition. The killing
assays in Caenorhabditis elegans (Nematoda: Rhabditidae) showed that strain AI2 isolated from a my-
cosed insect cadaver had higher toxicity than strain AS5 isolated from soil. Furthermore, AI2 showed
earlier yeast-to-mycelial switching than AS5. However, an increase in inoculum size induced faster
yeast-to-mycelium conversion in AS5 cells, suggesting a cell-density-dependent phenomenon. Gas
chromatography-mass spectrometry (GC-MS) analyses showed that the fingerprint of the volatiles
was strain-specific; however, during the morphological switching, an inverse relationship between
the abundance of total terpenes and 3-methylbutanol was observed in both strains. Fungal exposure
to 3-methylbutanol retarded the yeast-to-mycelium transition. Hence, this study provides evidence
that volatile compounds are associated with critical events in the life cycle of B. bassiana.

Keywords: entomopathogen; dimorphism; environmental stimuli; volatiles; 3-methylbutanol;
quorum sensing

1. Introduction

Dimorphic fungi have a unique attribute of transitioning between yeast and mycelial
phases. Environmental stimuli such as temperature, pH, and nutrition influence this mor-
phological change [1–4]. Several fungal pathogens of animals and plants are dimorphic,
and the transition between the two phases favors fungal in vivo survival and pathogen-
esis [5]. Breakthroughs at the molecular level reveal the mechanisms underlaying the
infection process in which virulence factors aid in pathogen colonization, either during
the transition of mycelia to the parasitic phase or during host immunosupression [6–8].
For example, molecules such as branched-chain amino acids synchronize biological events
related to the dimorphic transition in Ceratocystis (Ophiostoma) ulmi, the causal agent of
Dutch Elm disease [1,9]. Likewise, hydroxy fatty acids stimulate filament formation in
Ustilago maydis [10]. Moreover, certain volatile organic compounds (VOCs) such as alcohols
have been reported to regulate fungal cell elongation, nuclear division, budding pattern,
and conidiation [11–13]. For example, 3-methylbutanol promotes the continuous budding
phenotype in Saccharomyces cerevisiae, and the aromatic alcohol tyrosol and sesquiterpene
farnesol control physiological activities in the polymorphic opportunistic fungus Candida
albicans [5,11,13–16].

Beauveria bassiana is a dimorphic fungus that infects arthropods of all major insect
orders [17,18]. Furthermore, B. bassiana survives in the soil and can colonize different parts
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of the plant as endophytes [19,20]. Virulence among B. bassiana strains varies, however, and
the physiological state of the insect host is an important factor for successful infection [21,22].
Usually, the fungal spores adhere to and germinate on the insect surface and penetrate the
insect cuticle until they reach the hemocoel; here, the mycelium transforms to yeast-like cells
called blastospores or hyphal bodies. During the last stage of the infection, blastospores
transit to mycelia and emerge from the insect cadaver, producing newly infective conidia
that are disseminated towards a new insect host, thus starting a new cycle of infection [18].
Recently, crucial activator genes such as BbbrlA and Bbaba of the central developmental
pathway have been described as regulators of the fungal transition from filamentous form
to blastospore and aerial conidiation [23]. However, the involvement of fungal quorum
sensing-like molecules modulating dimorphic switching in B. bassiana remains unknown.
Nevertheless, the mycotoxins produced, such as beauvericin, bassianolide, and oosporein,
act simultaneously as diffusible chemical signals for fungal development, aggressiveness
and/or virulence [8,18,22].

Indirect interactions between B. bassiana and its insect host can also occur via VOC
emissions. Thus, prior to colonization, fungal VOCs modulate different types of behaviors,
such as oviposition [8,24–28].

This study was based on the fact that the yeast-to-mycelial conversion in dimorphic
fungi is affected by external factors and is important for pathogenesis and virulence. Here,
we studied two strains of B. bassiana exhibiting varied virulence. One of the strains showed
an early dimorphism, which was associated with an increased toxicity of culture filtrate.
Additionally, we analyzed volatile molecules that regulate fungal morphogenesis via
quorum sensing (QS). Our findings provide new information on the emission of volatiles
during the fungal life cycle and add to our knowledge on the in vitro growth of B. bassiana.

2. Materials and Methods
2.1. Fungal Growth Conditions

The strains AI2 and AS5 of B. bassiana used in this study were previously isolated and
identified by Ramírez-Ordorica et al. [28]. The fungal strains were grown and maintained
on potato dextrose agar medium (PDA; BD Bioxon®, Mexico City, Mexico) in Petri dishes.

Yeast-like growth was observed on MacConkey agar medium (BD Bioxon®) [29].
To determine the effect of inoculum size on the yeast-to-mycelium conversion, the
culture medium was inoculated with 100, 500, 103, 106, or 107 spores using the spatulate
method. Thereafter, the fungus was grown at room temperature (24 ± 2 ◦C) in the dark.
Fungal development was observed under an optical microscope (Nikon® Eclipse E200;
Tokyo, Japan).

Liquid culture media were used to determine the effect of nutrition and pH on the
spores’ germination at 28 ◦C. They included (1) YPG-2%, consisting of 20 g glucose per liter
(Sigma®, St. Louis, MO, USA), 10 g gelatin peptone (Sigma®), and 3 g yeast extract (Sigma®);
(2) YPG-6%, with a higher content of glucose (60 g per liter); (3) YNB minimal medium
containing 6.7 g of YNB (Difco®, Mexico City, Mexico) and 20 g of glucose, to which, after
sterilization, 10 µg/mL niacin (Sigma®) and thiamine (Sigma®) were added; and (4) PDB
(potato dextrose broth) at pH 3 and 9. A conidial suspension (5 × 105 conidia/mL) was
used to produce a series of 125 mL Erlenmeyer flasks, each containing 10 mL of culture
medium. The PDB culture medium at pH 6 was used as the standard. Aerobiosis was
achieved with constant shaking at 150 rpm (14.4 ± 0.64% oxygen), and for anaerobiosis,
we used a previously described system [30]. Fungal development was observed under an
optical microscope (Olympus® CKX41, Tokyo, Japan) equipped with a 40× objective lens
and a DMC-T25 camera (Panasonic®, Kadoma, Japan).

2.2. Caenorhabditis Elegans Killing Assays

The nematode C. elegans Bristol N2 was kindly donated by Dr. Víctor Meza-Carmen.
The nematode was grown to obtain worms in the young adult phase, as previously
described [31]. The B. bassiana strains (5 × 105 conidia/mL) were grown on PDB under
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aerobic conditions. Thereafter, the cell-free culture media were obtained after 48 h
of growth, recovered via filtration (Millipore 0.2 µM filters; Billerica, MA, USA), and
co-incubated with the worms for 72 h at 18 ◦C. For each experiment, 15 worms were
dispensed into each well of a 24-well Costar plate (Corning, Inc., Armonk, NY, USA)
with 1 mL of cell-free media. Sterile PDB culture medium was used as the negative
control. Survival was monitored every 12 h, and the worms were considered dead when
they no longer responded to the moving touch stimulus.

2.3. Fungal Volatile Analyses

The solid-phase microextraction technique (SPME, Supelco®, Bellefonte, PA, USA)
was used for the extraction of volatiles from yeast-like growth of B. bassiana. Each fungal
strain was inoculated into 4 mL SPME vials containing MacConkey slant medium (1.5 mL).
The samples were kept in the dark at room temperature, and analyses were performed
after 48, 72, 96, 120, and 144 h of fungal growth. The methodology used was the same as
that used by Ramírez-Ordorica et al. [28]. A blue fiber (65 µm PDMS/DVB) was inserted
into the vial for 30 min, and the compounds were desorbed in the injection port of a
gas chromatograph (GC, Agilent 6850 Series II, Agilent, Foster City, CA, USA) coupled
with a mass spectrometer (MS, Agilent 5973, Agilent, Foster City, CA, USA) at 180 ◦C
for 30 s. A free fatty acid-phase capillary column (HP-FFAP) was used as the stationary
phase. Analyses (n = 6) were programmed in the scan mode with an acquisition range of
45–250 m/z. All compounds were tentatively identified based on their best match to the
NIST/EPA/NIH mass spectra database 11 and the NIST Mass Spectral Search Program 2.0
(ChemStation Agilent Technologies Rev. D.04.00.2002, Santa Clara, CA, USA). Compounds
emitted only by the MacConkey agar medium were not considered.

For reference, the Kovats retention index was calculated using an alkane pool of
C5-C25 and compared with that in the standard literature [32]. Finally, 3-methylbutanol
was identified using a pure standard (>98.5% purity, Sigma-Aldrich® I9392, St. Louis,
MO, USA).

2.4. Effect of 3-Methylbutanol on Yeast-to-Mycelial Transition in B. bassiana

The strains of B. bassiana were grown on MacConkey agar medium on one-half of the
I-plates, as described previously. In the other half of the Petri dish, a paper disk (3.5 cm)
was placed with 9.5 µL of 3-methylbutanol (~7.8 µg). For the control conditions, only a
paper disk was used. The fungal growth was monitored at different time points, i.e., 48, 72,
96, 120, and 144 h.

2.5. Statistical Analysis

Data obtained from fungal spore germination and development on different culture
media were subjected to one-way ANOVA, followed by Fisher’s LSD post hoc test. To
compare the survival of C. elegans populations exposed to the fungal secretome, we analyzed
the survival curves by using the log-rank Mantel–Cox test.

The relative abundances of volatiles were analyzed via one-way ANOVA followed
by Fisher’s LSD post hoc test using the R language version 4.1.2 (agricolae package)
and STATISTICA 7.0.6. In addition, to compare the metabolic profiles of the volatiles,
a principal component analysis (PCA) was performed using a normalized and centered
abundance matrix of the compounds. Differences between treatments were assessed using
PERMANOVA. Potential biomarkers were identified by taking the absolute values of the
loading matrix from the first principal component and sorting them in descending order
for both isolates (AI2 and AS5). Multivariate analysis was performed in R (version 4.1.2),
using the vegan package.
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3. Results
3.1. Nematicidal Activity of B. bassiana against C. elegans

A C. elegans model was used to compare the in vivo toxicities of culture filtrates from
AI2 and AS5 strains (Figure 1). The nematodes were exposed to the cell-free culture media,
and the survival rate was recorded over 72 h. Although the assay revealed that both strains
reduced the survival rate of C. elegans, there were significant variations (p < 0.01) in toxicity
between the two strains. The filtrate obtained from AI2 showed a higher toxicity, killing
60.0 ± 9.0% of the nematode population at the end of the assay, more than that (16.7 ± 4.6%)
killed using the filtrate from AS5.
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Figure 1. Survival rate of C. elegans reared in the presence of the secretome of B. bassiana. The fungal
strains AI2 and AS5 were grown on PDB culture medium, and the cell-free media were used to
perform the assays. A total of 15 nematodes were used per experiment and incubated at 18 ◦C for
72 h. n = 3, with three independent repetitions. Data were statistically analyzed using the Mantel–Cox
test; **, p < 0.01.

3.2. Effect of Growth Conditions on the Culture Morphology of B. bassiana Strains

The dimorphic fungus B. bassiana can develop yeast-like cells on MacConkey agar
medium [29]. Fungal conidia (106) of the AS5 and AI2 strains were inoculated into the
culture medium, and the yeast forms were observed after 48 h of growth. Otherwise, the
abundance of conidia differed between the strains, with the numbers of conidia reaching a
maximum at 120 h in AI2. In contrast, there was no significant increase in counted conidia
or the number of yeast-like cells in AS5 under similar assay conditions (Figure 2A,B).

The AS5 strain showed a slow development on the MacConkey agar medium, and the
yeast phase prevailed throughout 144 h of growth (Figure 2B). As expected, other growing
conditions modified the fungal morphology. In the case of the PDB culture medium, all
conidia germinated as filamentous growths (Figure 3A,B). Meanwhile, on YPG-2%, conidial
germination decreased by 20%, but the hyphae were longer than those observed on PDB. An
increase in the carbon source concentration in YPG-6% and YNB culture media negatively
affected conidial germination and hyphal growth. Furthermore, the anaerobic conditions
negatively affected conidial germination and conidial germ tube length (Figure 3C).

The effect of pH on colonial morphology was also determined. The results showed
that pH 6 was optimal for conidial germination and mycelial growth (Figure 4A,B). A pH
of 3 significantly decreases conidial germination and limits hyphal growth, whereas a pH
of 9 stimulates hyphal branching under aerobic conditions. Under anaerobic conditions,
conidial germination and the morphology of mycelium were affected at pH 6 because the
hyphae were more branched than those under aerobic conditions (Figure 4C). In addition,
the fungal growth in a more acidic culture medium allowed for hyphal elongation, whereas
under alkaline conditions, the hyphae were scarce and poorly branched.
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Figure 2. Development of B. bassiana AI2 (A) and AS5 (B) strains inoculated on MacConkey agar
medium and exposed to 3-methylbutanol (3MB). The inoculum size was 106 spores. The experiment
was conducted in triplicate. Data are presented as mean ± standard error. Asterisks indicate means
that differed significantly at * p < 0.05, ** p < 0.01, *** p < 0.001 based on one-way ANOVA and Fisher’s
LSD test. Means within columns with different letter indicate statistically significant differences using
one-way ANOVA and Tukey’s test (p ≤ 0.05).
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Figure 3. Effect of the carbon and nitrogen sources and oxygen on the morphology of the strain
AS5 of B. bassiana at 24 h of fungal growth. Conidia were germinated in PDB, YPG-2%, YPG-6%
and YNB for 24 h at 28 ◦C (anaerobiosis) and 150 rpm (aerobiosis). (A) Germination kinetics under
aerobiosis conditions. Representative photographs at 100× of the morphology in (B) aerobiosis and
(C) anaerobiosis at 24 h. White arrowheads indicate germinated conidia and white arrows indicate
ungerminated conidia. Scale bar, 20 µm. n = 3, with three independent repetitions. Data were
analyzed with one-way ANOVA and Fisher post hoc test (***, p < 0.001).
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3.3. Identification of Volatile Compounds during Yeast-to-Mycelial Phases in B. bassiana

Interestingly, the AS5 strain showed a slower development on the MacConkey agar
medium than AI2 (Figure 5), and the yeast phase prevailed till 144 h, which was the
maximum duration of the experiment (Figure 2). This observation suggests that the
morphological change in B. bassiana may be associated with a cell-concentration-dependent
phenomenon and that signaling molecules are required to induce the morphogenetic switch.
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Figure 5. Effect of inoculum size on the morphology of B. bassiana. (A) Spores of the AS5 and AI2
strains (100, 500, and 1000) were inoculated in Petri dishes with 30 mL MacConkey agar medium.
Representative photographs of the morphology for AS5 and AI2 at 5 and 6 d of the fungal growth.
AS5 was developed as yeast cells in all inoculum sizes, whereas AI2 switched to mycelium phase
on day 6. (B) Representative photographs of the mycelial growth for both strains on day 2 with an
inoculum size of 107 spores.
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Inoculum sizes of 100, 500, and 1000 spores allowed for yeast-like development in AS5
at 6 d post-inoculation, whereas mycelial development was observed in AI2 (Figure 5A).
The highest inoculum size of 107 spores promoted dimorphic transition in both strains, and
mycelial development was evident after 2 d of fungal growth (Figure 5B).

Volatile emission from both the strains was subjected to kinetic analyses using an
inoculum size of 106 spores. The results showed significant differences between strains
and growth time (significant results, p < 0.001, via permutational multivariate analysis
of variance, PERMANOVA) (Figure 6A,B). The compounds that contributed the most
to the projection of the data in the PCA loading plot are shown in Figure 6C,D. These
compounds were primarily terpenes and the alcohol 3-methylbutanol, which showed the
greatest variations throughout the 144 h of the experiment (Tables 1 and 2).
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by AI2 (A) and AS5 (B) strains on MacConkey agar medium and analyzed via GC-MS at different
times of the fungal growth (n = 3). PERMANOVA (α = 0.05). (C,D) Plots depicting the contribution
of the compounds to PCA using the relative peak areas (%) obtained in the chromatograms from AI2
and AS5, respectively.
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Table 1. Relative abundance (%) of volatiles identified in B. bassiana AI2 inoculated on MacConkey
agar medium.

Duration of Fungal Growth (h)

Compounds Ix 24 48 72 96 120 144

3-Methylbutanol 1186 70.57 ± 9.89 ab 91.56 ± 0.91 a 62.52 ± 4.01 b 61.03 ± 6.29 b 59.42 ± 5.66 b 78.99 ± 0.21 ab
1-Octen-3-ol 1451 2.97 ± 1.03 ns 0.91 ± 0.18 ns nd nd nd nd
Total alcohols 73.55 (8.86) ab 92.47 (0.72) a 62.52 (4.01) b 61.03 (6.29) b 59.42 (5.66) b 78.99 (0.21) ab

Acetoin 1285 nd 0.65 ± 0.04 b 0.32 ± 0.02 b nd 0.35 ± 0.01 b 0.86 ± 0.03 ab
2-Nonanone 1389 9.31 ± 5.38 bc 0.90 ± 0.11 c 0.61 ± 0.06 c 4.59 ± 0.83 bc 6.01 ± 0.27 bc 4.99 ± 0.29 bc
2-Undecanone 1557 nd nd nd nd 0.53 ± 0.26 nd
2-Dodecanone 1599 nd nd nd 1.60 ± 1.05 c 14.04 ± 1.23 ab 6.99 ± 0.95 bc
6,10-Dimethyl-5,9-undecadien-2-one 1850 nd nd nd nd 0.18 ± 0.03 ns nd
Total ketones 9.30 (5.38) de 1.55 (0.07) de 0.94 (0.091) e 6.19 (0.22) de 21.13 (1.20) bc 12.85 (0.71) cd

Acetic acid 1456 8.68 ± 1.55 a 1.50 ± 0.34 b 0.88 ± 0.19 b nd nd nd
Butanoic acid 1633 3.79 ± 0.62 ns 1.01 ± 0.20 ns 0.43 ± 0.07 ns nd nd nd
Total acids 12.47 (1.89) a 2.52 (0.36) b 1.31 (0.25) b nd nd nd

β-Elemene 1508 nd nd nd 0.92 ± 0.08 ns 4.04 ± 3.14 ns nd
Unknown sesquiterpene (m.w. 204) 1575 nd nd 0.88 ± 0.10 b 0.71 ± 0.12 b 0.45 ± 0.08 b nd
Unknown sesquiterpene (m.w. 204) 1586 nd 1.63 ± 0.29 e 13.88 ± 2.12 bc 13.03 ± 2.42 bc 5.00 ± 0.39 cde 3.54 ± 0.24 de
α-Selinene 1673 nd nd nd 0.78 ± 0.27 ns 1.45 ± 1.17 ns nd
Guaia-9,11-diene 1678 nd nd 1.24 ± 0.20 ns 0.39 ± 0.01 ns 1.68 ± 1.46 ns nd
α-Terpineol 1697 4.67 ± 2.26 ab 1.17 ± 0.18 b 0.72 ± 0.15 b 0.52 ± 0.14 b 0.31 ± 0.09 b 0.28 ± 0.01 b
10s,11s-Himachala-3(12),4-diene 1704 nd nd 0.39 ± 0.04 ns 0.32 ± 0.06 ns 0.24 ± 0.06 ns nd
β-Selinene 1713 nd nd 3.97 ± 0.52 ns 3.33 ± 0.71 ns 1.15 ± 0.12 ns 0.82 ± 0.02 ns
γ-Selinene 1718 nd nd 5.46 ± 0.61 b 4.46 ± 0.93 b 1.62 ± 0.29 cd 1.09 ± 0.07 cd
α-Gurjunene 1733 nd nd nd nd 0.46 ± 0.08 nd
δ-Guaiene 1757 nd 0.62 ± 0.02 d 7.33 ± 1.00 b 7.42 ± 1.51 b 2.20 ± 0.19 cd 1.48 ± 0.14 d
3-Terpinolenone 1923 nd nd 1.29 ± 0.36 ns 0.82 ± 0.05 ns 0.78 ± 0.12 ns 0.90 ± 0.08 ns
Total terpenes 4.67 (2.26) d 3.43 (0.45) d 35.21 (4.20) b 32.76 (6.30) b 19.44 (5.66) bcd 8.14 (0.51) d

Compounds were analyzed using SPME-GC-MS and tentatively identified based on NIST library searches and
Kovats retention indices (Ix). 3-Methylbutanol was confirmed by comparison with the standard. The mean values
correspond to the sum of three independent determinations. Statistical analyses were performed for the individual
compounds. Different letters indicate statistically significant differences according to a one-way ANOVA and
Tukey’s test (p ≤ 0.05). Ix was calculated using a mixture of normal paraffin C6–C20 on an HP-FFAP capillary
column and was compared with that available in the Pherobase database [30]. Rt: Retention time (min). nd: not
detected. ns: not significant.

Table 2. Relative abundance (%) of volatiles identified in B. bassiana AS5 inoculated on MacConkey
agar medium.

Duration of Fungal Growth (h)

Compounds Ix 24 48 72 96 120 144

3-Methylbutanol 1186 70.41 ± 8.06 ab 59.86 ± 5.15 b 16.63 ± 0.22 c 28.86 ± 3.22 c 64.96 ± 5.26 b 79.07 ± 1.75 ab
Total alcohols 70.41 (8.06) ab 59.86 (5.15) b 16.63 (0.22) c 28.86 (3.22) c 64.96 (5.26) b 79.07 (1.75) ab

Acetoin 1285 4.26 ± 1.64 a 2.46 ± 0.88 ab 0.45 ± 0.18 b 0.61 ± 0.02 b 2.64 ± 0.04 ab 2.50 ± 1.15 ab
2-Nonanone 1389 0.47 ± 0.08 c 2.64 ± 0.51 bc 0.41 ± 0.05 c 20.81 ± 4.44 a 12.34 ± 0.66 ab nd
2-Dodecanone 1599 nd nd nd 18.54 ± 2.75 a 9.93 ± 2.70 abc nd
6,10-Dimethyl-5,9-undecadien-2-one 1850 nd nd nd 0.51 ± 0.05 ns 1.76 ± 1.40 ns nd
Total ketones 4.74 (1.61) de 5.10 (1.39) de 0.86 (0.15) e 40.49 (3.30) a 26.68 (3.41) b 2.50 (1.15) de

Acetic acid 1456 8.04 ± 2.13 a 5.03 ± 0.71 ab 0.66 ± 0.23 b 0.67 ± 0.17 b 0.39 ± 0.04 b nd
Butanoic acid 1633 5.96 ± 2.96 ns nd nd nd nd nd
Total acids 14.00 (3.90) a 5.03 (0.71) b 0.66 (0.23) b 0.67 (0.17) b 0.39 (0.04) b nd

(+)-2-Bornanone 1383 nd nd nd nd 0.57 ± 0.26 nd
β-Elemene 1508 nd nd nd 1.38 ± 0.37 ns nd 2.12 ± 0.83 ns
Unknown sesquiterpene (m.w. 204) 1575 nd nd 2.00 ± 0.20 a 1.08 ± 0.16 b nd nd
Unknown sesquiterpene (m.w. 204) 1586 nd 14.17 ± 2.52 b 43.86 ± 0.51 a 12.46 ± 3.65

bcd 3.02 ± 0.31 e 3.49 ± 1.58 de
2-Methylisoborneol 1592 nd nd nd nd nd 0.77 ± 0.19
2-Isopropenyl-4a,8-dimethyl-
1,2,3,4,4a,5,6,7-octahydronaphthalene 1625 nd nd 0.89 ± 0.26 ns nd 0.66 ± 0.27 ns nd

α-Terpineol 1697 10.83 ± 5.25 a 4.24 ± 0.23 ab 1.24 ± 0.18 b 1.87 ± 0.72 b 0.82 ± 0.12 b 0.66 ± 0.10 b
β-Selinene 1713 nd 2.84 ± 0.03 ns 6.08 ± 0.11 ns 2.02 ± 0.48 ns 0.77 ± 0.25 ns 9.52 ± 5.62 ns
γ-Selinene 1718 nd 3.53 ± 0.39 bc 8.42 ± 0.25 a 3.33 ± 0.91 bc 0.88 ± 0.45 cd 0.74 ± 0.33 d
3,7(11)-Selinadiene 1726 nd nd 0.47 ± 0.08 ns 1.14 ± 0.62 ns nd nd
2,4-Diisopropenyl-1-methyl-1-
vinylcyclohexane 1752 nd nd 0.69 ± 0.12 b 3.83 ± 0.47 a nd nd

δ-Guaiene 1757 nd 5.19 ± 0.86 bc 18.13 ± 0.26 a nd 1.20 ± 0.30 d 1.09 ± 0.40 d
3-Terpinolenone 1923 nd nd nd 2.82 ± 1.72 ns nd nd
Total terpenes 10.83 (5.52) cd 29.99 (3.07) bc 81.83 (0.57) a 29.96 (6.17) bc 7.95 (1.92) d 18.42 (2.62) bcd

Compounds were analyzed using SPME-GC-MS and tentatively identified based on NIST library searches and
Kovats retention indices (Ix). The presence of 3-methylbutanol was confirmed by comparison with the standard.
The mean values correspond to the sum of three independent determinations. Statistical analyses were performed
for the individual compounds. Different letters indicate statistically significant differences according to one-way
ANOVA and Tukey’s test (p ≤ 0.05). Ix was calculated using a mixture of normal paraffin C6–C20 on an HP-FFAP
capillary column and was compared with that available in the Pherobase database [30]. Rt: Retention time (min).
nd: not detected. ns: not significant.
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The compounds were identified as alcohols, ketones, terpenes, or acids, the contents of
which varied throughout the dimorphic transition of a fungus (Tables 1 and 2). Compounds
such as 1-octen-3-ol, 2-undecanone, α-selinene, guaia-9,11-diene, 10s,11s-himachala-3(12),4-
diene, and α-gurjunene were specifically identified within the chromatographic profile of
the volatiles produced by the AI2 strain, whereas (+)-2-bornanone, 2-methylisoborneol, 2-
isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene, 3,7(11)-selinadiene, and
2,4-diisopropenyl-1-methyl-1-vinylcyclohexane were identified within the profiles that
corresponded to the AS5 strain. Only 3-methylbutanol and α-terpineol were identified in
both strains and at all sampling times.

Interestingly, at 72 h of fungal growth, where the yeast phase was observed in both
strains, the content of alcohols, ketones, and acids decreased, whereas a transient rise in
terpenes was detected (Tables 1 and 2). Nevertheless, 3-methylbutanol decreased at 72 h
in AI2 (62.53%) and AS5 (16.63%) but increased consistently thereafter until reaching a
concentration similar to that observed at 24 h (Table 1). Thus, the abundance of terpenes
and 3-methylbutanol is a dynamic process in synchrony with the dimorphic transition and
may act as a chemical biomarker in the interconversion of morphologies.

3.4. The Role of 3-Methylbutanol in the Dimorphism of B. bassiana

The exogenous addition of 3-methylbutanol to one-half of the I-plates affected the
yeast-to-mycelium transition in the strains of B. bassiana (Figure 2A,B). In the case of AI2,
which showed a precocious dimorphism in MacConkey agar medium, alcohol affected
the spore quantity trade-off at 120 h of fungal growth. Furthermore, in AS5, where yeast
growth prevailed in the MacConkey agar medium, alcohol promoted the yeast form and
simultaneously increased the number of spores (Figure 7). Nevertheless, the spore count
did not exceed that of the yeast cells. These results suggest that 3-methylbutanol exhibits
activity as a single compound, perhaps by retarding the dimorphic transition of the fungus.
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4. Discussion

Beauveria bassiana is a dimorphic and entomopathogenic fungus widely used for pest
biocontrol [18]. Morphological transition in dimorphic fungi is crucial for pathogenicity
but simultaneously defines its biology and prevalence in different environments [5]. In the
present study, we examined the dimorphism of two B. bassiana strains previously isolated
from different environmental niches. Strain AS5 was isolated from soil and AI2 from a
mycosed insect cadaver. According to Ramirez-Ordorica et al. [28], AI2 was more lethal
than AS5 when inoculated with conidia on larvae in stage L2 from the insect pest Spodoptera
frugiperda. Notably, both strains killed the larvae, but the median lethal time was different.
The results of the toxicity assays in C. elegans showed that the cell-free medium obtained
from the aerobic growth of AI2 in PDB increased nematode killing compared with that
observed with AS5, suggesting an important difference between the fungal secretomes that
may induce mortality in C. elegans and S. frugiperda. The nematicidal effects of B. bassiana
are widely known and different cyclic depsipeptides and proteins are directly related to
this activity [33–35]. Hence, it would be interesting to perform a further analysis to reveal
and compare the secreted metabolites of both strains to provide more information on the
molecular players that participate in fungal colonization and virulence.

It is noted that any change in the insect host, carbon/nitrogen sources, inoculum
size, or other types of stimuli could accelerate or slow down the life cycle of B. bassiana
with direct repercussions on virulence [36,37]. In the case of AS5, both the culture media
YPG and YNB, along with oxygen availability and pH, modified conidial germination
and mycelium morphology, which are important morphological attributes for viability,
colonization, and persistence in different environments [4,36,38–42]. B. bassiana thrives on
a wide variety of substrates and pH ranges. AS5 showed low conidial germination at pH 3
and optimum mycelial growth at pH 6 on PDB medium under aerobic conditions. This is
consistent with the results of previous studies [36,38,39]. Furthermore, pH 9 allowed for
more branched mycelial growth. This modification in mycelial morphology may be the
result of an adaptation to alkaline conditions [41]. This could represent an advantage for
the saprophytic colonization of alkaline soils.

The relationship between morphological characteristics such as conidial germination
speed, growth rate, and virulence capacity is controversial in B. bassiana [39–44]. Our obser-
vations using the MacConkey agar culture medium showed that the more virulent strain
AI2 developed faster than AS5. Notably, AI2 switched faster between the two morphologic
forms than AS5 did. Using an inoculum size of 106 spores, a higher germination response
and earlier dimorphism were observed in AI2 than in AS5, thus showing varying develop-
ment with consequential differences in the timing of the dimorphic change. The speed of
the dimorphic transition was dependent on the inoculum size. The highest inoculum size
of 107 enabled the transition of yeast cells to hyphal growth as early as 2 d post inoculation
for both strains, whereas with a lower inoculum size of 1000 or less, only AI2 formed
mycelia on day 6. These results suggest that the dimorphic transition speed is dependent
on the threshold cell population density and the production of chemical signals that trigger
yeast-to-mycelium conversion, as seen in other dimorphic fungi [2,3,5,45,46]. Furthermore,
the speed in the transition of AI2 is a feature that could be associated with its increased
virulence against S. frugiperda.

The QS system in entomopathogenic fungi has previously been reported in Metarhizium
rileyi and Ophiocordyceps sinensis [46,47]. According to these studies, the production of
QS signals occurs in the hemolymph in response to a quorum of hyphal bodies during
the advanced stages of insect infection. In particular, the exogenous addition of N-acetyl
glucosamine, a monomer of chitin found in the exoskeleton of insects and fungal cell walls,
increased hyphal formation in O. sinensis, whereas other fungal QS signals previously
described in C. albicans, such as farnesol and tyrosol, significantly affected the dimorphism
of O. sinensis [47]. The promiscuity in the QS receptors towards multiple autoinducers can
explain the microbial interspecies communication. However, the specific elicitors produced
by entomopathogenic fungi remain unknown.
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An important contribution of this study was the identification of volatile compounds
that may act as chemical signals involved in the lifecycle of B. bassiana. For example, we
identified 1-octen-3-ol as a part of the aromatic profile of AI2. This compound has been
directly involved in conidiogenesis in filamentous fungi such as Trichoderma atroviride [48],
exhibited toxicity against insects [49,50], and retarded seed germination and growth in
Arabidopsis plants [51].

The variation in the contents of terpenes and 3-methylbutanol also caught our
attention. Compound 3-methylbutanol was previously identified as the major com-
pound produced by the mycelia of AI2 and AS5 (53.40 and 72.73% of all components,
respectively) cultured in the PDA medium, followed by terpenes (11.06 and 2.89%, re-
spectively) [28]. We observed that the terpene content decreased and alcohol content
increased as the mycelial phase progressed. Interestingly, this ratio remained consistent
regardless of virulence capacity, development, or source of isolation; nevertheless, more
studies are needed to validate this observation.

Terpenes play various ecological roles [52]. Farnesol is a sesquiterpene alcohol that
aids cell-to-cell communication, regulates important virulent traits such as morphogenic
transition in C. albicans [53], and has shown similar activities in other dimorphic fungi
as well [47]. B. bassiana emits different types of terpenes during the yeast phase. How-
ever, there are no reports on their participation in dimorphic transitions, despite the
evidence of their biological activity in insects. For example, isomers of selinene, elemene,
and guaiene have shown strong toxicity and antifeedant activity against the larvae of
Spodoptera spp. [54–57].

The fusel alcohol 3-methylbutanol is a bioactive compound that acts as a messenger
affecting the female egg-laying behavior in S. frugiperda [28], promoting the biomass
accumulation in plants via auxin transport and signaling depending on the dose, appli-
cation method, and plant age [58,59], and inducing filament formation in other fungi
such as Saccharomyces cerevisiae and C. albicans [11,13,60]. The role of fusel alcohols as
QS molecules has been previously reported for the dimorphic fungus O. ulmi and the
polymorphic fungus C. albicans [9,15]. In O. ulmi, the authors identified 2-methylbutanol
as the compound representing the major peak in the GC-MS profile, exhibiting activity as
a QS molecule, thus influencing the fungal morphology. The compound 2-methylbutanol
derives from isoleucine catabolism, which also affects the morphology. The dominant
compound produced by B. bassiana is 3-methylbutanol, derived from leucine. We pro-
pose that 3-methylbutanol is part of a specific fingerprint of the compounds responsible
for the dimorphic transition in B. bassiana and may be considered an autoregulatory QS
signaling molecule in this fungus. The exogenous addition of the molecule to the I-plates
showed activity as a QS molecule, retarding this phenomenon; the amino acid leucine in
hemolymph probably acts as a trigger signal in B. bassiana because the effects of amino
acids are associated with the synthesis of fusel alcohols [2]. The insect hemolymph
is rich in free aminoacids [61,62]. Thus, the in vivo contribution of these endogenous
components for fungal morphogenesis, propagation and disease establishment could
be significant.

The effectiveness of B. bassiana in the development of infection and death in the host is
the result of a combination of various factors [40,43,44]. To date, no correlation has been
demonstrated between the source of isolation and virulence in B. bassiana. However, we
observed that the isolate from the insect’s mycosed cadaver showed increased toxicity,
sporulation speed, and earlier switching from the yeast to the mycelial form. This result is
probably related to the life history traits of AI2. Thus, it is very important to conduct field
experiments, as the observations obtained in an in vitro study may not always reflect the
actual scenario in an agroecosystem. It also helps to define whether a fast-growing fungus
with an early dimorphism is advantageous in biocontrol programs.
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5. Conclusions

The life cycle of B. bassiana is marked by the dynamic emission of a pool of volatiles.
Many of these have been reported to have biological activities in insects and plants, high-
lighting their multifaceted roles in nature. Importantly, volatiles affect morphogenesis in
B. bassiana, and a temporal and specific code is required to regulate this phenomenon. The
individual contribution of each identified compound to the dimorphic transition will need
further attention; however, 3-methylbutanol acted as a QS signal. This finding represents
a breakthrough in research on molecules that mediate QS activity in B. bassiana. The in-
volvement of fusel alcohols as QS molecules during the establishment of infection should
be explored in the future.
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