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Abstract: The most significant aspect of promoting greenhouse productivity is the timely monitoring
of disease spores and applying proactive control measures. This paper introduces a method to classify
spores of airborne disease in greenhouse crops by using fingerprint characteristics of diffraction–
polarized images and machine learning. Initially, a diffraction–polarization imaging system was
established, and the diffraction fingerprint images of disease spores were taken in polarization
directions of 0◦, 45◦, 90◦ and 135◦. Subsequently, the diffraction–polarization images were processed,
wherein the fingerprint features of the spore diffraction–polarization images were extracted. Finally,
a support vector machine (SVM) classification algorithm was used to classify the disease spores.
The study’s results indicate that the diffraction–polarization imaging system can capture images
of disease spores. Different spores all have their own unique diffraction–polarization fingerprint
characteristics. The identification rates of tomato gray mold spores, cucumber downy mold spores
and cucumber powdery mildew spores were 96.02%, 94.94% and 96.57%, respectively. The average
identification rate of spores was 95.85%. This study can provide a research basis for the identification
and classification of disease spores.

Keywords: disease spores; diffraction–polarization images; support vector machines; image processing

1. Introduction

There has been a growing demand for “vegetable basket” projects in recent years due
to individuals’ aspirations for an improved quality of life [1,2]. Currently, China boasts a
protected cultivation area of over 4.2 million hectares, extensively dispersed throughout the
country, securing its position as the global leader in this domain [3,4]. The vegetable basket
project in China is widely regarded as a crucial pillar of support and a significant avenue
for farmers to enhance their revenue [5]. Tomatoes and cucumbers enjoy considerable
popularity among customers because of their flavorful profiles and high nutritional content.
Moreover, the cultivation space dedicated to these crops constitutes a substantial portion
of China’s protected agriculture area [6,7]. The prevailing temperature and humidity
conditions within the greenhouse are conducive to the occurrence and transmission of
airborne fungal infections. Examples of such diseases are the gray mold of tomatoes, the
downy mildew of cucumbers and the powdery mildew of cucumbers [8,9]. The prevalence
of airborne fungal diseases is expected to rise annually due to the growth of cultivated
areas and the prolonged practice of continuous cropping. Consequently, this trend may
significantly reduce crop yield, ranging from 20% to 50%, and in some cases, complete
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crop failure [10]. In addition, because airborne fungal spores travel through the air with
air currents, people working in greenhouses may experience allergic reactions if they
inhale these fungal spores. Hence, timely detection and prevention of airborne diseases in
greenhouses are essential.

Traditional detection techniques for disease spores mainly include electron microscope
detection, polymerase chain reaction, biological detection, etc. Despite their ability to
accurately detect disease spores, these approaches encounter several challenges, including
technical requirements, prerequisites, intricate procedures and limited accessibility [11].
With the technological revolution, relevant scientists have researched the classification
and recognition of disease spores based on machine learning and image processing. For
example, Lei et al. [12,13] used a portable spore catcher to collect urediniospores. Images
of urediniospores were taken with a microscope, then the urediniospores’ image was
processed via threshold segmentation, contour extraction and morphological manipulation.
A remote monitoring platform of urediniospores was built to collect and count wheat
stripe rust spores in real time. In their study, Yang et al. [14] utilized a mix of texture
and shape features and a decision tree confusion matrix approach to distinguish between
rice false smut and blast. This distinction was made based on the analysis of microscopic
spore images. Additionally, the researchers advocated using the distance transformation–
Gaussian filtering algorithm as part of their methodology. After separating the spores, a
decision tree model classification was employed, utilizing four shape and three texture
features. The resulting detection accuracy was found to be as high as 94%. Although the
above method can detect the disease spores, it is difficult to capture the complete spore
image because of the small field of view of the traditional microscopic imaging technology,
and it is easy to cause large errors.

Researchers have recently preferred holographic imaging technology due to its notable
advantages, including a wide imaging field of view and cost-effectiveness. Luo et al. [15]
measured target analyte concentration in quantitative particle agglutination tests based
on mobile lensless microscopy and deep learning. Using diffraction fingerprint feature
processing, Wang et al. [16] selected thirteen diffraction fingerprint features to classify
fungal spores. The classification results for micro-particles based on diffraction fingerprint
features could be better due to the small number of extracted fingerprint features. One
additional characteristic of light is its polarization, which possesses a distinct benefit not
found in regular image and reflection spectra. It can convey some information that is
challenging to characterize using intensity images and spectra [17]. Extracting the feature
information of objects in different polarization directions and fusing it can improve the
recognition rate of objects [18,19]. For example, Jiang et al. [20] studied the polarization–
diffraction imaging method for the accurate classification of malignant and benign tumors.
Extracting morphology-related “fingerprints” can significantly improve the diagnosis and
early warning of tumors. Therefore, diffraction and polarization imaging techniques can be
combined. The classification and recognition of disease spores were carried out based on
the diffraction–polarization fingerprint image features.

This study introduces an approach for classifying airborne disease spores in green-
house crops, utilizing the distinctive fingerprint traits observed in diffraction–polariza-
tion images. Initially, the diffraction–polarization imaging system of disease spores
was constructed to capture spore diffraction–polarization images. Subsequently, the
diffraction–polarization images were processed, wherein the fingerprint features of spore
diffraction–polarization images were extracted. Finally, an SVM classification algorithm
was used to classify the disease spores. This study introduces a method to classify
spores by using fingerprint characteristics of diffraction–polarization images and machine
learning. This study provides a research basis for the identification and classification of
disease spores.
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2. Materials and Methods
2.1. Sample Preparation

Cucumber and tomato plants were cultivated in a Venlo-type greenhouse at Jiangsu
University, Zhenjiang, China. The greenhouse was oriented east-west, with a top height
of 4.73 m and a shoulder height of 4.0 m; each span was 3.2 m, and the length of the
greenhouse measured 45 m. The greenhouse had an insulation curtain, the use of pipeline
heating, a sunshade net, a wet curtain fan and other cooling equipment, and environmental
control using computer-automated control system regulation. In order to obtain the disease
spore samples, tomato gray mold spores were collected when gray mold occurred in tomato
plants. The tomato cultivar of “Zhejiang Powder 202” (Zhejiang Yinong Seed Industry
Co., Ltd., Hangzhou, China) and the cucumber cultivar of “Jinyou No. 1” (developed by
Tianjin Academy of Agricultural Sciences) were used to conduct the field experiments. To
procure a sample of crop disease spores, the application of pesticides was withheld during
the planting process. Fresh diseased leaves were collected from infected cucumber plants
after natural disease. Individual cucumber downy mildew and powdery mildew spots
with sufficient incidence and distance from other spots were cut with scissors. They were
then dipped in sterile water, spotted down, and gently applied to pre-planted cucumber
leaves [21]. Due to the inability to develop cucumber downy mildew spores and cucumber
powdery mildew spores in vitro, it was necessary to transfer these spores from previously
diseased cucumber plants to freshly cultivated cucumber plants to preserve the samples,
and also to achieve the purpose of expanding propagation and culture [22]. Tomato gray
mold spores can be cultured in vitro. To obtain an uncontaminated sample of tomato
gray mold spores, a leaf with diseased spots was first cut from an infected tomato plant,
dipped in sterile water, and then attached to a non-infected tomato plant with the diseased
spots facing downwards. This was repeated until gray mold was the only spot on the
tomato plant. Then, tomato leaves with gray mold were placed in a PDA (Potato Dextrose
Agar) medium. Subsequently, the preservation and propagation of the strains were carried
out [23]. In order to determine whether the prepared pathogen spores were the desired
target fungal spores, cucumber and tomato plants were infected in a closed space. It then
was observed whether the cucumber plants developed mildew and downy mildew and the
tomato plants developed gray mold. If the cucumber plants developed powdery mildew
and downy mildew and the tomato plants developed gray mold, then it confirmed that the
prepared pathogen spores were the target fungal spores needed for the research.

2.2. Diffraction–Polarization Fingerprint Image Acquisition System

Traditional low-light imaging technology means that visible light can be transmitted
or reflected through the sample, and, after passing one or more lenses, a magnified image of
a tiny sample can be obtained [24]. Diffraction refers to the phenomenon where light waves
deviate from a straight line and propagate behind obstacles when they encounter obstacles
or holes in the propagation process. By observing the light and dark areas that appear
on the screen, the distribution of light-intensity can reflect the imaging information of the
object [25]. Polarization imaging technology can detect the polarization information of the
object surface, and compared with ordinary optical images, the brightness and contrast of
the object and the background in the polarization image are relatively enhanced [26,27].
Therefore, this study combined the characteristics of diffraction imaging and polarization
imaging to build a fungal spore diffraction–polarization fingerprint image acquisition
system (Figure 1).
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Figure 1. Diffraction–polarization fingerprint image acquisition system. 1. Copper plate with 100 µm
micropore. 2. LED lamp beads with a central wavelength of 435 nm. 3. Polarization camera.
4. Diffraction–polarization device. 5. Power Supply. 6. Computer.

As shown in Figure 1, the device structure of the diffraction–polarization fingerprint
image acquisition system was designed using Solid Works 2020 software, and the shell
was printed via 3D printing technology. In order to eliminate the interference of external
light, the color of the 3D printing material in the diffraction device was black. The color of
the 3D printed material for the polarizing camera support frame was white. Select LED
lamp beads with a central wavelength of 435 nm (the actual wavelength was 430–440 nm)
as the light source were used. However, as the light source of the diffraction–polarization
imaging system, it needed a power supply circuit and a circuit to adjust the brightness
of the light source. Therefore, this study used Altium designer 2019 software to draw
the circuit diagram of the light source and import it into the PCB diagram, then make
the PCB circuit board, and finally, weld it into the light source. The system used a 5 V
power supply to power the light source. The diameter of the micropore was 100 µm. The
microhole was directly below and next to the light source. The polarization camera was a
TRIO5OS-QC model (purchased from LUCID Vision Labs, Richmond, BC, Canada). The
polarizing camera was located 45 mm directly below the micropore. The polarizing camera
was connected to the computer via a data cable. The computer was equipped with the
diffraction–polarization fingerprint image acquisition software Arena View-Arena View2.

2.3. Methods of Collecting Fungal Spores

In order to collect the diffraction–polarization fingerprint of fungal spores, tomato and
cucumber plants were cultivated in a greenhouse. In the flowering stage of tomato plants,
tomato gray mold spores were prepared in a spore suspension of 1 × 106 spores/mL with
sterile water, and the pathogen was inoculated by leaf spraying [28]. While the cucumber
plants were in bloom, the cultivated cucumber downy mildew leaf and the cucumber
powdery mildew leaf were dipped into the newly cultivated cucumber plants. After the
tomato and cucumber plants were diseased, a portable spore catcher was used to collect
fungal spores in the air, as shown in Figure 2.
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Figure 2. Collection of fungal spores. (a) Collection of fungus spores from tomato gray mold.
(b) Collection of fungus spores from cucumber powdery mildew and downy mildew.

2.4. Collection of Diffraction–Polarization Fingerprint Images for Fungal Spores

Diffraction–polarization images of spores were taken at the bioinformatics analysis
laboratory of the College of Agricultural Engineering, Jiangsu University. Firstly, the slides
in the spore catcher were taken out and then looked at under a microscope to determine if
there was a target fungal spore. Secondly, the slides containing target fungal spores were
placed into the diffraction–polarization fingerprint image acquisition system. Then, the
computer and the diffraction–polarization fingerprint image acquisition software Arena
View-Arena View2 were started up. The connected polarization camera model in the
diffraction–polarization fingerprint image acquisition software was selected. The image
acquisition mode for polarized images in the directions of 0◦, 45◦, 90◦ and 135◦ was selected.
Finally, polarization fingerprint images of the fungal spores were taken.

2.5. Collection and Processing of Spore Diffraction–Polarization Images

In this study, the polarization images for diffraction fingerprints of disease spores
in the directions of 0◦, 45◦, 90◦and 135◦ were collected. The collection process of diff-
raction–polarization images of airborne disease spores was as follows: firstly, the airborne
disease spores were captured in the greenhouse with a portable spore capture instrument,
and the glass slide loaded with spores was put into a closed box and taken to the laboratory.
Then, the glass slide loaded with airborne disease spores was put on the diffraction–
polarization image collection system. Finally, the diffraction–polarization image collection
system was turned on and the diffraction–polarization images of spores were taken. A
spore diffraction–polarization fingerprint image is shown in Figure 3.
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Figure 3. Diffraction–polarization fingerprint image of disease spores.

The acquisition system for diffraction–polarization fingerprint images of spores is
susceptible to environmental influences throughout its operational procedures. Hence, it
becomes imperative to pre-process the acquired image to mitigate the presence of extrane-
ous data in the image of the airborne disease spore diffraction–polarization fingerprint and
preserve pertinent information. The specific steps were as follows:

Initially, the diffraction–polarization fingerprint image of spores was processed via
two-dimensional gamma function. The expression for the two-dimensional gamma func-
tion is provided [29]:

O(x, y) = 255
(

F(x, y)
255

)γ

(1)

γ =

(
1
2

)m−I(x,y)
m

(2)

where, O(x, y) represents the brightness value of the output image after correction; F(x, y)
represents the original image of the input; γ represents the brightness enhancement index
value, which includes the light component characteristics of the image; I(x, y) represents the
extracted light component; and m represents the mean brightness of the light component.

Secondly, to maintain the intricate characteristics of airborne disease spores, it is
imperative to mitigate the presence of noise in the image. Median filtering is nonlinear
and effectively addresses impulse noise. Additionally, it effectively preserves the edge
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information of the image. Thirdly, after removing this noise, the OTSU method was used
to automatically find the threshold of the diffraction–polarization fingerprint image of
airborne disease spores. Then, the target image was obtained through morphological
operation, smoothing and hole filling.

Furthermore, due to using a color camera in the polarization, the acquired diffraction–
polarization images of airborne disease spores possess specific color-related data. To obtain the
fingerprint features of diffraction–polarization images of airborne disease spores, it is important
to convert color images into grayscale images. Figure 4 displays the diffraction–polarization
image of airborne disease spores after processing.
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Figure 5 shows the spore image of tomato gray mold spores and its corresponding
diffraction–polarization fingerprint image.
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2.6. Feature Extraction of Airborne Disease Spore Diffraction–Polarization Fingerprint Image

The extraction process of the relative light-intensity distribution of the airborne disease
spore diffraction–polarization fingerprint image was as follows:

1© The preprocessed diffraction–polarization fingerprint image of airborne disease
spores was saved as a file in .bmp format;

2© The diffraction–polarization fingerprint image of airborne disease spores saved in
.bmp format was imported into MATLAB software R2016b by using import data;

3© The format of the imported image data was converted into a double-precision data
type by using the double () instruction;

4© The mesh () instruction was used to generate double-precision image data into 3D
images;

5© The contour () command was used to extract a contour map of the 3D image;
6© A two-dimensional section of contour map was extracted.

The characteristics of the diffraction–polarization fingerprint of airborne disease spores
are closely related to the species, size, geometry and light absorption of spores. According to
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the extraction process of the airborne disease spore diffraction–polarization fingerprint image,
the relative light-intensity distribution of the airborne disease spore diffraction–polarization
fingerprint was obtained, as shown in Figure 6.
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It can be seen from Figure 6 that the pixel distribution in the area near the cen-
ter of the diffraction fingerprint contributes the most to the eigenvalue. Therefore, the
main bright fringe (P), center (C) and main dark fringe (V) of the airborne disease spores
diffraction–polarization fingerprint was selected. Five diffraction fingerprint features were
selected to classify airborne disease spores (Figure 6). These five eigenvalues are divided
into three categories: they are the main bright, dark, and center edges. Then, these three
types of features were calculated. The ratios of peak to center (PCR), valley to center (VCR),
and peak to valley (PVR) were obtained. The calculation formula was as follows:

PCR =
APi

C
(i = 1, 2) (3)

VCR =
AV j

C
(j = 1, 2) (4)

PVR =
APi

AV j
(i = 1, 2; j = 1, 2) (5)

where, APi represents the peak of the airborne disease spores diffraction–polarization
fingerprint; AVj represents the trough of the airborne disease spores diffraction–polarization
fingerprint; and C represents the central area of the airborne disease spores diffraction–
polarization fingerprint.

2.7. Evaluation Index

In machine learning, a confusion matrix is a standard format for expressing accuracy
evaluation [30]. In this study, a confusion matrix was used to evaluate the classifier’s
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performance. In addition, the calculation formula of the evaluation index for classification
effect was as follows [31]:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 − Score =
2 × Precision × Recall

Precision + Recall
(9)

where, TP (True Positive) represents positive samples predicted as positive; FP (False
Positive) represents negative samples predicted as positive; FN (False Negative) represents
positive samples predicted as negative; TN (True Negative) represents negative samples
predicted as negative.

When performing the classification, the actual predicted spore number of airborne
diseases was regarded as a positive sample number, and the sum of spore numbers of other
airborne diseases was a negative sample number.

2.8. Statistical Analysis Software

In this study, pathogenic spore diffraction was processed using MATLAB R2016b
software. All algorithms were run in a MATLAB R2016b environment.

3. Results and Discussion
3.1. Results for Feature Extraction

In this study, the polarization images of the airborne disease spore diffraction finger-
prints in 0◦, 45◦, 90◦ and 135◦ directions were obtained, respectively. The characteristics of
600 airborne disease spores were extracted. The two-dimensional relative light-intensity
distribution of diffraction–polarization fingerprint images of three spores are shown in
Figures 7–9, respectively.
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The unique relative light-intensity distribution in the directions of 0◦, 45◦, 90◦ and
135◦ may be observed for each airborne disease spore, as depicted in Figures 7–9. This
phenomenon occurs due to the obstruction of certain light source information by polarized
pictures at varying angles due to the polarizer’s influence [17–19]. Furthermore, the relative
light-intensity distribution values of the diffraction–polarization fingerprint images for
three types of airborne disease spores deviate significantly from those documented in
existing literature [16]. The reasons are mainly due to the following two aspects: firstly,
the CMOS image sensor of device DYSMT805 was used when collecting the diffraction
fingerprint image, while the TRIO5OS-QC polarization camera was used when collecting
the diffraction–polarization fingerprint image. The parameters of the different imaging
devices are different. Secondly, when collecting the diffraction fingerprint image of airborne
disease spores, the glass slide containing the enriched airborne disease spores was placed
directly on the photosensitive unit of the CMOS image sensor. There was only one layer of
glass between the airborne disease spores and the photosensitive unit of the CMOS image
sensor. However, when the polarized camera (model TRIO5OS-QC) was used to collect the
diffraction–polarized fingerprint images, the glass slide containing the enriched airborne
disease spores was placed on the glass sheet of the polarized camera lens. There was a
distance of several millimeters between the photosensitive unit of the polarization camera
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and the glass sheet on its lens. Thus, the distance between the airborne disease spores
and the photosensitive units of the different imaging equipment was different. Although
the relative light-intensity distribution values of diffraction fingerprint images of airborne
disease spores collected by different imaging equipment are different, it will not affect the
identification of airborne disease spores. This is because the fingerprint information of
airborne disease spores collected by different imaging equipment is relative. The statistical
results of disease spore characteristics are shown in Table 1.

Table 1. Statistical results for disease spore characteristics.

Feature
Relative Light-Intensity Distribution Value

Cucumber Downy
Mildew Spores

Cucumber Powdery
Mildew Spores

Tomato Gray Mold
Spores

Central value (C)

0◦ 84–93 67–74 112–119
45◦ 87–96 69–78 117–126
90◦ 93–104 65–73 109–117

135◦ 88–97 68–75 115–124

Wave peak value (P)

0◦ 111–119 93–108 138–149
45◦ 121–132 84–105 147–161
90◦ 117–129 91–104 149–158

135◦ 112–124 98–112 151–167

Valley value (V)

0◦ 67–75 41–49 73–85
45◦ 70–78 43–51 71–84
90◦ 69–82 38–47 78–89

135◦ 62–74 40–47 76–87

3.2. Classification Results of Airborne Disease Spores

According to the characteristics data of the airborne disease spore diffraction–polariza-
tion fingerprint, six characteristic values of the airborne disease spore diffraction fingerprint
at a polarization angle were calculated using Equations (3)–(5). There are 24 values under
4 polarization angles. These values constitute 24 characteristic values of spore diffraction
fingerprint images of airborne diseases. The feature values of diffraction fingerprint
images were merged to classify airborne disease spores. Therefore, in this study, an SVM
algorithm was used to classify three airborne diseases spores according to the eigenvalues
of diffraction–polarization fingerprint images. Some 70% of them were randomly selected
as the training set and the remaining 30% as the test set. Figure 10 is a confusion matrix of
classification results of the SVM classification model for the test set of the airborne disease
spore diffraction–polarization fingerprint images.

It can be seen from Figure 10 that the SVM classification model correctly identified
56 diffraction fingerprint images of tomato gray mold spores, 55 diffraction fingerprint im-
ages of cucumber downy mildew spores and 58 diffraction fingerprint images of cucumber
powdery mildew spores. In the results, the tomato gray mold spores were identified three
times as cucumber downy mildew spores and once as powdery mildew. The cucumber
downy mildew spores were identified twice as tomato gray mold spores and three times as
cucumber powdery mildew spores. One cucumber powdery mildew spore was identified
as tomato gray mold spore and one cucumber powdery mildew spore was identified as
cucumber downy mildew spore. The identification results of airborne disease spores by
SVM classification model are shown in Table 2.
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Table 2. Classification results for SVM classification models.

Spore Species
Basic Indicators

TP TN FP FN

Gray mold spores 56 113 3 4
Downy mildew spores 55 114 4 5

Powdery mildew spores 58 111 4 2

Using Equations (6)–(9), the accuracy, precision, recall and F1-Score of the SVM
classification model were evaluated, and the results are shown in Table 3.

Table 3. SVM classification model performance indicators (%).

Spore Species
Performance Index

Accuracy Precision Recall F1-Score

Gray mold spores 96.02 94.92 93.33 94.12
Downy mildew spores 94.94 93.22 91.67 92.44

Powdery mildew spores 96.57 93.55 96.67 95.08

As can be seen from Table 3, the accuracy, precision, recall and F1-Score of the SVM
classification model for tomato gray mold spores were 96.02%, 94.92%, 93.33% and 94.12%,
respectively. The accuracy, precision, recall and F1-Score of the SVM classification model
for cucumber downy mildew spores were 94.94%, 93.22%, 91.67% and 92.44%, respectively.
The accuracy, precision, recall and F1-Score of the SVM classification model for cucumber
powdery mildew spores were 96.57%, 93.55%, 96.67% and 95.08%, respectively. The average
recognition accuracy, average recognition precision, average recall rate and average F1-
Score of three disease spores by the SVM model were 95.85%, 93.89%, 93.88% and 93.87%,
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respectively. Therefore, based on the characteristic of the diffraction–polarization fingerprint
of disease spores and the SVM algorithm, the disease spores can be well classified.

In addition, compared to the identification results of the airborne disease spore diffrac-
tion fingerprint features under visible light (where the average identification accuracy
was 92.72%) [16], the average identification accuracy was 95.85%, and the average iden-
tification accuracy was improved by 3.13%. Compared to the recognition results based
on microscopic image features (where the average recognition accuracy was 94.36%) [32],
the average recognition accuracy of the three kinds of airborne disease spores based on
diffraction–polarization image features was increased by 1.49%. The results show that
the diffraction–polarization image features were effective in the identification of airborne
disease spores.

Furthermore, it was compared with the existing literature. For example: Yang et al. [14]
utilized a mix of texture and shape features and the decision tree confusion matrix approach
to distinguish between rice false smut and blast. The resulting detection accuracy was
found to be as high as 94%. Deng et al. [33] used microscopic images of bunt-damaged
wheat and image analysis and recognition technology to classify and identify three kinds
of wheat diseases, such as Tilletia caries (DC.) Tul., Tilletia indica Mitra and Tilletia controversa
Kühn. The results showed that the identification rate of bunt via the SVM method reached
82.9%. Liu et al. [34] focused on the problem of difficult to control marigold black spot.
Image processing technology was used to segment the microscopic images of pathogenic
spores. The color features, shape features and texture features of pathogenic spores were
extracted. Then, principal component analysis (PCA) and BP neural networks were used to
identify the spores of Alternaria tagetica without infection and those with infection. The
average recognition accuracy reached 98%. Yang et al. [35] studied a method of rice blast
identification based on the diffraction fingerprint structure of crop disease spores. The
method utilized the light field and texture features of diffraction images. The diffraction
identification method based on the diffraction fingerprint texture of crop disease spores
can be completed in a few seconds, and the test accuracy was 97.18%. Although the
airborne disease spores in this study were different from those in the literature, and the
characteristics of the extracted airborne disease spores were different, the results of this
paper were similar to those of previous studies. Therefore, the results of this study can be
applied elsewhere.

4. Conclusions

(1) This study proposed a new classification method of greenhouse crop airborne dis-
ease spores based on diffraction–polarization image fingerprint characteristics and machine
learning. A diffraction–polarization imaging system was established, and the diffraction
fingerprint images of disease spores were taken in polarization directions of 0◦, 45◦, 90◦

and 135◦. Subsequently, the diffraction–polarization images were processed, wherein the
fingerprint features of spore diffraction–polarization images were extracted. Finally, an
SVM classification model was established to realize the classification of disease spores.

(2) Six characteristic values of airborne disease spore diffraction fingerprints at a
polarization angle were calculated. There were 24 values under 4 polarization angles. The
feature values of the diffraction fingerprint images were merged to classify the airborne
disease spores. The average recognition accuracy, average recall rate and average F1-Score
of three airborne disease spores in greenhouse crops by SVM model were 95.85%, 93.89%,
93.88% and 93.87%, respectively.

In this study, we introduced a method to classify tomato gray mold spores, cucumber
downy mildew spores and cucumber powdery mildew spores by using diffraction–polarization
image fingerprint characteristics and machine learning. In addition to the above three
disease spores, the greenhouse air also contained other kinds of disease spores, pollen, dust
and so on. Future research can consider the following two aspects: first, the separation and
enrichment methods of micro-particles in the air to achieve the separation and enrichment
of different types and sizes of disease spores; second, the diffraction–polarization image
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fingerprint characteristics of other kinds of disease spores, pollen, dust and other micro-
particles, and to establish a corresponding database.
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