
Citation: Huang, Y.; Lin, Y.; Zhang,

L.; Wu, F.; Zhang, Y.; Huang, S.

Effects of Interaction between

Claroideogolmus etuicatum and Bacillus

aryabhattai on the Utilization of

Organic Phosphorus in Camellia

oleifera Abel. J. Fungi 2023, 9, 977.

https://doi.org/10.3390/jof9100977

Academic Editors: Aiping Zhang,

Hongbo Li and Xinxin Wang

Received: 30 August 2023

Revised: 26 September 2023

Accepted: 26 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fungi
Journal of

Article

Effects of Interaction between Claroideogolmus etuicatum and
Bacillus aryabhattai on the Utilization of Organic Phosphorus
in Camellia oleifera Abel.
Yuxuan Huang 1 , Yulan Lin 1,2, Linping Zhang 1,*, Fei Wu 3, Yang Zhang 1 and Shaohua Huang 1

1 Key Laboratory of National Forestry and Grassland Administration for the Protectionand Restoration of
Forest Ecosystem in Poyang Lake Basin, Jiangxi Agricultural University, Nanchang 330045, China;
hsh916@hotmail.com (S.H.)

2 College of Meizhouwan Vocational Technology, Putian 351119, China
3 College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
* Correspondence: zlping619@163.com; Tel.: +86-0791-8381-3243

Abstract: Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) are in-
volved in phosphorus (P) mobilization and turnover; however, the impact of their interaction on
plant P absorption and organic P mineralization in the hyphosphere (rootless soil) are unknown. This
study examined the interactive effects of two native microorganisms, namely Claroideogolmus etuica-
tum and Bacillus aryabhattai, and the effects of co-inoculation of both microorganisms on organic P
mineralization and the subsequent transfer to Camellia oleifera, using a three-compartment microcosm
with a nylon mesh barrier. The results demonstrated that the co-inoculation treatment (AMF + PSB)
significantly increased the plant P content and biomass accumulation in C. oleifera compared to those
of the non-inoculated control. Furthermore, co-inoculation boosted soil phosphatase and phytase
activities as well as the liable P content. Compared to the non-inoculated control, inoculation of AMF
decreased the NaOH-Po content. A correlation analysis showed that AMF colonization and hyphal
density was significantly positively correlated with H2O-P and NaHCO3-Pi and negatively correlated
with NaOH-Po. It was shown that co-inoculation could increase phosphatase activity, phytase activity,
and promote the liable P content, thus increasing the phosphorus content and biomass accumulation
of C. oleifera. In conclusion, AMF and PSB interactively enhanced the mineralization of soil organic P,
and therefore positively affected P uptake and plant growth.

Keywords: arbuscular mycorrhizal fungi; phosphate solubilizing bacteria; oil tea; phosphorus
mobilization

1. Introduction

Phosphorus (P) is a crucial component of ecosystems, and it plays an important
role in promoting agroforestry productivity [1,2]. Two-thirds of the world’s soils are
phosphorus deficient, which limits the growth of crops; the application of phosphorus
fertilizer is an essential way to boost the productivity of agroforestry crops [3,4]. However,
there are many issues with phosphorus fertilizer application in agroforestry practices.
On the one hand, about 80% of the world’s phosphorus rock resources are used for the
production of phosphorus fertilizer, and phosphorus rock is a non-renewable resource [5].
On the other hand, the utilization efficiency of soil phosphorus is extremely low, and about
70% of phosphorus fertilizers are easily and rapidly combined by cations such as Ca2+,
Mg2+, Al3+, Fe3+, and transformed into insoluble phosphorus that is difficult for plants to
utilize [6,7]. Therefore, understanding how to release the ineffective state of phosphorus
stock in soil through biological or ecological pathways is of great significance to improve
soil phosphorus effectiveness and to maintain ecosystem stability.

Soil microorganisms are key drivers of soil functional processes, including organic
matter decomposition, nutrient turnover, and nutrient release, especially of nitrogen (N)
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or phosphorus (P), for subsequent plant capture [8]. Arbuscular mycorrhizal fungi (AMF)
are a class of soil microorganisms which can form a symbiosis with the roots of 80% of
land plants [9]. AMF can deliver mineral nutrients, especially phosphorus, to host plants;
therefore, they have garnered attention as potential biofertilizers [10]. AMF are capable of
releasing protons to migrate insoluble soil phosphate and extend their extensive hyphae
from phosphorus-depleted zones in order to explore a larger volume of soil for inorganic
phosphorus sources [11]. Similar to AMF, phosphate solubilizing bacteria (PSB) are a group
of microorganisms that can convert insoluble phosphorus compounds into active forms
by releasing organic acids. In addition, PSB can produce hormones such as cytokinin
and indoleacetic acid that promote plant growth. [12]. Efficient PSB has the potential to
replace chemical fertilizers to reduce environmental pollution and to promote ecological
balance [13]. Previous studies have shown that co-inoculation of AMF and PSB can increase
crop yields [14,15], the number of PSB [16], and phosphatase activity [17,18]. However,
most of these results have not necessarily reflected the interaction between AMF and PSB,
because plant roots cannot be ruled out. The effects of PSB inoculation between mycelia on
plant phosphorus uptake and soil phosphorus fractions are unclear, and understanding the
direct interactions between AMF and PSB may help to regulate specific microorganisms to
enhance soil phosphorus effectiveness [19,20].

Camellia oleifera Abel. (Theaceae), one of the world’s four famous woody oil plants,
is a unique edible economic tree species in China [21]. C. oleifera has an unsaturated fatty
acid content of up to 90%, which is much higher than that of vegetable oil, peanut oil, and
soybean oil, and which has high economic and nutritional value [22]. At present, China’s
vegetable oil self-sufficiency rate has been declining year by year, and the import of veg-
etable oil is among the forefront in the world. Promoting the development of the C. oleifera
industry can alleviate the contradiction between the supply and demand of vegetable oil
in China. However, the effective phosphorus content of acidic soil in southern China is
very low, which limits the productivity of C. oleifera [6]. Previous studies have shown that
inoculation of AMF (Claroideogolmus etuicatum) promoted the mineralization of organic
phosphorus in oil tea soil and positively affected root phosphatase activity [23]. In addition,
the PSB strain JX285 (Bacillus aryabhattai) isolated from the inter-root of C. oleifera has been
shown to promote C. oleifera growth and nutrient uptake [6,24]. The current studies have
been conducted using only single inoculation treatments (AMF or PSB). However, is there
any competition or mutualism between AMF and PSB? What are the effects on C. oleifera
phosphorus uptake and soil phosphorus conversion? In this study, we investigated the
effects of the interaction between AMF and PSB on P uptake, soil phosphatase activity,
and soil phosphorus fractions by inoculating PSB into the hyphosphere, using a three-
compartment culture. The results may provide a theoretical basis for the development of
microbial fertilizers for use in agroforestry systems.

2. Materials and Methods
2.1. Biological Materials and Growth Substrates

The C. oleifera seeds were provided by the Jiangxi Academy of Forestry Research,
China. First, the seeds were sterilized and cleaned with potassium permanganate and
sterile water, then they were germinated on wet gauze at 30 ◦C, transplanted to pots with
sterilized sand after seed development, and finally uniform seedlings were selected and
removed to the three-compartment device.

The AMF strain (Claroideogolmus etuicatum) was provided by Professor Qiangsheng
Wu, Institute of Root Biology, Yangtze University, Hubei. The PSB strain used was Bacillus
aryabhattai (JX285), which was provided by the Forest Pathology Group, Jiangxi Agricultural
University (Nanchang, China).

The growth medium used in this experiment was composed of soil and sand (1:1 v/v).
The soil-sand mixture was autoclaved at 121 ◦C for 4 h. The growth medium contained
41.25 g organic matter kg−1, 2.50 mg effective phosphorus·kg−1, 21.2 mg fast-acting potas-
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sium kg−1, 14.24 mg ammonium nitrogen (NH4
+) kg−1, and 2.26 mg nitrate nitrogen

(NO3
−) kg−1.

2.2. Three-Compartment Device and Experimental Design

A polyvinyl chloride (PVC) plexiglass block was used to make a three-compartment
culture system to meet the experimental requirements (Figure 1). The culture system
consisted of a root compartment (10 ×15 × 14 cm), buffer zone (2 × 15 × 14 cm), and
hyphal compartment (5 × 15 × 14 cm). The root and hyphal compartments were separated
from each other by a 30 mm nylon mesh.
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Figure 1. The three-compartment culture system.

A pot experiment was conducted using a two-factor completely randomized block
design consisting of four inoculation treatments and two P treatments. The inoculation treat-
ments were as follows: inoculated with C. etuicatum (CE), inoculated with Bacillus aryabhattai
(BA), inoculated with the mixture of C. etuicatum and Bacillus aryabhattai (CE + BA), inocu-
lated with autoclaved inoculum (CK). The P treatments were as follows: no calcium phytate
(C6H16Ca24O24P6) (0 mg·kg−1) and the addition of calcium phytate (C6H16Ca24O24P6)
(75 mg·kg−1). Each treatment included 15 replicates.

The seedings were planted in root compartments filled with 1.5 kg of growth medium.
Each root compartment was inoculated with a 70 g mixture of sand and C. etuicatum
(30 spores per g) (n = 60), and control treatments added 70 g of autoclaved inoculum. The
buffer zone was filled with 800 g of sterilized sand. The hyphal compartment was filled
with 1.5 kg of sterilized sand and 0.1125 g of calcium phytate treatment (n = 60). The hyphal
compartment was inoculated with 10 mL of mixed bacterial suspensions, and control
treatments added an equal volume of inactivated bacterial liquid. The pots were placed in
a greenhouse with 12 h of light per day, at Jiangxi Agricultural University, from May 2019
to May 2020.

2.3. Mycorrhizal Colonization and Hyphal Density

Mycorrhizal colonization was determined by Phillips and Hayman [25]. Hyphal
density was measured according to Abbott et al. [26].

2.4. Plant Growth and P Content Measurement

Plant height was measured with a measuring tape (Sata, Shanghai, China). The leaves,
stems, and roots of C. oleifera were harvested separately, dried to a constant weight at 75 ◦C,
and weighed to calculate the total biomass of each plant.

The dried stems and roots were thoroughly ground and homogenized, and the P
content was determined by molybdenum blue spectrophotometry.
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2.5. Measurement of Substrate Phosphatase Activities and P Content

The activities of soil acid phosphatase (S-ACP), alkaline phosphatase (S-ALP), and
phytase activity (S-phytase) were measured by corresponding assay kits (Suzhou Keming
Biological Co., Ltd., Suzhou, China), separately.

The contents of the different forms of phosphorus including H2O-P, NaHCO3
−Pi, and

NaHCO3
−Po were determined according to the method by Hedley et al. [27].

2.6. Data Analysis

The statistical analyses were performed using the SPSS software, version 20.0 (SPSS
Inc., Chicago, IL, USA). The Kolmogorov–Smirnov test and Levene’s test were used to
check the normality and chi-square of the data, respectively. A two-way ANOVA was
performed to test the significance of inoculation application, organic P application, and
their interaction. A one-way ANOVA was used to test the differences among the different
inoculation treatments under the same P treatment. Means were compared with Duncan’s
multiple range test at the 5% level.

3. Results
3.1. Mycorrhizal Colonization and Hyphal Density

The results showed that the seedlings without inoculation of C. etuicatum did not form
any mycorrhizae. In the absence of organophosphorus (P0, 0 mg·kg−1), the AMF coloniza-
tion rate of co-inoculation was significantly higher than that of single inoculation (p < 0.05)
(Figure 2). However, the AMF colonization of co-inoculation was significantly lower than
that of the single inoculation of AMF after the addition of organophosphorus. The highest
colonization rate (50.67 ± 3.21%) was found in the treatment with the single inoculation
of C. etuicatum at the P75 (75 mg·kg−1) level. Interestingly, the lowest colonization rate
(36.67 ± 2.08%) was also for the single inoculation CE treatment at the P0 level. Thus, PSB
inoculation inhibited mycorrhizal colonization under phosphorus-deprived conditions and
promoted mycorrhizal colonization under phosphorus-sufficient conditions.

J. Fungi 2023, 9, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Effects of the organic P treatment and inoculation treatment on the AMF colonization and 
hyphal density of C. oleifera. Note: (A) shows the effect of organophosphorus treatment and inocu-
lation treatment on AMF colonization. (B) shows the effect of organophosphorus treatment and in-
oculation treatment on Hyphal denisty. Data are means ± SD (n = 3). CE, inoculated with C. etuica-
tum; CE + BA, inoculated with C. etuicatum and B. aryabhattai; P0, no organic phosphate fertilizer; 
P75, added 75 mg·kg−1 organic phosphate fertilizer. Different letters indicate significant differences 
between different inoculation treatments under the same phosphorus level at p < 0.05; asterisks in-
dicate significant differences in phosphorus levels under the same inoculation treatment at p < 0.05. 

3.2. Plant Height and Biomass 
The organic P treatment and inoculation treatments significantly (p < 0.05) influenced 

plant height and dry weight (Table 1). At the two P levels, the plant height of C. oleifera 
did not significantly (p > 0.05) differ under the single inoculation of AMF or PSB; moreo-
ver, plant height was significantly (p < 0.05) higher under the co-inoculation treatment 
than the single treatment. Inoculation of AMF and the co-inoculation treatment signifi-
cantly (p < 0.05) increased the dry weight of C. oleifera, while inoculation of PSB increased 
the shoot dry weight at the P0 level. 

Table 1. Effects of organic P treatment and inoculation treatment on the plant height and dry weight 
of C. oleifera. 

P Inoculation Plant Height 
cm 

Shoot Dry 
Weight 

g 

Root Dry Weight 
g 

P0 

CK 12.63 ± 0.23 b 0.74 ± 0.04 b 0.63 ± 0.10 b 
CE 13.03 ± 0.84 b 0.95 ± 0.03 a 1.20 ± 0.22 a 
BA 13.53 ± 0.47 b 0.94 ± 0.09 a 0.74 ± 0.08 b 

CE + BA 15.30 ± 0.20 a 1.06 ± 0.12 a 1.08 ± 0.18 a 

P75 
CK 14.30 ± 1.15 b 0.86 ± 0.16 b 0.46 ± 0.02 c * 
CE 16.40 ± 0.40 a * 1.86 ± 0.17 a * 1.74 ± 0.17 a * 
BA 15.60 ± 0.70 a * 1.05 ± 0.25 b 1.05 ± 0.13 b * 

 CE + BA 16.93 ± 0.21 a * 1.93 ± 0.09 a * 1.79 ± 0.11 a * 
Two-way ANOVA    

P 75.185 ** 81.637 ** 36.747 ** 
Inoculation 18.747 ** 35.750 ** 60.061 ** 

P × Inoculation 2.607 NS 16.655 ** 11.227 ** 
Note: Data are means ± SD (n = 3). CK, non-inoculated control; CE, inoculated with C. etuicatum; BA, 
inoculated with B. aryabhattai; CE + BA, inoculated with C. etuicatum and B. aryabhattai; P0, no or-
ganic phosphate fertilizer; P75, added 75 mg·kg−1 organic phosphate fertilizer. Different letters indi-
cate significant differences between different inoculation treatments under the same phosphorus 
level at p < 0.05; asterisks indicate significant differences in phosphorus levels under the same 

b

a*
a b

a

a

b

b

P0 P75
0

10

20

30

40

50

60

A
M

F 
co

lo
ni

za
tio

n 
 ra

te
 (%

)

A

P0 P75
0

2

4

6

8

10

12
 CE
 CE+BA

H
yp

ha
l d

en
sit

y 
(m

·g
−1

)

B

Organic phosphorus treatment Organic phosphorus treatment

Figure 2. Effects of the organic P treatment and inoculation treatment on the AMF colonization
and hyphal density of C. oleifera. Note: (A) shows the effect of organophosphorus treatment and
inoculation treatment on AMF colonization. (B) shows the effect of organophosphorus treatment
and inoculation treatment on Hyphal denisty. Data are means ± SD (n = 3). CE, inoculated with
C. etuicatum; CE + BA, inoculated with C. etuicatum and B. aryabhattai; P0, no organic phosphate
fertilizer; P75, added 75 mg·kg−1 organic phosphate fertilizer. Different letters indicate significant
differences between different inoculation treatments under the same phosphorus level at p < 0.05;
asterisks indicate significant differences in phosphorus levels under the same inoculation treatment
at p < 0.05.

Under the two phosphorus levels (0 mg·kg−1 and 75 mg·kg−1), the hyphal density
of the single inoculation of AMF was significantly (p < 0.05) higher than that of the co-
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inoculation treatment, and inoculation of PSB significantly reduced hyphal density by
31.67% and 25.25%, respectively.

3.2. Plant Height and Biomass

The organic P treatment and inoculation treatments significantly (p < 0.05) influenced
plant height and dry weight (Table 1). At the two P levels, the plant height of C. oleifera did
not significantly (p > 0.05) differ under the single inoculation of AMF or PSB; moreover,
plant height was significantly (p < 0.05) higher under the co-inoculation treatment than
the single treatment. Inoculation of AMF and the co-inoculation treatment significantly
(p < 0.05) increased the dry weight of C. oleifera, while inoculation of PSB increased the
shoot dry weight at the P0 level.

Table 1. Effects of organic P treatment and inoculation treatment on the plant height and dry weight
of C. oleifera.

P Inoculation Plant Height
cm

Shoot Dry Weight
g

Root Dry Weight
g

P0

CK 12.63 ± 0.23 b 0.74 ± 0.04 b 0.63 ± 0.10 b
CE 13.03 ± 0.84 b 0.95 ± 0.03 a 1.20 ± 0.22 a
BA 13.53 ± 0.47 b 0.94 ± 0.09 a 0.74 ± 0.08 b

CE + BA 15.30 ± 0.20 a 1.06 ± 0.12 a 1.08 ± 0.18 a

P75
CK 14.30 ± 1.15 b 0.86 ± 0.16 b 0.46 ± 0.02 c *
CE 16.40 ± 0.40 a * 1.86 ± 0.17 a * 1.74 ± 0.17 a *
BA 15.60 ± 0.70 a * 1.05 ± 0.25 b 1.05 ± 0.13 b *

CE + BA 16.93 ± 0.21 a * 1.93 ± 0.09 a * 1.79 ± 0.11 a *

Two-way ANOVA
P 75.185 ** 81.637 ** 36.747 **

Inoculation 18.747 ** 35.750 ** 60.061 **
P × Inoculation 2.607 NS 16.655 ** 11.227 **

Note: Data are means ± SD (n = 3). CK, non-inoculated control; CE, inoculated with C. etuicatum; BA, inoculated
with B. aryabhattai; CE + BA, inoculated with C. etuicatum and B. aryabhattai; P0, no organic phosphate fertilizer; P75,
added 75 mg·kg−1 organic phosphate fertilizer. Different letters indicate significant differences between different
inoculation treatments under the same phosphorus level at p < 0.05; asterisks indicate significant differences in
phosphorus levels under the same inoculation treatment at p < 0.05. * Significance level p < 0.05, ** significance
level, and NS, no significant effect.

3.3. P Content of C. oleifera

The two-way ANOVA results showed that the inoculation treatments significantly
(p < 0.05) influenced the P content of C. oleifera (Table 2). Compared to the non-inoculated
control, the inoculation treatments with AMF or PSB, and the co-inoculation treatment
all significantly (p < 0.05) increased the shoot and root P content of C. oleifera, and the
effect of the co-inoculation treatment was significantly (p < 0.05) higher than those of the
single inoculation of AMF or PSB under two organic P treatment (Figure 3). At the P0
level, compared to the single inoculation of AMF, the single inoculation of PSB significantly
(p < 0.05) increased the P content. However, compared to the inoculation of PSB, the
inoculation of AMF significantly (p < 0.05) increased root P content under the P75 level.
Interestingly, P application significantly (p < 0.05) increased root P content but had no
significant effect on shoot P content under all inoculation treatments.

Table 2. Results of two-way ANOVA for the effects of organic P treatment (P), inoculation treatment
(Inoculation), and their interaction on P content and phosphatase activities.

Index P Inoculation P × Inoculation

Shoot P content 2.217 NS 191.010 ** 3.595 *
Root P content 463.154 ** 253.411 ** 91.575 **

Note: Data are equality of variances. *, Significance level p < 0.05; **, significance level; NS, no significant effect.
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Figure 3. Effects of organic P treatment and inoculation treatment on the plant P content of C. oleifera.
Note: (A) shows the effects of organic P treatment and inoculation treatment on the shoot P content
of C. oleifera. (B) shows the effects of organic P treatment and inoculation treatment on the shoot
P content of C. oleifera. Data are means ± SD (n = 3). CK, non-inoculated control; CE, inoculated
with C. etuicatum; BA, inoculated with B. aryabhattai; CE + BA, inoculated with C. etuicatum and
B. aryabhattai; P0, no organic phosphate fertilizer; P75, added 75 mg·kg−1 organic phosphate fertilizer.
Different letters indicate significant differences between different inoculation treatments under the
same phosphorus level at p < 0.05; asterisks indicate significant differences in phosphorus levels
under the same inoculation treatment at p < 0.05. *, Significance level p < 0.05.

3.4. Soil Phosphatase and Phytase Activities

The inoculation treatments significantly (p < 0.05) influenced the soil phosphatase
activities (Table 3). At the P0 level, compared to the non-inoculated control, the inoculation
treatments of AMF or PSB and the co-inoculation treatment all significantly (p < 0.05)
increased the S-ACP activity by 2.92%, 6.08%, and 6.59%; the S-ALP activity by 8.47%,
9.72%, and 6.62%; and the S-phytase activity by 22.78%, 45.50%, and 53.80%, respectively
(Figure 4). At the P75 level, compared to the non-inoculated control, the inoculation
treatments with AMF or PSB and the co-inoculation treatment all significantly increased
S-ACP activity and S-phytase activity. Compared to others inoculation treatments, the
co-inoculation treatment significantly (p < 0.05) increased S-ALP activity.

3.5. Soil Liable P Content

The organic P treatment and inoculation treatment significantly (p < 0.05) influenced
the soil liable P content (Table 3). The co-inoculation treatment had a higher liable P
content than the single and non-inoculated treatments under the two P levels (Figure 5),
and compared to the non-inoculated control, the co-inoculation treatment increased H20-P
content by 39.31% and 48.89%, respectively. Interestingly, inoculation of PSB was more
effective in significantly (p < 0.05) increasing NaHCO3-Po content than the inoculation of
AMF under the two P level.

Table 3. Results of two-way ANOVA for the effects of organic P treatment (P), inoculation treatment
(Inoculation), and their interaction on phosphatase activities and phosphorus content.

Index P Inoculation P × Inoculation

S-ACP activity 0.211 NS 337.277 ** 4.153 *
S-ALP activity 1.237 NS 32.167 ** 20.049 **

S-phytase activity 5.559 * 51.282 ** 0.802 NS
H20-P 53.255 ** 424.131 ** 19.824 **

NaHCO3-Pi 16,946.042 ** 14,928.094 ** 1406.401 **
NaHCO3-Po 508.959 ** 2092.466 ** 34.980 **

NaOH-Pi 54.846 ** 3193.198 ** 316.006 **
NaOH-Po 3378.228 ** 3975.991 ** 1615.785 **

Note: *, Significance level p < 0.05; **, significance level; NS, no significant effect.
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Figure 4. Effects of organic P treatment and inoculation treatment on the soil phosphatase activities
of C. oleifera. Note: (A) shows the effects of organic P treatment and inoculation treatment on the
soil acid phosphatase (S-ACP) activities of C. oleifera. (B) shows the effects of organic P treatment
and inoculation treatment on the soil alkaline phosphatase (S-ALP) activities of C. oleifera. (C) shows
the effects of organic P treatment and inoculation treatment on the soil phytase activity(S-phytase)
activities of C. oleifera. Data are means ± SD (n = 3). CK, non-inoculated control; CE, inoculated
with C. etuicatum; BA, inoculated with B. aryabhattai; CE + BA, inoculated with C. etuicatum and
B. aryabhattai; P0, no organic phosphate fertilizer; P75, added 75 mg·kg−1 organic phosphate fertilizer.
Different letters indicate significant differences between different inoculation treatments under the
same phosphorus level at p < 0.05; asterisks indicate significant differences in phosphorus levels
under the same inoculation treatment at p < 0.05.
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Figure 5. Effects of organic P treatment and inoculation treatment on the soil liable P content of
C. oleifera. Note: (A) shows the effects of organic P treatment and inoculation treatment on the content
of H2O-P of C. oleifera. (B) shows the effects of organic P treatment and inoculation treatment on the
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content of NaHCO3-Pi of C. oleifera. (C) shows the effects of organic P treatment and inoculation
treatment on the content of NaHCO3-Po of C. oleifera. Data are means ± SD (n = 3). CK: non-
inoculation control; CE: inoculated with C. etuicatum; BA: inoculated with B. aryabhattai; CE + BA,
inoculated with C. etuicatum and B. aryabhattai; P0, no organic phosphate fertilizer; P75, added
75 mg·kg−1 organic phosphate fertilizer. Different letters indicate significant differences between
different inoculation treatments under the same phosphorus level at p < 0.05; asterisks indicate
significant differences in phosphorus levels under the same inoculation treatment at p < 0.05.

3.6. Soil Moderately Liable P Content

The organic P treatment and inoculation treatments significantly (p < 0.05) influ-
enced the soil moderately liable P content (Table 3). The co-inoculation treatment had a
higher NaOH-Pi content than the single and non-inoculated treatments under the two
P level (Figure 6A). Interestingly, the inoculation treatments with AMF or PSB and the
co-inoculation treatment all significantly (p < 0.05) increased NaOH-Pi content. Inoculation
treatment with PSB had a higher NaOH-Po content than other inoculation treatments under
each P level (Figure 6B). However, the co-inoculation treatment had a lower NaOH-Po con-
tent than the non-inoculated treatment under the P0 level. Compared to the non-inoculated
control, inoculation of AMF decreased the NaOH-Po content under the two P levels.
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Figure 6. Effects of organic P treatment and inoculation treatment on the soil moderately liable P
content of C. oleifera. Note: (A) shows the effects of organic P treatment and inoculation treatment on
the content of NaOH-Pi of C. oleifera. (B) shows the effects of organic P treatment and inoculation
treatment on the content of NaOH-Po of C. oleifera. Data are means ± SD (n = 3). CK, non-inoculated
control; CE, inoculated with C. etuicatum; BA, inoculated with B. aryabhattai; CE + BA, inoculated with
C. etuicatum and B. aryabhattai; P0, no organic phosphate fertilizer; P75, added 75 mg·kg−1 organic
phosphate fertilizer. Different letters indicate significant differences between different inoculation
treatments under the same phosphorus level at p < 0.05; asterisks indicate significant differences in
phosphorus levels under the same inoculation treatment at p < 0.05.

3.7. Correlation Analysis

The correlation analysis showed that soil phosphatase and phytase activities were
positively correlated with plant phosphorus content (Figure 7). H2O-P and NaHCO3-Pi
were significantly (p < 0.05) and positively correlated with AMF colonization, hyphal
density, plant growth, and P content. NaOH-Po was significantly (p < 0.05) negatively
correlated with AMF colonization and hyphal density. The root and shoot P content were
significantly (p < 0.05) and positively correlated with S-ACP, S-ALP, S-phytase, H2O-P,
NaHCO3-Pi, NaHCO3-Po, and NaOH-Pi. AMF colonization was significantly (p < 0.05) and
positively correlated with S-ACP, S-ALP, S-phytase, H2O-p, NaHCO3-Pi, and NaOH-Pi.
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4. Discussion
4.1. PSB Addition Limits AMF Mycelial Growth and C. oleifera Colonization

Root colonization of AMF can be enhanced in the presence of some rhizobacteria,
which promote plant growth and nutrient access [28]. Fester et al. [29] showed that the
addition of three potential mycorrhiza-helper bacteria (MHB) increased mycorrhizal root
colonization by two–three times. Saxena et al. [30] showed that Burkholderia cepacia sig-
nificantly increased AMF (Glomus etunicatum) root colonization. However, in this study,
the addition of PSB significantly reduced the hyphal density of AMF in the hyphal com-
partment, and the addition of PSB reduced AMF root colonization under the P75 level.
The decreased AMF hyphal growth and root colonization due to PSB addition was proba-
bly because the bacteria were not mycorrhiza-helper bacteria like Pseudomonas fluorescens,
which can secrete cell wall degrading enzymes and soften the root cell wall, thus making
it easier for AMF to penetrate the roots [31,32]. In this study, there may have been some
competition between PSB and AMF, because AMF shared the carbon source fixed by plant
photosynthesis with PSB, which inhibited the growth of their own mycelium.

4.2. AMF and PSB Interactions Promote C. oleifera Growth and Phosphorus Uptake

Both AMF and PSB have positive effects on phosphorus uptake and growth of
C. oleifera. Wu et al. [23] showed that inoculation of AMF could improve root activity,
as well as enhance the acquisition of organic phosphorus and the accumulation of biomass
in C. oleifera. Wu et al. [6] showed that inoculation of PSB increased the N and P con-
tents of the leaves and promoted the growth of C. oleifera. AMF and PSB may interact
with each other in soil phosphorus utilization. PSB can attach to the root system and
extraradical hyphae of AMF [33], which promotes plants’ access to nutrients and improves
crop yield [30]. In this study, co-inoculation of AMF and PSB significantly increased the
P content of C. oleifera and promoted growth and biomass accumulation compared with
the non-inoculated control and single inoculation treatments. Liu et al. [15] showed that
co-inoculation of AMF and PSB could promote growth and P uptake of Medicago sativa L.
On the one hand, AMF increases the absorbing contact area of plant roots by forming an
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extensive hyphal network in the soil [34,35]. On the other hand, PSB converts insoluble
P in the soil into usable P that can be absorbed and utilized by plants, which improves
plant P nutrition and promotes plant growth [36,37]. These points also apply in this exper-
iment. Previous studies have mainly focused on the positive effects of PSB on P content
in the rhizosphere, and this study further confirmed that, when PSB is far away from the
rhizosphere, PSB can also play its ecological role through the extra-root hyphae of AMF.

4.3. AMF Interacts with PSB to Enhance Soil Phosphatase Activity for Organic P Mineralization

Although soils contain large amounts of P, the majority of this P is unavailable to
plants [38]. The majority of soil organic P is immobilized and adsorbed by some metal
ions or minerals, forming stable compounds that must be hydrolyzed with phosphatases
to release more soluble inorganic P for plant uptake and utilization [36,38]. The results
of this study showed that co-inoculation increased soil phosphatase activities, phytase
activity, and liable P content in the hyphal compartment. There is no evidence that AMF
can directly participate in the hydrolysis of organic P, and it is controversial whether AMF
can secrete phosphatase [39]. However, the addition of AMF can enhance soil phosphatase
activities and increase soil effective P content, which has been proven in some agroforestry
crops [15,40]. Wang et al. [40] found that hyphosphere acidification induced by the AMF
mycelium resulted in enhanced phosphatase activities and mineralization of phytin. AMF
can increase the concentration of carbon in the hyphosphere by releasing secretion, which
attracts the colonization of PSB [33,41]. PSB achieves the effect of P solubilization through
the production of organic acids, phosphatases, and H+ that not only reduce soil pH, but
also chelate with metal ions such as Ca, Al, and Fe, converting insoluble P into effective
phosphorus that is easily absorbed by plants for their utilization [42]. Soil NaOH-Po
belongs to the moderately active state of P which is basically ineffective for plants [43],
and can be converted into effective P available for plant uptake through various biological
and physical chemical reactions in soil. This study showed that co-inoculation increased
S-ACP, S-ALP, and S-phytase activities, decreased soil NaOH-Po content, and increased
liable P content. In addition, the correlation analysis showed that AMF colonization and
hyphal density was significantly positively correlated with H2O-P and NaHCO3-Pi, and
negatively correlated with NaOH-Po, which suggests that C. etuicatum and B. aryabhattai
co-inoculation may convert soil NaOH-Po into plant-absorbable liable P to promote plant P
acquisition and growth.

5. Conclusions

In this study, we investigated the effects of single and co-inoculation of AMF (C. etuicatum)
and PSB (B. aryabhattai) in the hyphal compartments on plant growth and soil phosphorus
fractions. The results showed that co-inoculation had positive effects on plant growth, plant
phosphorus content, soil phosphatase activities, and soil phytase activity. Co-inoculation of
AMF and PSB decreased soil NaOH-Po content and increased liable P content, thereby pro-
moting plant P uptake. The use of AMF and PSB as inoculants may provide an alternative
to chemical fertilizers, and therefore promote sustainable agroforestry.
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