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Abstract: Endophytic fungi are used as the most common microbial biological control agents (MBCAs)
against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles
against a variety of plant pathogens. Fungal endophytes provide different services to be used as
pathogen control agents, using an important aspect in the form of enhanced plant growth and induced
systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics
and enzymes) through colonization, and compete with other pathogenic microorganisms for growth
factors (space and nutrients). The purpose of this review is to highlight the biological control potential
of fungal species with antifungal properties against different fungal plant pathogens. We focused on
the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity
against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited
endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis,
parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced
systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to
study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are
briefly discussed.
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1. Introduction

Endophytes are a fascinating group of microorganisms associated with internal plant
tissues or related organs. The endophyte term was first proposed by German scientist
Heinrich Anton De Barry [1] to define fungi and bacteria that colonize plant tissues without
causing any harm to their host [2]. Endophytic fungi protect the plant through well-
organized direct and indirect mechanisms. They are ubiquitous in the plant kingdom
and have been isolated from almost all plant parts. Endophytic fungi build a mutualistic
relationship with its host plant [3–5]. These associations lead to plant growth promotion [6],
pathogen inhibition [3], soil pollutant removal [7], and improving tolerance to abiotic stress
such as salinity, drought, and extreme temperature [8,9], all of which are prevailing threats
to agricultural food production [10].

Endophytes can survive in plant tissues for a long time and protect the plant from
biotic and abiotic stress [11]. Various fungal entophytes have been found in many im-
portant plants such as tobacco [12], tomato [13], wheat [14,15], and banana [16,17]. They
establish interspecies interactions through direct mechanisms such as competition, para-
sitic, and antimicrobial effects through the production of primary and secondary metabo-
lites, enzymes or volatile compounds and indirect mechanisms (induced resistance),
protecting from pathogen invasion [18–20]. However, endophytic fungi colonizing in
healthy plant tissues may also switch from non-pathogenic to pathogenic mode when
the plant is under stress [2].
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Fungal endophytes perform multiple functions including protection against phy-
topathogens [21], herbivorous insects [22], and plant parasitic nematodes [23]. They are
natural enemies of plant pathogens and act as microbial biocontrol agents (MBCAs) to
control plant diseases without harming the host plant, human, and environmental health.
Above all, the risk of evolution of pathogen resistance is likely impossible compared to
agrochemicals [24]. Microorganisms including fungi, bacteria, viruses, and nematodes
are being successfully used as MBCAs worldwide [25]. Similarly, fungal endophytes in-
cluding entomopathogenic fungi are very important in all MBCAs due to their wide host
range, diverse antagonistic mechanisms against sap sucking pests such as mosquitoes
and aphids [26–28] as well as fungal pathogens of different field crops [29–31]. A simple
delivery method, enhanced formulation, already characterized pathogenic strains, over-
expression of endogenous toxins, and uncomplicated engineering techniques make these
fungal endophytes suitable candidates for agricultural applications [32–34].

Fungal endophytes are a potential source of new natural products for agricultural
development. In this review, we highlight the important endogenous role of several
endophytic fungi in the biocontrol of pathogenic fungi with some of the best-studied
examples. In addition, we also explain how fungal entophytes serve as a route to achieve
long-term sustainable agricultural development.

2. Classical Identification Strategies for Endophytic Fungi

Endophytic fungi are isolated from plant parts through culture dependent and culture
independent methods [35]. The culture dependent method is commonly used for the iden-
tification of fungal endophytes [36,37] and to assess the diversity of endophytic species [38].
The detection accuracy depends on abiotic, biotic, and experimental factors [39,40]. The
data of potential fungi have been compiled by referring to host indices, culture collections,
herbs, and fungal monographs. The standard classification manuals (i.e., “Manual for
fungi”) are most commonly used for the isolation and identification of fungi [41].

The physical inspection of field plants and the collection of fungal samples from host
plants are very effective methods for studying endophytes [42]. Observing the effects of
endophytes on their host can reveal important clues about their life cycle, mode of transmis-
sion, identification, and association with their host [43–45]. The fructose-derived cultures
and DNA reference specimens are important and are used to identify the endogenous state
of organisms. The staining technique [46], culture-based [47], and culture independent [35]
detection methods have been successfully used to study asymptomatic endophytic fungi
in healthy plant tissues. The recovery and detection of endophytic fungi is undertaken
by dissecting plant organs into small pieces, sterilizing their surfaces, and placing those
pieces on a nutrient-rich agar medium [39,48]. The size of the tissue fragments used for
endophyte isolation is negatively correlated with the estimated value of endophytic species
richness [49]. Important issues related to endophyte isolation are fungal growth on the agar
medium, the quantity of samples and plant analysis patterns [50,51]. Several studies have
suggested that biotrophic fungi infecting live plant tissues can only be detected by direct
observation on the surface of the host, and these fungi have always resisted attempts to be
cultured in vitro [52].

So far, the composition and diversity of endophytic fungal communities of all ex-
amined plant species have been evaluated through culture-based methods [53], while
morphological characters coupled with molecular analysis techniques have been used to
identify non-culturable endophytic fungi [54]. The detection of fungal DNA from plant tis-
sues through molecular methods have revealed several dimensions of a fungal endophytic
community, which was impossible through cultivation methods [35,55]. Several endophytic
communities have been detected by the fingerprinting technique and amplification of ITS
amplicons from the extracted DNA [56,57]. A big difference in the dominant fungal com-
munities was observed between the culture-dependent and culture-independent methods.
The detection of different taxa relies upon the detection method [58]. Fungi represent many
ecological functions such as endophytes, pathogens, and saprobes [59]. In this case, the
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taxa of fungi that the DNA detection method perceives are similar to the combination
of direct observation and culture methods [60]. Certain endophytes are uncultivable, so
culture-independent approaches such as next generation sequencing (NGS) can help in
a better understanding of their ecology and distribution [35], and revealed all frequently
detected fungal genera from a culture-dependent approach that had a relative abundance
higher than 5%. Many scientists have realized that 99% of prokaryotic microorganisms
may not be cultivated [61].

Many researchers believe that the study of fungal endophytes based on culture can
only estimate the diversity of the misinterpreted endophytic community and taxonomic
composition [62]. Therefore, culture-independent methods such as DNA cloning [63], ter-
minal restriction fragment length polymorphism (TRFLP or sometimes T-RFLP [58,64,65]
and denaturing gradient gel electrophoresis (DGGE) [66,67] are considered more efficient
for resolving fungal diversity. However, despite some limitations and the need for further
improvement, these methods [68,69] have gained much popularity compared to culture-
based techniques as a means of assessing the overall diversity and composition of endophytic
fungal communities [70,71].

3. Mechanisms of Fungal Endophytes

Endophytic microorganisms improve the adaptability of plants by employing different
mechanisms of action. Endophytic fungi commonly adopt mechanisms including pathogen
inhibition directly through competition, antibiosis, and mycoparasitism while indirectly
through the induction of resistance (Figure 1), thereby activating the plant’s defense system
to resist the disease [72].
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3.1. Competition

Competition is a potential mechanism adopted by endophytes to prevent pathogens
from colonizing in host tissues [73]. Endophytes have the ability to colonize locally or
systematically in plant tissues by utilizing the available nutrients and occupying the space,
thus creating an unsuitable environment for pathogen growth [74,75]. Mechanisms used
by endophytes for competition usually function in conjunction with other mechanisms,
rather than operating individually [76]. The mechanisms mostly have direct effects, thus
for better pathogen antagonism, an endophyte must colonize in the plant systemically [77].
For instance, the foliar application of an endophytic mixture from cacao leaves significantly
reduced the Phytophthora infection through competition. However, some strains were also
found to produce active metabolites, which suggests that competition may not be the
only mechanism for disease control [78]. As Heteroconium chaetospira endophyte colonizes
in roots, but it could not effectively suppress the clubroot infection in oil seed rape [79].
The studies suggest that endophytes operating solely with competition as a biocontrol
mechanism may not be effective in high pathogen load [80]

3.2. Induction of Resistance

Endophytic fungi are known to activate plant defense against pest or pathogen at-
tack. This activation event improves the plant defense responses against future pathogen
attack, enabling it to perform more efficiently; this state is also known as induced sys-
temic resistance or defense priming [81]. Induced systemic resistance (ISR) is commonly
regulated by ethylene or jasmonic acid, which does not include the upregulation of
pathogenicity-related (PR) proteins [82]. On the other hand, systemic acquired resistance
(SAR) is generally associated with pathogen infection and is mediated by salicylic acid,
further leading to the accumulation of the PR protein [83]. These PR proteins include
various enzymes such as chitinase and beta 1,3-glucanase, which directly dissolve the
invading pathogen cells and strengthen the cell wall boundary to establish the ability to
resist the infection and cell demise [21]. However, induction of systemic resistance by
endophytes can also be associated with augmentation of pathogenesis related genes [84].
Fusarium solani, isolated from tomato plants, was reported to promote ISR against foliar
pathogen Septorialyco persici by activating the PR, PR7, and PR5 genes in the root [85]. In
another study, non-pathogenic mutant of Colletotrichum magna strains induced resistance
in Citrullus lanatus and Cucumis sativus plants by producing large amounts of peroxidase,
phenylalanine ammonia lyase enzyme, and lignin deposition, which helped protect the
plants from infection caused by C. orbiculare and F. oxysporum [19,86,87]. Furthermore,
the contact of Neotyphodium lolii with different pathogens decreased leaf lesions and
necrotic spots disease symptoms by enhancing superoxide dismutase and peroxidase
activities in the host plant [88]. However, endophytes have different modes of action
such as competition between the endophytes and pathogen and the induction of plant
resistance by producing various metabolites, but more research is still required to un-
derstand this mechanism [78]. Microbial metabolites produced in the host also play an
important role in providing resistance against the invading pathogens. These kinds of
metabolite inducers are specific to fungi and are able to induce the plant defense response.
Pathogen associated molecular patterns (PAMPs) and microbial associated molecular
patterns (MAMPs) play significant roles as compounds of microbial origin that are easily
recognized by plants. In this regard, the fungal cell wall components chitin and β-glucans
are the important MAMPs recognized by plants [89].

3.3. Mycoparasitism

This is another important mechanism used by endophytes to protect the host ecology
by directly attacking the identified pathogen or its propagules [90]. Endophytic fungi
penetrate in the hyphae of pathogenic fungi and destroy the cell walls of pathogens by
lysing cells. This mechanism can be divided into the following four steps. The first
and second steps involve recognition of fungal pathogens and chemotropic growth of
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the endophytic fungal mycelium toward pathogenic fungi, respectively. The third and
fourth steps involve the direct physical contact of endophytic fungi with pathogenic fungi
and penetration into the target fungal cells, which result in cell wall degradation [91].
Different species of Trichoderma involved in biocontrol were found to penetrate the hyphae
of pathogenic fungi Rhizoctonia solani and kill them [92]. Similarly, endophytic fungi isolated
from common reed inhibited the growth of soil borne fungal pathogens by coiling around
their hyphae, causing degradation of the hyphal cytoplasm after penetrating the cells. The
degradation of fungal hyphae involves the secretion of various cell wall degrading enzymes
by endophytic fungi [93]. Several fungal antagonists such as Acrodontium crateriforme,
Acremonium alternatum, Ampelomyces quisqualis, and Gliocladium virens are among the few
fungi with the ability to parasitize powdery mildew pathogens [94].

3.4. Antibiosis

Endophytes produce various secondary metabolites, some of which have antifungal
and antibacterial properties and help to inhibit the growth of plant pathogenic microorgan-
isms [95,96]. Many metabolites (i.e., peptides, flavonoids, quinones, phenols, alkaloids,
steroids, polyketides, and terpenes) with antimicrobial activity have been reported from
endophytes [95,97,98]. However, there is a dire need to explore the secondary metabolites
produced by endophytic fungi for commercial purposes [3,99]. Associations between the
host and endophytes encourage the production and secretion of metabolites with diverse
functions such as pathogen inhibition [100,101]. It is also known that certain endophytes
share similar gene clusters using the same precursors for the co-production of active
metabolites [102–104]. Many studies have reported that many endophytic strains cannot
independently produce compounds involved in host plant resistance against pathogen
attack [105,106]. Loper and Ishimaru [107] identified two components of P. ultimum
suppression on cotton using an antifungal minus mutant of P. fluorescens. They claimed
that antibiotic synthesis was the most important factor, with seed and root colonization
coming in second. The use of enzymes in biocontrol makes it difficult to distinguish
between parasitism and antibiosis. An antagonist’s production of a cell wall destroying
enzyme, for example, would almost certainly be involved in parasitism and antibiosis at
the same time. Antibiosis may be the only effect of other enzymes. For example, under
field conditions, the Talaromyces flavus isolate Tfl (anamorph Penicillium dangeardii, also
known as P. vermiculatum) suppresses verticillium wilt of eggplant (Brunner et al., 2005)
and has the ability to suppress the verticillium wilt of potato [108]. In the soil, Talaromyces
is a strong competitor [109].

Furthermore, this antagonist produces a chemical that kills V. dahliae micro sclerotia
in vitro and in soil [110]. The identification of this molecule as glucose oxidase was aided by
the revelation that the acetone precipitable portion interacted exclusively with glucose [111].
This process produces hydrogen peroxide, which kills the pathogen’s sclerotia. The addition
of glucose or glucose oxidase to soil does not kill the microsclerotia, but the addition of
both glucose and glucose oxidase reduces the quantity of live microsclerotia buried in soils.
Hydrogen peroxide has also been linked to the antibiotic lactobacillin [112].

4. The Interaction of Fungal Endophytes and Pathogens in Different Host Plants

Plant pathogens pose a major threat to food security and ecosystem stability [113]. It
is estimated that pathogen attacks will reduce about 30–50% of global crop production,
leading to an increase in poverty and malnutrition [114]. Among the phytopathogens, fungi
are considered as one of the most destructive pathogens in agriculture [115]. The research
on the biological control of phytopathogens is a relatively emerging field, however, several
studies have supported the role of endophytes in pathogen inhibition. Fungal endophytes
play an important role in plant–pathogen interactions. It has been observed that they
can employ multiple mechanisms to inhibit pathogens (i.e., some endophytes induce
the plant defense system against pathogen invasion), and some produce antimicrobial
compounds that directly inhibit pathogen growth, while others compete for niche and
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nutrients (Table 1) [19,116]. The endophytic biocontrol strains of Trichoderma and Sebacinales
spp. have been known to control many root, foliar, and fruit pathogens, alleviate various
abiotic stresses, physiological stresses (seed age) as well as enhance nutrient absorption.
These endophytic strains also increase the photosynthesis and respiratory activities of
plants. These functions are associated with their ability to reprogram plant gene expression,
possibly by activating some of the universal plant pathways [117].

Finally, some parasites of phytopathogens in the host plant are known to act as
endophytes and have various biological functions. Endophytic fungi in host plants (i.e., in
tobacco), not only promote the growth but also enhance the resistance to biotic and abiotic
factors [118–120]. The endophytic fungi in the host plant may provide biological protection
to the host plant from pathogens, pests, and even domestic herbivores. Several species of
endophytic fungi were investigated, including Aspergillus niger, A. flavus, and Penicillium
where isolated endophytic flora of the Aspergillus genus was the abundant [121].

The fungal endophytes isolated from the healthy tissue of cacao trees were tested
to antagonize the pathogens Monilio phthoraperniciosa, M. phthoraroreri, and Phytophthora
palmivora of cacao. The mechanism for antagonism was solely competition for the sub-
strate. The endophytic fungi reduced the pod loss caused by Phytophthora spp. and the
sporulation of M. roreri, which support the fungal endophyte’s potential as a biocontrol
agent [122]. Similarly, the colletotric acid, isolated from the Colletotrichum gloeosporioides
endophyte, inhibited the pathogenic fungus Helmintho sporium sativum [123]. Muscodor
(Muscodoralbus) is an endophytic fungus isolated from the Cinnamomum tree (Cinnamo-
mum zeylanicum) and produces volatile compounds, esters, alcohols, lipids, ketones, and
acids, which effectively inhibit fungi and bacteria [124]. The volatile compounds secreted
by M. albus inhibited and killed a variety of storage pathogens [125]. The 132 endophytic
fungi isolated from 21 banana varieties were recovered with common endophytic strains
of Fusarium (28 strains), Cephalosporium acremonium, Verticillium wilt, and Trichoderma
under greenhouse conditions and tested against Radopholus similis [126]. The isolates of
Epicoccum nigrum, Trichoderma viride, Sclerotinia sclerotiorum, Fusarium tricinctum, Cytospora
spp., and Alternaria alternate significantly controlled Diplodia corticola, a causal agent
of wilting, vascular necrosis, and the death of various oak trees. These observations
indicate that interaction between endophytes in plants and D. corticola is very complex
and requires further study [127].

Trichoderma spp. produced hydrolytic enzymes when they invaded the mycelium of
Fusarium solani, Rhizoctonia solani, and Sclerotinia sclerotiorum and inhibited the growth
of pathogens [128]. The DNA-dependent SSCP analysis of 16S rDNA/ITS sequences
determined the effect of Trichoderma on local root-related microbial communities, and
as a result, three Trichoderma strains originally isolated from Rhizoctonia sclerotia were
selected as promising BCA [92]. Endophytic fungal communities including Lasiodiplo-
dia, Acremonium, Cladosporium, Blastomyces, Botryosphaeria, Colletotrichum, Geotrichum,
Cordyceps, Diaporthe, Fusarium, Gibberella, Gliocladium, Nectria, Monilochoetes, Pestalotiopsis,
Phomopsis, Pseudo fusarium, Pleurotus, Rhizopycnis, Syncephalastrum, Verticillium, Xylaria,
and Trichoderma were found to be potential antagonists to Clostridium perennial. Among
all endophytes, Gliocladium catenulatum reduced witch broom disease incidence more
than 70% [129]. The arbuscular mycorrhizal fungi (AMF) significantly reduced rust and
powdery mildews by inducing systemic resistance [130]. The Lecanicillium spp. con-
trolled various plant pathogens by adopting a parasitism mechanism [112]. The Cordana
spp., Nodulis porium spp., and mixtures of endophyte and Fusarium verticillioides sig-
nificantly inhibited important fungal pathogens (i.e., Colletrotrichum, P. monticola, and
Ustilago maydis) [55].
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Table 1. Fungal endophytes as biological control agents against pathogenic fungus.

No Endophytic Fungi Pathogenic Fungus Disease Control References

1

Aspergillus flavus, A. niger, A.
terreus. Aspergillus spp., Penicillium
sublateritium, Penicillium spp. from

FCV tobacco

Pathogenic fungi [121]

2
Colletotrichum gloeosporioides,

Clonostachys rosea and
Botryosphaeria ribis

Monilio roreri,
Phytophthora spp. Black pod rot [122]

3 Colletotrichum gloeosporioides Helminthosporiu sativum [123]

4
Seimatoantleriumtepuiense

(produced fungal
paclitaxel)

Pythium spp.
Phytophthora spp. [131]

5 Muscodoralbus, Trichoderma

Candida albicans,
Rhizoctonia solani,

Pythium ultimum, and
Fusarium oxysporum.

[124]

6 Muscodor albus
Penicillium expansum,

Botrytis cinerea,
Monilinia fructicola

Fungal decay of apples
and peaches [125]

7
Banana endophytic fungi (strains

of Fusarium, Acremonium,
Verticillium, and Trichoderma)

Radopholus similis [126]

8

Trichoderma viride, Epico
cumnigrum, Fusarium tricinctum,
Alternaria alternata, Sclerotinia

sclerotiorum, Cytospora

Diplodia corticola Cankers, vascular
necrosis, and dieback [132]

9 Trichoderma asperellum T203 Pseudomonas syringae
pv. lachrymans [133]

10 Trichoderma harzianum,
T. asperellum

Fusarium solani,
Rhizoctonia solani, and
Sclerotinia sclerotiorum

[128]

11 Rhizoctonia sclerotia (Trichoderma
reesei and T. viride) Rhizoctonia solani [92]

12 Gliocladium catenulatum Crinipellis perniciosa Witches’ broom Disease
of cacao [129]

13 Arbuscular mycorrhizal

Phytophythora,
Fusarium, Sclerotium,

Verticillium,
Aphanomyces

[130]

14
Cordana spp., Nodulisporium spp.,

mixtures of endophytes,
Fusarium verticillioides

Colletrotrichum, P.
monticola,

Ustilago maydis

Witches broom, white
pine blister rust,

smut disease
[134]

15 Sebacinales spp. Numerous foliar, root,
and fruit pathogens [117]

16 Root endophytic fungi Verticillium dahliae Verticillium wilt in
egg plant [135]

17 Foliar endophytic fungi from
Hevea brasiliensis Microcyclusulei South American

leaf blight [136]

18 Verticillium lecanii
(chrysanthemum host) Puccini horiana White rust [137]
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Table 1. Cont.

No Endophytic Fungi Pathogenic Fungus Disease Control References

19
Endophytic fungus from the

Chinese medicinal plant
Arisaema erubescens

Fusarium oxysporium,
Rhizoctonia solani,

Colletotrichum
gloeosporioides, and
Magnaporthe oryzae

[138]

20 Cladosporium spp., Endophyte of
Quercus variabilis

Trichophyton rubrum,
Candida albicans,
Aspergillus niger,
Epidermophyton

floccosum, Microsporum
canis

[139]

21 Chaetomium globosum,
endophyte of wheat Pyrenophora spp. Tan spot disease of wheat [140]

22 Endophytes (isolated from
Theobroma cacao L.) Phytophthora spp. [141]

23 Acremonium strictum Helminthosporium solani Silver scurf potato
tuber disease [142]

24 Beauveria bassiana (Cotton seed)
Rhizoctonia solani,

Pythium myriotylum,
and Thielaviopsisbasicol

Seedling diseases [29]

25 Beauveria bassiana, B. brongniartii Pythium ultimum, P.
debaryanum [143]

26 Beauveria bassiana (cotton and
tomato seed)

Rhizoctonia solani,
Pythium myriotylum,

and Xanthomonas
axonopodis

pv. malvacearum

Damping off seedlings
and root rot

(bacterial blight).
[144]

27 B. bassiana Vuillem in
(tomato seedling) Pythium myriotylum Pythium damping-off [145]

28 B. bassiana strains (sugar cane) Colletotrichum falcatum Red rot of sugar cane [146]

29 Metarhizium robertsii Fusarium solanif
sp. phaseol [147]

30 Beauveria bassiana

Fusarium graminearum,
F.avenaceum,

Aspergillusparaziticus,
F.oxysporum, Alternaria
tennus, F. moniliforme

[148]

31 Yeasts Soil-borne fungal
root pathogens [149]

The 123 fungal isolates including Phialocephala fortinii and Radicis atrovirens isolates
are commonly isolated from melon, eggplant, tomato, Chinese cabbage, and strawberry
bait plants. The mechanism by which these endophytes confer resistance is unclear, but
laboratory tests have shown that they have significant potential as BCAs [135]. Endophytic
fungi isolated from Hevea brasiliensis (rubber tree) inhibited Microcyclus ulei, a causal agent
of South American leaf blight (SALB) [136].

Similarly, Verticillium lecanii parasitized the spores and fruiting bodies of Puccinia
horiana, causing chrysanthemum white rust [150]. The fungal endophytes, Clado sporium
spp. produced antibiotic metabolites, which inhibited the growth of pathogenic fungi
including Trichophyton, Candida albicans, and A. niger [139]. During the experiment, a
protective effect of endophytes on the plants’ pathogenic fungi after inoculation produced
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an antifungal substance, which induced plant defense mechanisms rather than direct
antagonism. The same is the case with endophytic fungi Chaetomium in wheat, where
the fungi reduced the severity of leaf diseases caused by Pyrenophora spp. [140]. The leaf
diseases caused by Phytophthora spp. were significantly reduced when host plant leaves
were inoculated with a mixture of six endophytes isolated from Theobroma cacao [78].
Infection by endophytes may alter the biochemistry of plants in a way that induces
defense mechanisms against pathogens. The endophytes Acremonium strictum isolated
from Dactylis glomerata acted as a mycoparasite of the Helminthosporium solani causal
agent of potato tuber silver scurf disease and significantly reduced pathogen inocula
(Table 1) [142].

Beauveria bassiana in cotton has endophytic biocontrol activity against Rhizoctonia solani
in tomato seedling [29]. For B. bassiana and B. brongniartii, both species were antagonistic to
P. debaryanum, and Septoria nodorum while P. irregulare, Pleospora betae, Rhizoctonia solani, and
P. exigua var. foveate showed resistance to Beauvaria spp. Both endophytic fungi induced
the lysis of phytopathogenic fungi jointly when cultured on agar medium. B. brongniartii
colonized more effectively than B. bassiana and inhibited the growth of phytopathogenic
fungi [150]. The application of B. bassiana on seed resulted in endophytic colonies in
tomato and cotton seedlings, which prevented Rhizoctonia solani and Pythium myriotylum
infection, a causal agent of damping off and root rot. The degree of disease control depends
upon the B. bassiana conidial population density on the seed [144]. Pythium damping
off causes severe losses in tomato crops grown in greenhouses and fields. Currently,
there are no tomato varieties that are resistant to damping off. Beauveria bassiana isolates
suppressed the damping off of tomato seedlings by inducing systemic resistance [145]. The
entomopathogenic fungi produced chitinase enzymes, which are related to the inhibition of
Colletotrichum falcatum, a causal agent of red rot disease of sugarcane [151]. The endophytic
insect pathogenic fungus Metarhizium robertsii inhibited F. solani conidial germination [147].
The production of secondary metabolites by endophytic fungi is very important in the
application of biotechnology. B. bassiana, as a crude extract at concentrations between
1200 and 1600 µg/mL, showed moderate antifungal activity against Alternaria tenuis,
Fusarium avenaceum, and F. graminearum and the inhibitory effect was significant against
Aspergillus paraziticus, F. moniliforme, and F. oxysporum [148].

Compared with filamentous fungal antagonists, yeast is little known as a biological
control agent for soil-borne fungal plant pathogens. The potential antagonistic mechanism
of yeasts against soil-borne fungal plant pathogens is expected to be similar to those
antagonistic fungi towards leaf and fruit pathogens. Several yeasts have been recorded
as endophytes in plants and a small portion of them have been recorded as promoters
of plant growth [152]. Yeast reproduces rapidly, produces antibiotics, and degrading
enzymes, which induce resistance and produce plant growth promoters. Various yeast
genera have been used to control post-harvest diseases, especially those caused by fungal
plant pathogens spread by fruits and soil [149].

5. Host–Plant Interaction with Endophytes

The above studies showed that the results of certain pathogen invasion may de-
pend on the endophytic fungal branches associated with the host plant. Therefore, the
endogenous combination of a certain fungal species may correspond to a biological
source with potential applications in the disease control of the following plant species.
This indicates that the plant part of the disease cycle is shared by pathogens or endo-
phytes. When fungus enters in a plant, it can act as an endophyte or pathogen, and in
more cases, the fungi associated with plants can act as endophytes [153]. Endophytes
successfully colonize a host tissue through establishing compatible host plant–microbe
interactions [154]. When endophytes invade a host plant, the plant will recognize it and
produce cross-talk signal molecules [155]. Later on, endophytes show a chemo tactic
response to root exudates of the host plants [156,157]. The rich biomolecules, nutrients,
and water are present in root exudates which attract the available microorganisms, but
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preferably mutually beneficial microorganisms including endophytes [102]. The plant’s
immune system also plays an important role in allowing beneficial microorganisms to
enter in plant tissues including fungal endophytes [158]. In addition, finding strategies
for plants to distinguish beneficial microorganisms such as pathogens or endophytes is
still a research problem [159]. Now that many endophytes and their genes have been
identified, these endophytes and their genes can help to understand their behavior and
mechanisms [102]. The plant can also induce the different genome expression in various
endophytic microbes during their colonization [160,161]. The progress of symbiosis re-
search shows that through nutritional monitoring, plants can identify whether invading
microorganisms are beneficial or pathogenic [162,163]. The genotype of the host plant
also significantly affects the endosphere microbiome community in host plants [164,165].
In some endophytes, in addition to local abiotic stress factors, it has also been found that
the change of their lifestyle to a pathogenic state also depends on the genotype of the host
(i.e., Ramularia collocygni can survive as an asymptomatic endophyte during the initial
growth period, but in the later growth period, it switches to necrotic pathogen) [166,167].
At the ecological time scale, Fusarium verticillioides in maize plant can survive as endo-
phytes or later become a latent pathogen that causes disease over a period of time [168].
However, external and endogenous factors that cause fungi to transform from endophytes
to pathogens are not yet fully understood. In order to better understand the dynamics of
endophytes, comparative studies are needed to find the gene expression and conditions
(in plants and endophytes) in which the same microorganisms behave as symbionts or
pathogens [102]. However, for endogenous lifestyles, a single mechanism or factor has
not yet been determined, so further discoveries are needed.

6. Microscopic Techniques to Study Host–Plant Interaction with Endophytes

Endophytic fungi may exist in plants as mutualists, pathogens, or commensals, which
neither harm the host plant nor provide any benefits [166]. The plant–microbe associations
have drastic effects on the fitness of the host plant [169]. Thus, exploring these complex
associations is indeed very important to fill the knowledge gap and harness the maximum
benefits from beneficial endophytic fungi. The structure of fungi including hyphae, spores,
and fruiting bodies can be observed through optical and electron microscopy [170]. The
interactions between plant and endophytic fungi initiate from the attachment of fungal
hyphae on the surface of plants, leading to infection, invasions, colonization in plant tissues,
proliferation, sporulation expression of phenotypic traits, and spread to other individual
plants [166,171–173]. Several approaches have been used to study the complex interactions
between endophytes and plants. The genetics and enzyme activity measurement are
powerful tools for discovering genes and traits related to these connections [174,175].
Presently, microscopic tools and molecular methods have contributed to new insights into
the host–plant microbe interaction (Figure 2).

Molecular and microscopic techniques provide a better understanding of endophytic
colonization within the host plant cell. When endophytes successfully colonize in host
plant cells and develop intimate relationships, this may lead to information exchange
at the cellular or molecular level, as illustrated in Table 2 [176]. Knowledge of the
mechanism of endophyte colonization in host plants at the ultra-structural level can
help to understand their efficiency as biological control agents [177]. A direct way
of examining fungal endophyte colonization in the host cell is through microscopy.
Although a light microscope is a convenient tool for observing plant–microbe interactions,
it lacks a resolution to observe host–microbe interactions in detail. These microscopic
studies provide evidence of endophyte colonization and isolation from the host plant
cell. Microscopy has evolved continuously since the discovery of microorganisms, and
modern microscopes can now solve highly complex problems. However, live microscopy
of plants in a biotic and abiotic environment is still complex and has hardly been achieved
(e.g., plant–environment microscopy tracks the interactions of Bacillus subtilis with plant
roots across the entire rhizosphere).
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Electron microscopy provides a comprehensive understanding of endophyte colo-
nization in host plant cell at the superstructure level. Electron microscopic studies have
revealed pathogen morphological damage and deformities caused by the endophyte
culture extract [178]. Visualizing the interactions between microorganisms and plants
at the cellular level provides detailed basic principles of how endophytes work [102].
Methods for the detection of endophytes in host tissues have not been well-documented
in the scientific literatures. Nowadays, confocal laser scanning (CLSM) is a critical
step in studying these elusive organisms [179]. The main advantage of using CLSM
over ordinary microscopy is that CLSM has a very high specific resolution and much
higher contrast than conventional microscopy [180]. Basically, laser scanning confocal
microscopy is a technique superior to conventional microscopy, which can provide a
higher resolution of endophytic fungi in dark septum against a background of the cortical
host plant cell [180]. The highly sophisticated microscope tools and the optimization of
auto fluorescent proteins have made important contributions to understand how these mi-
croorganisms interact with plants [177]. These reasonable microscopy tools will promote
research in the future. The visualization depends on a gene construct with a reporter gene,
which can be used to transfer and cultivate the microorganisms, and a few endophytes
that are not able to grow outside of the plant [181].

Table 2. Properties of the various microscopic techniques for the detection of microbial interaction
(endophytic and pathogenic fungal interaction).

Detection System Properties Reference

Visualization
Interactions between plant and microorganism on the cellular

level provides a more detailed understanding of the basic
principles of how endophytes function.

[182]
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Table 2. Cont.

Detection System Properties Reference

Microscopy (contrast microscopy and
interference microscopy (DIC))

Microscopy is a valuable technique for visualizing cells without
staining, for example, endophytic colonization and

microorganism interactions. Contrast microscopy and differential
interference microscopy can be used to visualize the effects of the

endophytes on the growth and hyphal morphology of the
plant pathogen.

[183]

Enzymatic reporters genes

The reporter genes with enzymatic functions are used to visualize
microorganism cells and gene expression. The use of reporters

such as lacZ or gfp requires genetic transformation and an
effective fast approach for studying plant–fungus interactions.

[184].

Scanning electron microscopy

SEM has a high resolution power, which can visualize the single
cells of fungus, microcolonies, and the total microflora present as
well as differentiate the morphological traits within endogenous

communities of microorganisms.

[178]

Transmission electron
microscopy (TEM).

A transmission electron microscope (TEM) is a microscope that
uses a beam of particle electrons to look at a sample and create a
larger image. A TEM can magnify objects up to 2 million times.

To obtain a better idea of how small it is, consider how small the
cell is. TEM has become very valuable in agriculture fields and

studying the pattern of endophyte colonization within the
intercellular and intracellular spaces of plant tissues. This is fitted

with a Gatan Orius 1000 camera.

[185]

Epifluorescence microscopy

This is based on the presence of fluorescent compounds (i.e.,
proteins), which, after excitation with light of a certain

wavelength, emits light of a longer wavelength due to energy loss
during the process of absorption and excitation.

[186]

Confocal laser scanning microscopy
(CLSM)

CLSM is used to study plant–pathogen interactions, which have
revolutionized research into the role of selected molecules and cell
components in pathogen infection strategies and plant defense

responses. In combination with computational image analysis, it
provides a powerful tool by which molecules, molecular

interactions, and cell components can be localized and studied.

[187]

Auto-fluorescent

The use of different auto fluorescent proteins is an excellent tool
to distinguish microorganisms from each other and to visualize
their interactions between phytopathogenic fungi. Biocontrol

agents will help to understand these interactions and facilitate the
development of efficient biocontrol applications.

[188]

7. Role of Fungal Endophytes in Sustainable Agriculture

The injudicious use of chemical pesticides has raised serious concerns of environ-
mental pollution, toxic residual effect, resistance development in plant pathogens, and
the non-target effect on beneficial microbes, which has shifted the interest of researchers
in adopting eco-friendly alternatives to meet the growing demand of agricultural pro-
duction [72,189–192]. Sustainable agriculture requires different strategies to increase
the production of food while minimizing hazardous health effects (Figure 3) [193,194].
Endophytes play a vital role in sustainable agriculture by improving plant health and
defending them from pathogen attacks [195,196]. Endophytes have attracted attention as
biological fertilizers or phyto-remediation applications in agriculture [197]. Endophytic
fungi exist in various plants, namely trees, herbs, grasses, and algae, and have established
a symbiotic relationship with host plants [198–200]. This symbiotic relationship between
plants and fungal endophytes produces biologically active substances (antifungal agents,
antibacterial agents, insecticides, plant growth regulators, etc.), thereby improving the
host plant’s tolerance to various biotic and abiotic stresses in nature [19,201,202].
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Fungal endophytes act as biological control agents, with unique properties that en-
hance production and stress resistance in the host plant [203,204]. Several studies have
shown that treating host plants with the selected endophytes can sensitize plants against dis-
ease causing pathogens [205,206]. Endophytes induce resistance in the host plants due to the
production of defensive compounds, namely, alkaloids, flavonoids, terpenoids, quinones,
chlorinated metabolites, iscoumarin derivatives, and phenolic compounds [153,207,208]. In
addition, endophytes also induce systemic resistance by producing salicylic acid, HCN,
siderophores, cell wall degrading enzymes and antifungal compounds, and direct antag-
onism to different plant pathogens [209,210]. The endophytes can produce plant growth
promoting (PGP) active hormones in different crops such as gibberellin (GA), indole acetic
acid (IAA), phosphate solubilization, and cytokinin [211,212].

Both climatic and environmental factors determine the nature of plant endophytes and
their role in agriculture [213]. In order to maximize the benefits of fungal endophytes in
crops, it is compulsory to understand the nature of microbial symbionts commonly present
in a specific crop, the environmental growth conditions for their successful establishment
in the host plant physiological system, their role in disease control, plant growth, and their
ability to produce biologically active metabolites [214,215]. The main goal of agricultural
researchers is to identify potential endophytes [216]. These potential endophytes are not
only symbionts in a specific crop, but also perform well under various climatic conditions in
which the crop is grown [217,218]. Crops with a proper endophyte proportion have stronger
resistance and faster growth compared to crops lacking the potential endophytes [219]. The



J. Fungi 2023, 9, 72 14 of 23

fungal endophytes also provide the host plant with enhanced resistance to abiotic and biotic
stresses (i.e., drought, poor soil, and herbivory) [220,221]. The ability of endophytes to
improve plant nutrition or secondary metabolites may lead to increased growth and stress
resistance [222,223]. Many endophytes can protect plants from herbivorous hazards by
insects and animals through production of secondary metabolites that are inedible or toxic
to herbivores [224,225]. Much attention is being paid to endophytes to protect valuable
crops against pathogen and insect attack [19,226]. The use of endophytes might potentially
increase the crop yields [227].

There are numerous obstacles to the successful implementation of the use of endo-
phytes in agriculture, although endophytes can confer many known benefits to host plants,
conventional agriculture practices are still a priority. Modern agriculture mostly depends
on chemical fertilizers and fungicides. The use of fungicides has an adverse effect on fungal
endophytes, and chemical fertilizers reduce host plant dependence on their endophytic
symbionts [228]. The interest and use of endophytes is increasing day by day to enhance
agricultural production and they are considered as an important factor in sustainable
agriculture. As humans have become more conscious about the negative effects of syn-
thetic chemicals on the environment and beneficial microbes. Thus, fungal endophytes as
biological control agents may become more important to the agricultural industry.

8. Conclusions and Future Perspectives

Endophytic fungus plays an indispensable role in plant physiology and functions of
agricultural ecosystems. The fungal endophytes as MBCA provide an attractive, effective,
and environmentally friendly method for controlling plant diseases. The widespread allo-
cation of endophytes is well-known, with long-term results. Most fungal endophytes are
closely related to their host plants and have obvious advantages (i.e., by producing many
secondary metabolites/substances that can be used to control pathogens and enhanced
plant growth). They can compete with plant pathogens to improve the immune status of
plants, increase stress tolerance, and provide protection against pathogens and diseases.
However, due to unfavorable environmental conditions, the stable growth and develop-
ment of biological fungal agents under field conditions is still a challenge. Many fungal
strains have been developed to effectively control plant diseases. To successfully use these
biological agents, more in depth study will be needed. Understanding the appearance,
identification, and function of important biological microorganisms in a specific environ-
ment is the first step to understanding their nature and mode of action in each environment.
Due to the complexity of environmental factors and their effects on fungal endophytes,
extensive research is needed to fully understand and characterize the interaction of MCBA
with host plant pathogens. In the past few years, the development of different molecular
detection technologies has revealed new and diverse information. The study of endophytic
fungi provides important prospects for understanding the complex interactions within
microbial communities and with the plant hosts. High-precision microscopy tools and the
optimization of automated fluorescent proteins have made important contributions to un-
derstanding how these microorganisms interact with plants. These reasonable microscopy
tools will promote this research in the future.
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