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Abstract: Fusarium graminearum (F. graminearum) is the main pathogen of Fusarium head blight
(FHB) in wheat, barley, and corn. Deoxynivalenol (DON), produced by F. graminearum, is the most
prevalent toxin associated with FHB. The wheat defense compound putrescine can promote DON
production during F. graminearum infection. However, the underlying mechanisms of putrescine-
induced DON synthesis are not well-studied. To investigate the effect of putrescine on the global
transcriptional regulation of F. graminearum, we treated F. graminearum with putrescine and performed
RNA deep sequencing. We found that putrescine can largely affect the transcriptome of F. graminearum.
Gene ontology (GO) and KEGG enrichment analysis revealed that having a large amount of DEGs
was associated with ribosome biogenesis, carboxylic acid metabolism, glycolysis/gluconeogenesis,
and amino acid metabolism pathways. Co-expression analysis showed that 327 genes had similar
expression patterns to FgTRI genes and were assigned to the same module. In addition, three
transcription factor genes were identified as hub genes in this module, indicating that they may
play important roles in DON synthesis. These results provide important clues for further analysis of
the molecular mechanisms of putrescine-induced DON synthesis and will facilitate the study of the
pathogenic mechanisms of FHB.

Keywords: deoxynivalenol synthesis; Fusarium graminearum; putrescine; transcriptome

1. Introduction

Fusarium head blight (FHB), also known as ear rot or scab, is one of the most common
wheat diseases in the world [1], causing huge economic losses [2]. Serious FHB occurs every
four or five years in particular areas, including China, the USA, and Africa [3]. In recent
years, FHB has led to a significant reduction in wheat production [4–7]. F. graminearum and
F. asiaticum are the main fungi causing FHB [8]. In addition to wheat, F. graminearum can
also cause FHB on other grains, such as barley and corn [9].

F. graminearum can produce large amounts of trichothecene mycotoxins, which are
seriously toxic to humans and animals [10], including deoxynivalenol (DON), nivalenol
(NIV), and zearalenone (ZEA) [11,12]. DON can cause vomiting, diarrhea, oxidative
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damage, and digestive tract disorders in humans and animals [13,14]. It can also cause
biological barriers and affect the function and viability of cells and organs [15]. DON
can bind to ribosomal peptide transferase and activate cytokines to inhibit nucleic acid
and protein biosynthesis [16]. Almost all food crops, including wheat, corn, barley, and
others that are infected by F. graminearum contain DON [17]. DON is also a vital virulence
factor of F. graminearum [18]. Exploring the regulation mechanism of DON synthesis is of
great significance to the study of the pathogenic mechanisms and control of FHB. Previous
studies have shown that putrescine synthesized by plants after F. graminearum infection
can promote the production of DON [19,20]. However, the underlying mechanisms of
putrescine-induced DON synthesis in F. graminearum, especially at the transcriptome level,
are not well-understood.

With the development of high-throughput sequencing technology, RNA deep sequenc-
ing plays an important role in the study of transcriptome profiles of organisms and is
an effective tool for mechanism research. In this study, we conducted a transcriptome
analysis of F. graminearum under exogenous putrescine treatment at different time points
to systematically investigate the molecular mechanism of putrescine-induced DON pro-
duction. We identified 5256, 5498, 3850, and 3002 differentially expressed genes (DEGs) in
samples treated with putrescine for 3 h, 6 h, 12 h, and 24 h, respectively. Gene ontology
(GO) and KEGG enrichment analysis revealed that many DEGs were associated with ribo-
some biogenesis, carboxylic acid metabolism, glycolysis/gluconeogenesis, and amino acid
metabolism pathways. We obtained six gene clusters through expression pattern analysis.
Interestingly, we found that all 14 FgTRI genes were classified into cluster five and the
genes in cluster five were monotonously downregulated after 3 h of putrescine treatment
and then continuously upregulated at 12 h and 24 h. Co-expression analysis revealed that
327 genes had similar expression patterns to FgTRI genes and were assigned to the same
module. In addition, three transcription factor genes were identified as hub genes in this
module, indicating that they may play important roles in DON synthesis. This study is the
first comprehensive transcription profiling of F. graminearum treated by putrescine, and its
results provide valuable support for further studies to elucidate the molecular mechanisms
of DON synthesis.

2. Materials and Methods
2.1. F. graminearum Strain and Growth Conditions

The strain used in this experiment was F. graminearum strain PH-1, which was kindly
provided by Dr Huiquan Liu at Northwest A & F University (Yangling, China). F. graminearum
was routinely cultured in potato dextrose agar (PDA) medium at 25 ◦C for 7 days. Five
100 mL bottles of liquid potato dextrose broth (PDB) medium with 5 mm freshly grown
mycelia taken from the edge of a colony were shaken for 2–3 days. The hyphae were
collected and washed once with double-distilled water individually and then transferred
into 5 corresponding bottles of liquid trichothecene biosynthesis induction (TBI) medium
(87.64 mM sucrose, 5 mM arginine, 7.35 mM KH2PO4, 2.08 mM MgSO4, 6.71 mM KCL,
40.57 mM MgSO4·7H2O, 0.3 g/L plant gel, 0.2 mL trace element, and distilled H2O up to
1000 mL) for 24 h. One bottle of hyphae was frozen in liquid nitrogen as the 0 h sample.
Sterilized putrescine (Sigma Aldrich (Shanghai) Trading Co., Ltd., Shanghai, China) was
added to the remaining 4 bottles of TBI medium to a 5 mM final concentration [21], and
hyphae were shaken at 28 ◦C for 3 h, 6 h, 12 h, and 24 h. Finally, the hyphae of F. graminearum
cultured at different time points were collected and frozen in liquid nitrogen for total RNA
extraction. Three biological replicates were set at each time point.

2.2. RNA Extraction, Library Preparation, and Sequencing

For RNA-seq analysis, the frozen samples were ground into fine powder in a mortar
with a pestle in the presence of liquid nitrogen. Total RNA was extracted using an RNAprep
Pure Plant Plus Kit according to the manufacturer’s instructions, and the concentration
of RNA was estimated using a NanoDrop 2000c ultra-trace biological detector. The total
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RNA samples were sent to BGI for library construction and sequencing. Libraries were
constructed using an MGIEasy RNA Library Preparation Kit and sequenced on the DNBseq
platform using a paired-end scheme.

2.3. Quality Control and Data Assembly

SOAPnuke was used to obtain high-quality clean data by removing adapter sequences
and low-quality reads [22]. The Q20 and GC content were evaluated after quality control of
clean reads using FastQC software. All clean data were mapped to the reference genome of
F. graminearum using hisat2, and unique mapping reads were identified.

2.4. Analysis of DEGs and Functional Annotation

The gene expression level was assessed as fragments per kilobase of transcripts per
million reads mapped (FPKM). The reads were counted by featureCounts software, and
the differential expression analysis of 5 inoculation time points was conducted by the
DESeq2 R software package. Genes with p-value < 0.05 and |log2 (fold change)| > 1
were designated as differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs was carried
out using the clusterProfiler R software package [23]. The GO function and KEGG pathway
were considered enriched with a p-value of 0.05 as the significance threshold. Potential
transcription factors (TFs) were identified by the Fungal Transcription Factor Database
(FTFD) with default parameters (http://ftfd.snu.ac.kr/index.php?a=view, accessed on
26 February 2008).

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

To detect co-expression modules and key regulatory genes associated with DON
production in F. graminearum under putrescine treatment, we generated co-expression net-
works using the WGCNA package in R as previously described [24]. Briefly, only expressed
genes with average FPKM values higher than 1 in any sample were further processed. The
soft thresholding power was determined using the pickSoftThreshold function based on
the scale-free topology model fit (R2) > 0.8. Then, the automatic blockwiseModules net-
work construction approach was applied to obtain highly correlated modules. The FgTRI
gene module was defined as the key module, and the co-expression and transcriptional
regulatory networks were displayed using Cytoscape v3.9.1 [25].

3. Results
3.1. Evaluation of Transcriptome Sequencing Data

In order to identify the key genes regulating the production of DON under putrescine
treatment, hyphae samples were collected for RNA deep sequencing at five treatment time
points (0 h, 3 h, 6 h, 12 h, and 24 h). The GC content of all samples ranged from 51.18
to 53.88%, and Q20 scores ranged from 95.86 to 97.07%. Approximately 96.61 to 97.32%
of clean reads were successfully mapped to the reference genome. Furthermore, 95.34 to
96.46% of clean reads were uniquely mapped (Table 1). The evaluation results indicated
that the quality of transcriptome sequencing was sufficient for further expression analysis.

According to principal component analysis (PCA) and correlation analysis, we re-
moved sample 12 h-3 because it showed a high deviation from the other two replicates
(Figure 1). The biological replicates of samples at other time points were highly consistent
with each other (R2 > 0.95) (Figure 1B). The correlation coefficient between 6 h and 12 h
sample groups was very low (R2 < 0.4), suggesting obvious transcriptome changes between
these two time points (Figure 1B).

http://ftfd.snu.ac.kr/index.php?a=view
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Table 1. Summary of statistics for sequence quality control and genome mapping.

Samples
Clean Data Mapped Reads

Clean
Reads Q20 (%) GC (%) Total Reads Mapped Reads (%) Unique Mapped Reads (%)

0 h 22,479,084 96.12 52.54 21,130,739 20,424,795 (96.66%) 20,301,372 (96.08%)
0 h 24,042,002 96.45 52.50 48,283,839 46,810,669 (96.95%) 46,481,429 (96.27%)
0 h 24,924,258 97.07 52.43 50,074,181 48,618,073 (97.09%) 48,234,367 (96.33%)
3 h 24,404,822 96.98 53.83 49,178,115 47,662,961 (96.92%) 47,058,097 (95.69%)
3 h 24,083,702 96.12 53.82 48,540,560 46,935,242 (96.69%) 46,326,950 (95.44%)
3 h 22,092,868 96.14 53.73 44,533,167 43,027,195 (96.62%) 42,459,736 (95.34%)
6 h 23,796,099 96.94 53.88 47,915,912 46,596,506 (97.25%) 46,045,762 (96.10%)
6 h 23,784,079 95.86 53.75 47,893,717 46,268,262 (96.61%) 45,718,258 (95.46%)
6 h 24,207,815 97.06 53.12 48,760,129 47,454,344 (97.32%) 46,919,058 (96.22%)

12 h 22,677,537 96.69 51.18 45,602,204 44,365,857 (97.29%) 43,988,722 (96.46%)
12 h 24,108,403 96.28 52.57 48,460,537 46,979,214 (96.94%) 46,566,522 (96.10%)
12 h 22,341,753 96.19 51.91 44,895,324 43,460,348 (96.80%) 43,102,193 (96.01%)
24 h 22,892,156 96.48 51.26 45,998,189 44,688,697 (97.15%) 44,351,292 (96.42%)
24 h 22,775,413 96.33 51.52 45,736,758 44,387,923 (97.05%) 44,078,173 (96.37%)
24 h 22,113,432 96.09 51.70 44,418,523 43,042,789 (96.90%) 42,712,534 (96.16%)
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Figure 1. Sample reproducibility and reproducibility of F. graminearum after putrescine treatment.
(A) Principal component analysis (PCA) shows distances between samples of transcripts from
different F. graminearum treatment groups. (B) Heat map of RNA expression values between treatment
groups. Pearson correlation coefficients are represented by color and size.

3.2. Differential Gene Expression Analysis

Compared with 0 h samples, 5256, 5498, 3850, and 3002 DEGs were identified in
samples treated with putrescine for 3 h, 6 h, 12 h, and 24 h, respectively, and more genes
were downregulated than upregulated at each time point (Figure 2). The number of DEGs
increased in the 6 h treatment (5498) and then decreased at 12 h (3850), and decreased
further at 24 h (3002) (Figure 2). Differential expression analysis of comparison groups
of adjacent time points was also performed. We identified the most DEGs (3891) in the
comparison of 6 h vs. 12 h and the least (1202) in 3 h vs. 6 h (Figure 2). These results
indicated that 6 h—12 h is probably the most important stage for transcriptome changes of
F. graminearum during putrescine treatment.
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Figure 2. Bar graph showing number of DEGs of F. graminearum at different time points or adjacent
time periods after putrescine treatment.

3.3. GO Enrichment Analysis of DEGs

In order to screen the unique insights on the effect of putrescine treatment on the
biological process of F. graminearum, GO enrichment analysis was carried out on DEGs
at four time points: 3, 6, 12, and 24 h. In order to highlight the ontologies and pathways
relevant to this study, subsets of highly enriched GO terms were selected (Figure 3). DEGs
identified in the 3 h and 6 h putrescine treatment groups were enriched in many of the
same pathways, including translation, peptide biosynthetic process, and ribosome-related
process (Figure 3). After 12 h of putrescine treatment, DEGs were mostly enriched in the
nucleolus, ribosome biogenesis, and carbohydrate derivative biosynthetic process (Figure 3).
After 24 h, the DEGs enrichment terms were further changed to small molecule metabolic
process, organic acid metabolic process, and aromatic amino acid family catabolic process
(Figure 3). Notably, ribosome and ribonucleoprotein complex biogenesis pathways were
significantly enriched in DEGs at 3 h, 6 h, and 12 h (Figure 3). In addition, the amino acid
catabolic process pathway was significantly enriched in DEGs at 24 h (Figure 3), indicating
that ribosome, ribonucleoprotein, and amino acid catabolic pathways play important roles
in the response of F. graminearum in the early stage (<24 h) of putrescine treatment.
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Figure 3. Specified GO analysis of DEGs upon putrescine treatment. Subsets of categorized GO terms
identified with DEGs from putrescine treatment are presented in each panel. Colors represent time
points: blue, 3 h; orange, 6 h; red, 12 h; green, 24 h.

3.4. KEGG Enrichment Analysis of DEGs

In order to further determine the specific metabolic pathway of F. graminearum under
putrescine treatment, a KEGG analysis of DEGs was performed. A total of 825, 718, 589, and
318 DEGs were enriched in different metabolic pathways at 3 h, 6 h, 12 h, and 24 h, respec-
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tively. In order to highlight the pathways relevant to this study, we selected the pathways
of interest that showed significant enrichment (Figure 4). DEGs identified in the 3 h and
6 h putrescine treatment groups were enriched in many of the same pathways, including
nucleocytoplasmic transport and amino acid biosynthesis pathways (Figure 4). After 12 h
of putrescine treatment, DEGs were mostly enriched in glycolysis/gluconeogenesis, galac-
tose metabolism, and amino acid metabolism pathways (Figure 4). After 24 h, the main
DEG enrichment terms were nitrogen metabolism, tryptophan metabolism, and amino
acid metabolism (Figure 4). Combined with the results of GO analysis (Figure 3), DEGs
identified at all treatment time points were enriched in the common ribosome and amino
acid metabolism pathways, again indicating that ribosome and amino acid metabolism play
important roles in the early stage of putrescine treatment in F. graminearum. In addition,
we found that the glycolysis/gluconeogenesis pathway was significantly enriched in the
upregulated DEGs only after 12 h and 24 h of putrescine treatment (Figure 4), and the
CoA biosynthesis pathway was enriched in upregulated DEGs after 12 h of treatment
(Figure 4). Acetyl-CoA, which is produced by glycolysis, is an intermediate substance of
the DON biosynthesis process [26]. Thus, we speculated that putrescine regulates DON
synthesis by influencing ribosomal functions, amino acid metabolism, and the glycoly-
sis/gluconeogenesis process.
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3.5. Identification of Differentially Expressed TFs in F. graminearum Treated by Putrescine

Transcription factors are key molecules in the regulation of gene expression and
play an important role in dealing with various stresses. In this study, 69 consistently
differentially expressed TFs belonging to eight transcription factor families were detected
from F. graminearum treated for 3 h, 6 h, 12 h, and 24 h (Figure 5A). A total of 14 differently
expressed TFs belonging to six TF families were identified at all treatment time points
compared to 0 h. Among them, the most abundant TF family was Zn2Cys6 (6), followed by
C2H2 zinc finger (3), HMG (2), bHLH (1), nucleic acid-binding, OB-fold (1), and bZIP (1)
(Figure 5B).

3.6. Expression Pattern Analysis of All Genes under Putrescine Treatment

We used the mfuzz package in R [27] (http://itb1.biologie.hu-berlin.de/~futschik/
software/R/Mfuzz/index.html, accessed on 20 May 2007) to analyze the different gene
expression patterns based on all of the genes (13,285; FPKM < 1 filtered out). We obtained
six gene clusters with different expression patterns, with 1952, 2438, 1904, 2689, 1790, and
2511 genes in clusters 1–6, respectively (Figure 6A,B; Table S1). Interestingly, we found

http://itb1.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html
http://itb1.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html
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that all 14 FgTRI genes were classified into cluster five and the genes in cluster five were
monotonously downregulated after 3 h of putrescine treatment and then continuously
upregulated at 12 h and 24 h (Figure 6A), indicating that the production of DON under
putrescine treatment started after 6 h treatment.
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3.7. Construction of Co-Expression Networks

To identify the co-expression networks associated with DON biosynthesis, we used the
WGCNA R software package based on the gene FPKM matrix (13,285; FPKM < 1 filtered
out). The sample clustering analysis revealed strong repeatability among the biological
replicates (Figure S1A). In addition, we found that the 3 h and 6 h samples were grouped
together, while the 0 h, 12 h, and 24 h samples formed a second group, which again
indicated that there were significant transcriptional changes between 6 h and 12 h during
putrescine treatment of F. graminearum (Figure S1A). In the WGCNA pipeline, based on
the scale-free topology criterion with R2 = 0.9, we set the soft threshold as 18 (Figure S1B).
Then, we used the automatic blockwiseModules network construction approach to identify
co-expression modules. A color scheme was used to allow visualization of modules by
showing highly correlated genes in the same color (Figure S1C). We obtained a total of
23 color modules, each composed of genes with similar expression patterns over time
(Figure S1C,D). The relatively low correlation coefficients between pairwise color modules
showed that our functional color modules were clearly divided (Figure S1E). Notably, FgTRI
genes, except FGSG_03538, were assigned to the same MEblack module (Table S2), which
is consistent with the result of the mfuzz analysis. We then displayed the co-expression
network of the MEblack module using Cytoscape software. Three TF genes, FGSG_01915
(Myb), FGSG_03292 (Zn2Cys6), and FGSG_03536 (C2H2 zinc finger), were identified as
hub genes in the MEblack module. They were co-expressed with 12, 12, and 7 FgTRI genes,
respectively, indicating that these FgTRI genes may be the downstream targets of the three
hub TFs (Figure 7).
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4. Discussion
4.1. Expression of FgTRI Genes Began to Increase after 6 h of Putrescine Treatment

Previous studies have shown that putrescine can induce toxin DON production in
F. graminearum [28]; however, the detailed molecular mechanism remains unclear. We
compared the number of DEGs of F. graminearum at different treatment time points relative
to 0 h samples and found that the number increased at 6 h compared to 3 h, then continually
decreased at 12 h and 24 h (Figure 2). The most DEGs were found in the comparison of 6 h
vs. 12 h (Figure 2), and there was a lower correlation coefficient between these two time
points according to the heat map results (Figure 1B), indicating that 6 h to 12 h was the most
significant period for F. graminearum transcriptional changes under putrescine treatment.

The deoxynivalenol (DON) biosynthesis process involves oxidation, esterification, and
isomerization, using farnesyl pyrophosphate (FPP) as the substrate [29,30], and FgTRI genes
play a crucial role in this process [31]. It has been reported that when F. graminearum infects
wheat, the polyamine synthesis pathway is activated, in which the representative polyamine
putrescine, a plant stress response substance, accumulates in plants. The accumulated
putrescine activates the nucleation of transcription factor FgAreA in F. graminearum, resulting
in the activation of FgTRI gene transcription and the promotion of DON synthesis [28].
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Previous studies found that FgTRI gene expression was elevated in F. graminearum treated
with putrescine for 48 h [28]. However, comparing RNA-seq data at different time points in
the early stage (<24 h) of putrescine treatment, we found that after 3 h of treatment, the
expression of all FgTRI genes decreased significantly, and expression began to increase
after 6 h and 12 h, then increased significantly after 24 h of treatment, indicating that
putrescine could rapidly increase FgTRI gene expression in the early stage of treatment
(Figures 6A and 8B).

B

Figure 8. Biosynthetic pathway of DON in F. graminearum and expression of key genes of DON synthesis. (A) DON

biosynthetic pathway and related gene expression. Genes are marked as FG_****, and gene expression levels are from

RNA-seq data. (B) Dynamic fold expression of FgNTH (FGSG_09895) with processing time.
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Figure 8. Biosynthetic pathway of DON in F. graminearum and expression of key genes of DON
synthesis. (A) DON biosynthetic pathway and related gene expression. Gene expression levels are
from RNA-seq data. (B) Dynamic fold expression of FgNTH (FGSG_09895) with processing time.

4.2. Effect of Amino Acid Biosynthesis and Metabolism on DON Production

According to the results of GO and KEGG enrichment analysis, the DEGs iden-
tified in F. graminearum treated with putrescine were mainly involved in the glycoly-
sis/gluconeogenesis pathway, amino acid metabolism, and carbohydrate metabolism.
Notably, DEGs identified at all time points were commonly enriched in amino acid
metabolism pathways (Figure 4). Previous studies have shown that trichothecene pro-
duction is influenced by certain amino acids through the activation of FgAreA expression



J. Fungi 2023, 9, 60 10 of 12

and increased FgTRI gene transcription [32]. FgAreA can use L-Asp, L-Cys, Gly, L-Glu,
L-His, L-Ile, L-Leu, L-Lys, L-Thr, L-Trp, L-Tyr, and L-Val to regulate DON synthesis in
F. graminearum [33]. We found that DEGs participating in beta-alanine metabolism, arginine
and proline metabolism, tryptophan metabolism, valine, leucine, and isoleucine degrada-
tion, and tyrosine metabolism pathways were downregulated in the earlier 3 h and 6 h
treatments (Figure 4) and upregulated in the later 12 h and 24 h treatments (Figure 4). The
significant changes in the expression of genes involved in amino acid biosynthesis and
metabolism indicate that amino acid metabolism plays an important role in putrescine-
induced DON toxin synthesis.

4.3. Effect of Glycolysis on DON Production

DON toxin is synthesized using FPP as the substrate through a series of reactions
(Figure 8A). FPP is synthesized from acetyl-CoA, which is produced by glycolysis using
glucose as the starting substance [34]. Therefore, glycolysis plays an important role in DON
synthesis. According to our KEGG results, the DEGs upregulated at 12 h and 24 h were
highly enriched in the glycolysis/gluconeogenesis pathway, and those upregulated at 12 h
were highly enriched in the CoA biosynthesis pathway (Figure 4). FgNTH (FGSG_09895)
encoding trehalase was found [35], which mediates the conversion of trehalose to glucose
in filamentous fungi [18]. In our results, FgNTH was found to be upregulated to varying
degrees at all four time points of putrescine treatment compared to 0 h (Figure 8B). We,
therefore, hypothesize that putrescine can induce DON synthesis by promoting glucose
production through the stimulation of trehalase expression in F. graminearum.

4.4. FGSG_01915, FGSG_03292, and FGSG_03536 May Be Key TF Genes Involved in DON
Synthesis in F. graminearum

Our WGCNA identified the MEblack module that contained the most FgTRI genes
(except FgTRI10, FGSG_03538) and other genes with the same expression pattern. Three TF
genes, FGSG_01915 (Myb), FGSG_03292 (Zn2Cys6), and FGSG_03536 (C2H2 zinc finger),
were identified as hub genes in the MEblack module. FGSG_03536 (FgTRI6), an FgTRI
gene that encodes a protein belonging to the C2H2 zinc finger transcription factor family,
is a major transcriptional regulator of trichothecene production and plays an important
role in DON synthesis [36,37]. Consistently, our results show that FGSG_03536 was co-
expressed with seven FgTRI genes (Figure 7C). In addition, FGSG_01915 was co-expressed
with 12 FgTRI genes (Figure 7A). However, the role of FGSG_01915 in DON synthesis
is still unknown and needs further study. FGSG_03292, which belongs to the Zn2Cys6
transcription factor family, has a regulatory role in the production of 3-acetyldeoxynivalenol
(3ADON) in F. graminearum [38], and our results show that it was co-expressed with
12 FgTRI genes (Figure 7B). Therefore, we speculate that FGSG_03292 may also have
a role in DON synthesis. According to our RNA-seq results, the expression levels of
these three transcription factors began to increase after 6 h of putrescine treatment and
reached the highest level at 24 h (Figure S2), consistent with the expression pattern of
FgTRI genes (Figure 8A). In summary, we suggest that putrescine treatment activates the
expression of transcription factors FGSG_01915, FGSG_03292, and FGSG_03536, promoting
the transcription of FgTRI genes and ultimately leading to the production of DON.

5. Conclusions

In this study, by means of RNA-seq, we found that putrescine could largely affect the
transcriptome of F. graminearum. The significant changes in the expression of genes involved
in carboxylic acid metabolism, glycolysis/gluconeogenesis, and amino acid metabolism
pathways indicate that these pathways play important roles in putrescine-induced DON
toxin synthesis. Co-expression analysis revealed that 327 genes had similar expression
patterns to FgTRI genes and were assigned to the same module. Further functional study of
the co-expressed 327 genes will provide important insights into the molecular mechanisms
of DON synthesis.
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