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Abstract: Aspergillus oryzae has great potential and competitive advantages to be developed as an
excellent expression system, owing to its powerful protein secretion ability, complex post-translational
modification, and safety characteristics. However, the low efficiency of genetic modification and gene
function analysis is an urgent problem to be solved in A. oryzae and other filamentous fungal systems.
Therefore, establishing efficient genetic transformation and multiplexed genome editing tools is
significant for developing A. oryzae expression systems, and revealing its intrinsic mechanisms. In
this study, the high-efficiency transformation of A. oryzae was achieved by optimizing the preparation
conditions of protoplasts, and the random editing efficiency of the CRISPR/Cas9 system in A. oryzae
for single and double genes reached 37.6% and 19.8%, respectively. With the aid of the selection
marker, such as color or resistance, the editing efficiency of single and double genes can reach 100%.
Based on the developed CRISPR/Cas9 genome editing method, the heterologous lipase gene (TLL)
achieves precise integration at different genetic loci in one step. The efficient and accurate acquisition
of positive transformants indicated that the morphological gene yA could be used as a helpful
selection marker for genome editing in A. oryzae. In conclusion, the developed system improves the
efficiency of transformation and multiplexed genome editing for A. oryzae. It provides a practical
method for developing the A. oryzae high-efficiency expression system for heterologous proteins.

Keywords: Aspergillus oryzae; genetic transformation; gene editing; morphological genes; lipase

1. Introduction

Aspergillus oryzae is an important filamentous fungus that can use cheap biomass raw
materials and is widely used in traditional fermentation and food processing industries [1].
A. oryzae has a long history of use in the food industry and is generally recognized as safe
(GRAS) by the U.S. Food and Drug Administration (FDA) [2]. Over the past few decades, A.
oryzae has been developed into an efficient cell factory for organic acids, industrial enzymes,
and secondary metabolites due to its strong protein secretion ability and post-translational
modification characteristics, and it plays an essential role in the fields of food, medicine,
feed, and environment [3,4].

With the in-depth application of A. oryzae in many fields, establishing efficient gene
editing technology is of great significance for researching gene function and developing cell
factories [5]. Spontaneous homologous recombination (HR) has long been the traditional
gene-editing method for studying the function of Aspergillus genes, but the low efficiency
of HR makes the recombination process very cumbersome [6]. Although more efficient
HR can be achieved using strains carrying a deletion of genes (ku70 and ligD) involved
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in non-homologous end joining (NHEJ), deletion of ku70 or ligD by spontaneous HR is
more labor-intensive because their multinucleate conidia make it challenging to isolate
homokaryotic transformants [7,8].

In recent years, the clustered regularly interspaced short palindromic repeat (CRISPR)-
associated Cas9 nuclease has been widely used in the precise gene editing of various
microorganisms due to its simplicity, operability, and high efficiency [9–11]. However,
the editing efficiency of the CRISPR/Cas9 system in A. oryzae is relatively low relative to
bacteria or yeast. An optimized CRISPR/Cas9 system was constructed and integrated into
the genome of A. oryzae with an editing efficiency of only 10% to 20% [12]. To this end,
researchers have done much work on the efficient expression of Cas9 protein and sgRNA,
such as codon optimization of Cas9 protein or expression of related elements using the
endogenous promoter of the host strains [13,14]. The CRISPR/Cas9 system based on the
episomal expression plasmid pPTR II has been successfully constructed, and its editing
efficiency in A. oryzae is 50% to 100% [15]. In NHEJ-deficient strains, the editing efficiency
of the CRISPR/Cas9 system can also reach nearly 100% using a single-stranded DNA repair
template [16]. However, the efficient editing of the CRISPR/Cas9 system is not stable
enough for different protospacers of different genes, and requires good screening pressure.
Furthermore, efficient HR-based gene editing requires a host with high HR efficiency and
transformation efficiency [17]. Chase L. Beisel proposed and verified that the weakened
CRISPR-Cas system could obtain more transformants during the transformation process,
and improve genome editing efficiency to a certain extent [18].

In order to realize the efficient gene editing of the CRISPR/Cas9 system in wild-
type A. oryzae and obtain positive transformants quickly, the preparation conditions of
protoplasts were optimized, and the efficient transformation of A. oryzae was achieved.
Based on the high transformation level, the gene editing efficiency of the CRISPR/Cas9
system in A. oryzae has also been improved. Furthermore, target transformants can be
obtained accurately and quickly by screening for color or resistance. Finally, based on
the optimized CRISPR/Cas9 system, multiple heterologous lipase gene copies can be
integrated at different loci in one round of transformation.

2. Materials and Methods
2.1. Strain, Media, and Culture Conditions

Aspergillus oryzae RIB40 (ATCC42149) was used in this study to verify the trans-
formation efficiency, CRISPR/Cas9 system editing efficiency, and heterologous protein
expression. A. oryzae can be activated at 30 ◦C in potato dextrose agar (PDA) medium
for 3–5 days, and the spore suspension can be obtained after elution and filtration with
deionized water. The spore suspension was inoculated into adjusted Czapek Dox (CD)
liquid medium (2% Glucose, 0.3% NaNO3, 0.1% K2HPO4, 0.05% KCl, 0.05% MgSO4·7H2O,
0.001% FeSO4·7H2O), and the fresh hyphae were obtained by shaking culture at 30 ◦C for
20 h, which were used for the preparation of protoplasts. The formula of fermentation
medium for lipase includes 2% dextrin, 0.5% peptone, 0.1% yeast extract, 0.1% NaNO3,
0.05% KH2PO4, 0.05% MgSO4·7H2O, 0.001% FeSO4·7H2O. Hypertonic CD medium sup-
plemented with 0.5 µg/mL pyrithiamine was used to detect positive transformants during
transformation. For the growth of the pyrG mutant strain, hypertonic CD medium was
supplemented with 0.2% uracil (Macklin, Shanghai, China) and 0.5% uridine (Macklin,
Shanghai, China). Commonly used chemical reagents were purchased from Sinopharm
(Shanghai, China).

2.2. Construction of Editing Plasmids and DNA Manipulation

Based on the pFC902 plasmid [16], the relevant elements of the CRISPR/Cas9 system
were obtained by PCR, and the intermediate plasmid pC9sgR-model was constructed to
modify the protospacer sequence. The linearized pPTR II vector and Cas9-sgRNA module
were then assembled using GeneArt™ Gibson Assembly® HiFi Cloning Kits (Thermo
Fisher Scientific, Shanghai, China) to obtain editing plasmids. Using the In-Fusion® HD
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Cloning Kit (Takara, Beijing, China), two sgRNAs can be tandemly linked to the Cas9-
sgRNA module before the assembly of the dual gene editing plasmid. The primary primers
used in this paper are listed in Supplementary Table S1. E. coli JM109 was used for DNA
manipulation, and plasmids were extracted using SanPrep Column Plasmid Mini-Preps
Kit (Sangon Biotech, Shanghai, China). Nucleotide sequencing analysis of target genes was
performed commercially by Sangon Biotech (Shanghai, China).

2.3. Protoplast Preparation and Transformation

Liquid CD medium was inoculated with spore suspension obtained by elution from
mature PDA plates, incubated with shaking at 30 ◦C for 16 h, and fresh A. oryzae hyphae
were obtained after filtration and washing. The mycelium and the enzyme solution were
mixed in proportion and shaken at 30 ◦C for 2 h. During this process, the composition of
the complex enzyme, enzymatic hydrolysis conditions, and the growth state of mycelium
were optimized. Three enzyme preparations were selected, including compound enzyme 1
(0.5% Glucanex and 0.05% Chitinase), compound enzyme 2 (1% cellulase, 1% helicase, 0.5%
lysozyme, 0.5% Lywallzyme), and Yatalase (Takara, Beijing, China). Then, the protoplasts
were collected and resuspended in STC buffer (1.2 M Sorbitol, 50 mM CaCl2, 50 mM Tris-
HCl, pH 7.5). During transformation, 10 µg of DNA was added to 200 µL of protoplasts,
and 80 µL of PEG4000 (w/v = 40%) was added simultaneously, mixed, and incubated on
ice for 30 min. Then, 1.5 mL of PEG4000 was added to the above mixture and incubated at
room temperature for another 30 min. Finally, the transformation solution was spread on
the corresponding plates.

2.4. Editing Efficiency Statistics

When statistically calculating the random editing efficiency of morphological genes,
such as yA and wA, the ratio Rm of a single colony with a color change in the transformation
plate to the entire colony was first counted. Then, a certain number of single colonies with
color changes and no changes were picked for colony PCR and sequencing verification, and
the edited ratios were obtained as Ec and En, respectively [19]. The final editing efficiency is
e = Rm * Ec + (1− Rm) * En. For the statistics of the editing efficiency of pyrG, single colonies
were picked from a transformation plate without selection pressure and cultured on a plate
supplemented with 5-fluoroorotic acid (5-FOA) (Macklin, Shanghai, China). The proportion
of the growing colonies to the total number of picked colonies was calculated as Rp, and
then the growing colonies were analyzed. Colony PCR and sequencing validation obtained
the editing ratio as Ep. The final editing efficiency is e = Rp * Ep. For the editing efficiency
of conditional screening, we directly took Ec as the editing efficiency of morphological
genes. For pyrG, we directly applied the transformation solution to the screening plate with
5-FOA, then randomly picked colonies for colony PCR and sequencing verification [19].

2.5. Colony PCR

A few fresh mycelia were picked into the lysis buffer (containing 0.5% Triton X-100,
1 mM EDTA, 50 mM NaOH), then lysed at 95 ◦C for 20 min. The supernatant obtained
after centrifugation was used as a template for a standard PCR system.

2.6. Determination of the Growth Curve of A. oryzae

The fresh spore suspension was inoculated into CD medium and cultured with shaking
at 30 ◦C. Three shake flasks were taken out every 12 h, and all the mycelia in the shake
flasks were collected and dried [20].

2.7. Protein Expression and Validation

The spore suspension was inoculated into the fermentation medium, and cultured
with shaking at 30 ◦C for 72 h. After centrifugation, the supernatant was collected, and the
same volume of sample was controlled for SDS-PAGE analysis.
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2.8. Determination of Lipase Enzyme Activity

Definition of enzyme activity: Under certain conditions, the amount of enzyme re-
quired to catalyze p-nitrophenol palmitate to 1 µmol of p-nitrophenol per unit of time is
one unit of enzyme activity. Thus, 1.8 mL of 0.3% (w/v) p-nitrophenol palmitate (p-NPP)
was mixed with 200 µL of enzyme solution, reacted at 40 ◦C for 10 min, and then 1 mL of
95% ethanol was added to terminate the reaction. After centrifugation, the absorbance at
410 nm of the reaction solution was measured [21].

2.9. Determination of α-Amylase Enzyme Activity

Definition of enzyme activity: Under certain conditions, the amount of enzyme that
reacts to produce 1 mg of glucose per unit time is an enzyme activity unit U. A total of
100 µL enzyme solution, and 900 µL substrate were accurately reacted at 50 ◦C for 10 min.
Then, 2 mL of 3,5-Dinitrosalicylic acid (DNS) was added, put in a boiling water bath for
10 min, and diluted to 25 mL after cooling. Absorbance was detected at 540 nm [22].

3. Results
3.1. Optimization of the Genetic Transformation

Screening markers ensure the rapid detection and purification of target transformants
in gene transformation [23]. In order to establish an efficient genetic transformation process,
the sensitivity of A. oryzae RIB40 to three antibiotics commonly used in Aspergillus was
explored. This included hygromycin, bleomycin, and pyrithiamine. The wild-type A. oryzae
RIB40 was very sensitive to pyrithiamine, but showed strong resistance to hygromycin.
Bleomycin was not suitable as a resistance screen for A. oryzae RIB40 because A. oryzae
RIB40 had strong tolerance within the range of commonly used concentrations of bleomycin
(Supplementary Figure S1). Considering the characteristics of heterokaryons, 0.5 µg/mL
pyrithiamine with intense screening pressure was chosen for subsequent experiments.

The quality of protoplasts is a vital prerequisite for efficient transformation [24]. As
recipient cells, protoplasts are not hindered by rigid cell walls and have the advantages
of large population numbers and easy access to homozygous transformants. During the
preparation of protoplasts, the growth state of mycelium and enzyme preparation directly
affects the generation and release of protoplasts. In order to efficiently prepare a large num-
ber of excellent protoplasts, three enzyme preparations were selected, including compound
enzyme 1 (0.5% Glucanex and 0.05% Chitinase), compound enzyme 2 (1% cellulase, 1%
helicase, 0.5% lysozyme, 0.5% Lywallzyme), and Yatalase (Takara), for evaluation. The
compound enzyme 2 had the best effect (Figure 1a). Then, the use conditions of com-
pound enzyme 2 were optimized, such as temperature, pH, and enzymatic hydrolysis time
(Figure 1b,d). At the same time, the culture time and addition amount of A. oryzae mycelium
were also optimized (Figure 1e,f). After optimization, 5.2 × 106 protoplasts/mL could be
obtained by adding 10 mL of the compound enzyme to the 1.2g fresh mycelium, cultured
for 24 h under 35 ◦C and pH 6.0 for two hours with shaking and enzymatic hydrolysis. The
concentration of protoplasts was one-fold higher than before the conditions were optimized
(Figure 1g). Subsequently, the transformation efficiency was evaluated based on the opti-
mized protoplasts. The transformation experiments were performed in A. oryzae with the
vector plasmid pPTR II, and we found that the transformation level of 150 colonies/10 µg
DNA was achieved (Figure 1h). In addition, more transformants could be obtained by
increasing the transformed DNA content.
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Figure 1. Optimization of conditions for protoplast preparation. (a) Comparison of different complex
enzymes. (b) Effect of temperature on protoplast preparation. (c) Effect of pH on protoplast prepa-
ration. (d) Effect of hydrolysis time on protoplast preparation. (e) Effect of mycelium amount on
protoplast preparation. (f) Effect of mycelial culture time on protoplast preparation. (g) The effect
of optimization of protoplast preparation. (h) Transformation efficiency of different DNA contents
after optimization.
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3.2. Single-Gene Editing

As an endonuclease, the Cas9 protein is toxic to host strains, which may affect the
expected growth of hyphae [25]. The growth curves of A. oryzae RIB40 containing vector
plasmids pPTR II and pTR-Cas9 indicated that the Cas9 protein had only a slight inhibitory
effect on the growth (Figure 2a). Morphological genes (yA and wA) and trophic genes
(pyrG) were selected to validate the editing function and efficiency of the CRISPR/Cas9
system. Mutants of the yA (AO090011000755) gene encoding conidial laccase form yellow
conidia, whereas wA (AO090102000545) mutants form white conidia due to the lack of
the polyketide synthase required for conidia coloration. The pyrG (AO090011000868) gene
encodes an orotidine-5’-phosphate decarboxylase, and deletion mutants of this gene are
dystrophic for uridine and uracil. 5-FOA is a structural analogue of orotic acid that can
enter the pyrimidine synthesis pathway. Under the action of a series of enzymes, such as
orotidine-5′-monophosphate decarboxylase and thymidylate synthase, substances that are
toxic to cells are produced, resulting in cell death. Editing experiments were performed on
the three genes using the CRISPR/Cas9 system (Figure 2b and Figure S2). After statistics
and analysis, the editing efficiency of random was up to 37.6%. Screening based on color or
resistance increased editing efficiency to 100% (Figure 2c). The detected loss or insertion
of fragments of different lengths in the target genes (Supplementary Table S2) resulted in
changes in morphological and physiological properties (Figure 2d).

J. Fungi 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 

Figure 1. Optimization of conditions for protoplast preparation. (a) Comparison of different com-

plex enzymes. (b) Effect of temperature on protoplast preparation. (c) Effect of pH on protoplast 

preparation. (d) Effect of hydrolysis time on protoplast preparation. (e) Effect of mycelium amount 

on protoplast preparation. (f) Effect of mycelial culture time on protoplast preparation. (g) The effect 

of optimization of protoplast preparation. (h) Transformation efficiency of different DNA contents 

after optimization. 

3.2. Single-Gene Editing 

As an endonuclease, the Cas9 protein is toxic to host strains, which may affect the 

expected growth of hyphae [25]. The growth curves of A. oryzae RIB40 containing vector 

plasmids pPTR II and pTR-Cas9 indicated that the Cas9 protein had only a slight inhibi-

tory effect on the growth (Figure 2a). Morphological genes (yA and wA) and trophic genes 

(pyrG) were selected to validate the editing function and efficiency of the CRISPR/Cas9 

system. Mutants of the yA (AO090011000755) gene encoding conidial laccase form yellow 

conidia, whereas wA (AO090102000545) mutants form white conidia due to the lack of the 

polyketide synthase required for conidia coloration. The pyrG (AO090011000868) gene en-

codes an orotidine-5’-phosphate decarboxylase, and deletion mutants of this gene are dys-

trophic for uridine and uracil. 5-FOA is a structural analogue of orotic acid that can enter 

the pyrimidine synthesis pathway. Under the action of a series of enzymes, such as orot-

idine-5′-monophosphate decarboxylase and thymidylate synthase, substances that are 

toxic to cells are produced, resulting in cell death. Editing experiments were performed 

on the three genes using the CRISPR/Cas9 system (Figures 2b and S2). After statistics and 

analysis, the editing efficiency of random was up to 37.6%. Screening based on color or 

resistance increased editing efficiency to 100% (Figure 2c). The detected loss or insertion 

of fragments of different lengths in the target genes (Supplementary Table S2) resulted in 

changes in morphological and physiological properties (Figure 2d). 

 

Figure 2. CRISPR/Cas9 mediated single-gene editing in A. oryzae. (a) The effect of Cas9 protein on 

the growth of A. oryzae. (b) Schematic diagram of editing plasmids and their target sequences. The 

bases underlined in red represent the protospacer adjacent motif (PAM) sequence. (c) The editing 

Figure 2. CRISPR/Cas9 mediated single-gene editing in A. oryzae. (a) The effect of Cas9 protein on
the growth of A. oryzae. (b) Schematic diagram of editing plasmids and their target sequences. The
bases underlined in red represent the protospacer adjacent motif (PAM) sequence. (c) The editing
efficiency of related genes by CRISPR/Cas9 system. In experiments based on HR repair, donor DNA
is the homology arm that deletes large fragments of CDS. n = 5. (d) Phenotypes of yA, wA, and pyrG
mutants were generated from the wild strain. Wild-type A. oryzae cannot grow normally on the
plate in the presence of 5-FOA, while the pyrG mutant strain can grow normally when additional
uracil and uridine are needed. Mutants of the yA gene encoding conidial laccase form yellow conidia,
whereas wA mutants form white conidia due to the lack of the polyketide synthase required for
conidia coloration.
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3.3. Dual Gene Editing

Metabolic engineering transformation of A. oryzae often requires editing or regulating
multiple genes. It takes a lot of time and energy to go through multiple rounds of single-
gene editing and requires continuous recycling of selectable markers. In order to improve
the transformation efficiency, the double gene editing efficiency of the CRISPR/Cas9 system
in A. oryzae was explored by targeting yA and agdA (AO090038000234), yA and amyB, yA
and ku70 (AO090011000936), respectively (Figure 3a). The morphological gene yA could
be used as a screening marker to realize the rapid screening of multiple gene editing
positive clones, indicating that wA with higher editing efficiency could achieve the same
results or even better results. Both agdA and amyB are regulated by the transcription factor
AmyR. The results indicated insertions or deletions of different lengths in both target
genes (Supplementary Table S3). The efficiency of dual-gene editing decreased relative to
single-gene editing, ranging from 18.5% to 19.8% (Figure 3b). Among them, in the double
gene knockout of yA and ku70, the editing efficiency without adding donor DNA was
significantly reduced because ku70 is a functional protein in the NHEJ pathway. After
knocking it out, the NHEJ repair pathway is destroyed. The double-strand breaks (DSB)
caused by CRISPR/Cas9 are challenging to repair and thus cannot survive. It is worth
noting that in the strains in which the morphological gene yA was successfully knocked out,
the knockout rate of another gene was 100%, and the yA gene can be used as an indicator
for the knockout of other genes, which also indicates that the transformation efficiency
or Cas9 function might still be the limiting factors for genome editing. In addition, the
α-amylase gene in A. oryzae has three copies, amyA, amyB, and amyC, and their sequences
are highly identical [26,27]. Four strains with adgA and amyB mutations were selected
and evaluated for the expression of α-amylase, respectively (Figure 3c). Knockout of the
agdA increases the expression of α-amylase because of the abolition of competition for the
transcription factor AmyR. Strain #5 obtained by one round of gene knockout completely
lost the expression of α-amylase, indicating that the CRISPR/Cas9 system can effectively
knock out multiple copies of genes simultaneously (Figure 3d). Strains #7 and #8 had
point mutations; they might not affect enzyme activity. However, strain #6 with frameshift
mutation did not cause significant changes in amylase activity, which requires further
experiments to explore and explain.
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plasmids and their target sequences. The bases underlined in red represent the PAM sequence.
(b) The editing efficiency of double genes by CRISPR/Cas9 system. The “target gene in yellow”
represented the editing of another target gene (agdA, amyB, or ku70) in the selected yellow colonies
(∆yA). n = 5. (c) Sequence profile of selected mutant strains. Green, red, orange, blue, and purple
letters represent the protospacer, PAM, deletion, insertion, and mutated sequences, respectively.
* means the gene contains mutations. (d) Enzyme activity and protein expression level of α-amylase
in mutant strains.

3.4. CRISPR/Cas9-Mediated Multiplexed Site Integration in A. oryzae for Heterologous
Lipase Expression

The heterologous lipase gene (TLL) from Thermomyces lanuginosa was integrated into
the amyB locus to verify the efficient genome editing of the CRISPR/Cas9 system in
A. oryzae. The three genes amyA, amyB, and amyC were consistent in the first 2658 bp,
including the promoter, while the amyA gene lacked the terminator in the subsequent
sequence [28]. Therefore, the CRISPR/Cas9 system could target and cut three genes
simultaneously, but donor DNA (PamyB-lipase-TamyB) could only target and repair the
amyB and amyC genes. The pTR-C9sgR-yA-amyB editing plasmid and the donor DNA
containing the lipase expression cassette were simultaneously transformed (Figure 4a
and Figure S3). Under the indication of the morphological gene yA, the mutant strains
whose lipase gene was successfully integrated into the α-amylase locus could be selected
accurately and quickly (Figure 4b). Subsequently, the situation of the integration site of the
TLL was explored (Figure 4b). Of the six transformants picked, three transformants achieved
double-site integration. In order to verify the expression of TLL in these transformants,
fermentation experiments were conducted. Transformants integrated only at the amyC
site had the lowest TLL expression levels and some alpha-amylase expression. However,
the transformants integrated into the amyB site alone did not express α-amylase, and
the expression level of TLL was also increased. The amyB locus is better than the amyC
locus for expressing heterologous genes, but the mechanism needs to be further explored
and verified. Transformants with double-copy TLL had higher expression levels, which
verified that increasing the copy number of genes in A. oryzae could effectively increase the
expression level (Figure 4c).
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Figure 4. Integrative expression of TLL in A. oryzae. (a) Schematic diagram of the integrated expression
of TLL in A. oryzae. The indicated sequence lengths were used to verify different integration sites using
primers Locus-amyB-F, Locus-amyC-F, and Locus-TLL-R, respectively. (b) Different electrophoretic
validation of TLL integrated expression. Nucleic acid electrophoresis showed that the TLL gene was
successfully integrated into amyB or/and amyC sites, and protein electrophoresis showed that the
integration of multiple copies was beneficial to improve the expression level of TLL. (c) Lipase activity
after integrated expression of TLL in A. oryzae. n = 3. #1–6 represented the selected positive mutants.

4. Discussion

A. oryzae has been widely used to efficiently produce organic acids, industrial en-
zymes, and secondary metabolites, due to its efficient protein expression ability and post-
translational modification functions [29]. However, the problem of low expression of
heterologous proteins is a bottleneck that cannot be ignored in the development and ap-
plication of A. oryzae expression systems, and the complex and multi-level regulatory
mechanisms are still unclear [30]. Therefore, establishing efficient genome editing tools is
conducive to the faster and better development of A. oryzae cell factories and the analysis
of their high-efficiency expression mechanisms.

Establishing an efficient genetic transformation system plays a fundamental role.
According to the main components of the cell wall of A. oryzae, the types of mixed enzymes
used in the preparation of protoplasts were optimized. Coupled with the optimization of
the relevant conditions for protoplast preparation, good and high-quality protoplasts were
finally obtained.

The CRISPR/Cas9 editing system has an outstanding application prospect in A. oryzae.
Currently, the editing efficiency of the CRISPR/Cas9 system in wild-type A. oryzae is
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50–100% under screening pressure conditions [15]. However, in the construction of the
A. oryzae expression system, the genes that need to be edited often do not have unique
screening pressures. The acquisition of positive transformants still takes a lot of time and
effort. In our study, the editing efficiency of CRISPR/Cas9 system in single gene and double
gene in A. oryzae was 17.5-37.6% under the condition of no screening pressure. Likewise, the
editing efficiency can be increased to 100% by color or resistance-aided screening. Notably,
the morphological gene yA can be used as an indicator marker for other gene editing, which
is of great help for the rapid and precise acquisition of positive transformants in the gene
editing of A. oryzae.

Achieving simultaneous editing of multiple genes is beneficial to improve the use
efficiency of selection markers and analyze the cooperation of many related genes [31].
Currently, the CRISPR/Cas system has progressed in multi-gene editing in filamentous
fungi. Tian et al. used the CRISPR/Cas9 system to edit the double, triple, and quadruple
genes in filamentous fungi Myceliophthora with efficiencies of ~60%, ~30%, and ~20%,
respectively [32]. In addition, based on the optimized CRISPR/Cas9 system, Liu et al.
achieved efficient multi-gene editing in Aspergillus niger, and the editing efficiencies of
double, triple, and quadruple genes were 70.91%, 50%, and 22.41%, respectively [19]. In
this study, when yA and three copies of the amylase gene were edited, it could theoretically
be considered simultaneous editing of four genes, and the editing efficiency of the knockout
was 4.9%. The subsequent TLL integration expression experiment can also be considered
as the simultaneous editing of three genes, and the editing efficiency of knock-in is 9.9%.
These results indicate that it is feasible to achieve simultaneous knockout of multiple genes
or integrated expression of multiple genes in A. oryzae, although the current efficiency is
still relatively low. Therefore, it is necessary to improve the editing efficiency of multiple
genes through other measures [33]. Moreover, using appropriate endogenous tRNAs to
achieve efficient maturation of multiple sgRNAs could also improve editing efficiency [19].

In conclusion, a feasible CRISPR/Cas-mediated multiplexed gene editing tool was
developed in A. oryzae, and the genetic editing efficiency was further improved after
optimization. However, achieving rapid editing of multiple genes requires the host to have
multiple copies of the target gene. The morphological gene yA can be used as a promising
selection marker for the rapid and accurate acquisition of positive transformants during
gene editing of A. oryzae. Finally, the CRISPR/Cas9 system achieved multi-copy integration
of the same gene or simultaneous integration of different genes in A. oryzae, which will also
provide easy-to-use tools for constructing filamentous fungi cell factories.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof9010109/s1, Figure S1: The sensitivity of A. oryzae to
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Figure S3: Transformation plates for integrated expression of lipase. Table S1: Primers used in this
study; Table S2: Single-gene editing effect of CRISPR/Cas9 system in A. oryzae; Table S3: Dual gene
editing effect of CRISPR/Cas9 system in A. oryzae.
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