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Abstract: Penicillium digitatum is one of the most important phytopathogens. It causes deterioration
and rotting of citrus fruits, generating significant economic losses worldwide. As a human pathogen,
it is extremely rare. We present a case of pulmonary co-infection in a patient diagnosed with
pneumonia due to SARS-CoV-2. A 20-year-old female patient, primigravid, 36 weeks of gestation,
without comorbidities, and diagnosed with severe pneumonia due to the SARS-CoV-2, showed rapid
lung deterioration for which their pregnancy was interrupted by surgery. The patient was hospitalized
in the Intensive Care Unit (ICU), connected to mechanical ventilation and receiving corticosteroids
and antibiotics. The diagnosis of pulmonary fungal infection was made through bronchoalveolar
lavage (BAL) culture, and the species identification was performed by sequencing of β-tubulin.
Phylogenetic analysis with related species was performed for the confirmation of species identification.
Antifungal susceptibility tests were performed for itraconazole (4 µg/mL), voriconazole (2 µg/mL),
and amphotericin B (2 µg/mL). The patient was successfully treated with itraconazole. This is the
second worldwide report of pulmonary infection by P. digitatum and the first in Chile. Although it is
a fungus that rarely infects humans, it could represent an emerging opportunistic fungal pathogen,
with associated risk factors that should be considered in the differential diagnosis of Penicillium
species isolated from infections in humans.

Keywords: Penicillium digitatum; COVID-19; pulmonar infection; pneumonia

1. Introduction

Penicillium digitatum is a mesophilic fungus and one of the most devasting agents
of deterioration and rotting of citrus fruits [1,2]. Together with Penicillium italicum, it
causes about 90% of losses worldwide, mainly affecting the post-harvest stages. However,
it can generate deleterious effects in all phases of production, from the cultivation of
the fruits to collection, packaging, storage, transport, and market, or even after being
acquired by the consumer [2]. Due to the production of ethylene, indole alkaloids, and the
secretion of enzymes that soften the adjacent fruits, the infection in fruits spreads rapidly,
generating complete rot in about 4–5 days, spreading easily through contact [3,4]. It acts as
a necrotrophic organism generating infection through previous damage to the surface of
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the fruit and is recognized as an agent capable of producing a potential mycotoxin called
citrinin, which is associated with nephrotoxic, embryotoxic, teratogenic, and carcinogenic
effects in humans and animals [5–7].

Infections caused by P. digitatum in humans are extremely rare. Currently, there is only
one clinical report developed in 2013 in Japan that corresponded to fatal pneumonia [8].
This study describes the second clinical report of P. digitatum worldwide and the first
in Chile, in a patient who developed pneumonia associated with COVID-19 that was
successfully treated with itraconazole.

Case Presentation

A 20-year-old woman from the rural area of La Araucanía region of Chile, primigravid,
36 weeks of gestation, without comorbidities, was admitted to a health center for present-
ing, in the prior 5 days, commitment of the general state, headache, myalgia, dry cough,
progressive dyspnea, and anosmia with 10 days of evolution. On physical examination,
she was found to be tachypneic, tachycardic, and saturating 88%; as the bilateral crepi-
tus was auscultated, a chest radiograph was performed that showed bilateral interstitial
compromise with basal predominance. According to clinical suspicion, SARS-CoV-2 virus
detection tests were carried out, which were positive, so she was diagnosed with severe
COVID-19 pneumonia. Due to the significant pulmonary compromise and thus need for
oxygen therapy, and due to her advanced pregnancy condition, she was transferred to Dr.
Hernán Henríquez Aravena Hospital (Temuco, Chile), where she underwent an emergency
cesarean section and started antimicrobial treatment with ceftriaxone 2 g/iv/day, dexam-
ethasone 6 mg/iv/day, enoxaparin 40 mg/sc/day. She was admitted to the ICU, where
she was connected to a mechanical ventilator. Chest computed tomography (CT) on ad-
mission showed bilateral ground glass opacities and condensing opacities, consistent with
organizing pneumonia. On the 10th day after surgery, she was successfully extubated and
maintained with oxygen support through a High-Flow Nasal Cannula (HFNC) (50 L/min).
However, she remained under surveillance, since she presented a dimer D elevation of
7.70 µg/mL, leukocytosis with 18,890 cells/µL, C-reactive protein (CRP) of 8.8 mg/L, and
bilateral wheezing. Due to a worsening of her clinical condition with purulent secretions
associated with poor respiratory mechanics, tachycardia, and hypertension, with a fever of
38 ◦C, she was reconnected to mechanical ventilation 2 days after being extubated and a
new CT was performed, which showed consolidation of ground glass opacities and the
appearance of new bilateral nodular opacities in the upper lobes; pulmonary embolism (PE)
was ruled out (Figure 1). On the 13th day after admission, BAL was taken for a complete
pathogen study that included bacterial culture, fungal culture, FilmArray (26 pathogens),
galactomannan, and molecular detection of Pneumocystis jirovecii; peripheral blood and
central venous catheter (CVC) blood cultures were also taken, and empiric therapy was
started with vancomycin 2 g/iv/day for 4 days, meropenem 1 g every 8 h/iv for 7 days, and
dexamethasone for 1 day. Bacterial culture was negative, molecular detection of P. jirovecii
negative, galactomannan 0.15, Gram stain without germs and FilmArray (26 pathogens)
negative. The patient persisted with fevers and pulmonary secretions, so on the 20th day
after admission, a chest CT without contrast was performed, where multiple bilateral
ground-glass opacities, predominantly at the bases and without pleural effusion or pneu-
mothorax, were observed. Fungal growth was detected in fungal culture, identified by
micromorphology as Penicillium sp. Therefore, treatment with itraconazole 400 mg for
10 days was started, followed by 200 mg/day for 28 days. After starting antifungal treat-
ment, the patient began to evolve favorably, remaining stable, afebrile, and with decreasing
inflammatory parameters. After completing 8 days with itraconazole, it was decided to
disconnect her from mechanical ventilation, and the procedure was well-tolerated and
uneventful. Finally, after 16 days of antifungal treatment and with good clinical and labora-
tory evolution, it was decided to continue antifungal treatment on an outpatient basis, and
the patient was discharged from the hospital.
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Figure 1. Computed tomography of the chest. The image taken prior to the diagnosis of fungal
infection shows consolidation of ground glass opacities ((A), blue arrow) and bilateral nodular
opacities in the upper lobes ((B), red arrow).

2. Materials and Methods
2.1. Fungal Culture and Phenotypic Identification

The fungal culture of the BAL sample was performed on potato dextrose agar (PDA)
(Biokar Diagnostics, France) in duplicate, incubating at 25 ◦C in darkness. The micromor-
phological study was carried out through the microscopic observation of preparations
made with Lactophenol and with cotton blue Lactophenol solutions. The images were
obtained with the TissueFAXS I PLUS Cytometer TissueGnostics Axio Observer 7 Carl
Zeiss GmbH (TissueGnostics GmbH, Vienna, Austria). Images were obtained in the fields
of view at 40× and 63× magnifications.

2.2. Molecular Identification and Phylogenetic Analysis

Species identification was performed through sequencing of the phylogenetic marker
β-tubulin (BenA) according to the recommendations of Visagie et al. [9]. For this, the fungal
genomic DNA was extracted using the commercial kit Mini kit QIAamp DNA (Qiagen),
according to the manufacturer’s instructions. PCR for BenA amplification was performed
using the primer pairs T10/bt2b following previously described protocols [10], and the
PCR product was purified and stored at −20 ◦C until sequencing. The sequences were
obtained using the same primer pairs at Austral-omics of the Universidad Austral de Chile
using the ABI Prism 310 automated sequencer. Sequence editing was done with SeqMan v.
7.0.0 (DNAStar Lasergene, Madison, WI, USA), and the consensus sequence obtained was
submitted for comparison in the National Center for Biotechnology Information (NCBI)
database using the BLASTn tool. Subsequently, the phylogenetic analysis of the β-tubulin
marker was performed with inclusion of the sequences of the strain CEMT 2 together
with sequences of seven ex-type strains of species representatives of the series Clavigera,
Sclerotigena, Italica, Penicillium, and Digitata. The alignment of the locus was performed in
MEGA software (Molecular Evolutionary Genetics Analysis) v. 6.0 [11], through Clustal W
algorithm [12] and refined with MUSCLE [13] or manually if necessary. The phylogenetic
analysis was performed using the maximum-likelihood method (ML) under the same
software. The best nucleotide substitution model for the ML was Kimura 2-parameter
with gamma distribution (K2 + G). Bootstrap values ≥ 70% were considered significant.
Sequences from Aspergillus fumigatus CBS 133.61 and Aspergillus clavatus CBS 513.65 were
used as outgroup (Table 1).
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Table 1. Penicillium species included in the phylogenetic study, their respective origin, and GenBank
accession number.

Species Strain Substrate Locality
β-tubulin

GenBank Accession
Numbers

Aspergillus fumigatus CBS 133.61 T Chicken, lung USA KF314730
A. clavatus CBS 513.65 T Unknown Unknown EU076340
Penicillium clavigerum CBS 255.94 T Man Canada AY674427
P. expansum CBS 325.48 T Malus sylvestris, fruit USA AY674400

P. digitatum CBS 112082 T Citrus limon Italy KJ834447
CEMT 2 Human Bronchoalveolar Lavage Chile OP046418

P. italicum CBS 339.48 T Citrus sp., fruit USA AY674398
P. marinum CBS 109550 T Sandy soil Japan AY674392
P. sclerotigenum CBS 101033 T Dioscorea batatas, rotting tuber Japan AY674393
P. ulaiense CBS 210.92 T skin of decaying orange Taiwan AY674408

Note: Newly generated sequences in this study are indicated in bold. Abbreviations: CBS, culture collection of
the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CEMT, Centro de Excelencia en Medicina
Traslacional, Universidad de La Frontera, Temuco, Chile; T, ex-type strain.

2.3. In Vitro Antifungals Susceptibility Tests

The broth microdilution method was performed according to the guidelines of the CLSI
document M38-A2 [14]. Minimum inhibitory concentration (MIC) values were determined
for amphotericin B (Sigma-Aldrich, St. Louis, MO, USA), voriconazole (Sigma-Aldrich),
and itraconazole (Sigma-Aldrich). Fungal inoculum suspensions were prepared in sterile
distilled water from 5-day-old fungal culture on PDA at 28 ◦C. The suspension was fil-
tered through sterile gauze. Cell counts were determined with a hemocytometer and the
inoculum size was adjusted to around 105 conidia/mL. Stock solutions of antifungals were
prepared in 100% dimethyl sulfoxide (DMSO) to 100-fold the final concentration needed
and further diluted in RPMI 1640 pH 7.0 (Sigma-Aldrich Co., St. Louis, MO, USA) to obtain
the ×2 drug concentration. Dilutions of the fungicides were prepared and dispensed into
96-well microdilution plates. Each microdilution well containing 100 µL of the appropriate
antifungal solution (2× final concentration) was inoculated with 100 µL of the conidial
inoculum suspension, yielding final antifungal concentrations of 0.06, 0.12, 0.24, 0.5, 1,
2, 4, 8, 16, and 32 µg/mL. The growth control wells contained 100 µL of the inoculum
suspension and 100 µL of RPMI medium. Sterility control wells contained 200 µL of RPMI
medium. For determination of MIC, microdilution plates were incubated at 27 ◦C and visu-
ally examined using a stereoscopic magnifier (SZ61TR, OLYMPUS) from 0 up to 48 h from
the time of inoculation. MIC was defined as the lowest concentration of each antifungal
agent that causes a specified reduction in visible growth of the fungal strain on the broth
dilution susceptibility test. The reference strains Fusarium oxysporum (ATCC 36031) and
Fusarium keratoplasticum (ATCC 48112) were used as quality control for the test.

2.4. Ethics Statement

The present study has the approval of the Ethics Committee of Servicio de Salud
Araucanía Sur (protocol code N◦ 26 approved on 25 January 2022). Informed consent was
obtained from the patient involved in the study.

3. Results
3.1. Phenotypic Study and Preliminary Identification

On the PDA culture medium, fungal development was observed after 7 days of incu-
bation at 25 ◦C with the development of velvety colonies with a greenish hue (Figure 2A).
The microscopic characterization of the isolate (CEMT 2) was performed via observation of
specimen mounted in Lactophenol and cotton blue Lactophenol. The observation of septate
hyaline hyphae, from which conidiophores, metulae, phialides and oval conidia-forming
chains originated, allowed us to identify the isolate as Penicillium sp. (Figure 2C–F).
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Figure 2. Penicillium digitatum (CEMT-2). (A,B) Colony on PDA, in front and reverse respectively,
incubated at 25 ◦C for 7 days. (C–E) Conidiophores, metulae, phialides, and conidia (Cotton blue
Lactophenol mounting solution). (F) Conidia (Lactophenol mounting solution). Scale bars: 20 µm.

3.2. Molecular Identification and Phylogenetic Analysis

The molecular identification confirmed the preliminary identification and defined
the strain as Penicillium digitatum, which presented 100% identity with several reference
strain sequences of that species and 99.75% identity with the sequence of the type-strain
(P. digitatum CBS 112082). The sequence data generated in the present study were deposited
in GenBank (Table 1). The phylogenetic analysis carried out with the type-strain of the
series Digitata (series that includes the identified species) and other phylogenetically related
series (Penicillium, Italica, Sclerotigena and Clavigera) confirmed the identification, showing
the formation of a well-supported clade (bootstrap of 99%) made up of the strain of the
present study (CEMT 2) and the type-strain of P. digitatum (CBS 112082). The phylogenetic
relationships between our isolate and other related species are shown in Figure 3.
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Figure 3. Maximum-likelihood phylogenetic tree constructed with β-tubulin sequences from 7 rep-
resentative species of the series Clavigera, Sclerotigena, Italica, Penicillium, and Digitata. Bootstrap
values ≥ 70% are indicated in the nodes. The fungal strain of the present study is indicated in bold.
Branch lengths are proportional to phylogenetic distance. T: Ex-type species.

3.3. Results of In Vitro Antifungal Susceptibility Test

The susceptibility profiles obtained showed an in vitro activity of the three antifungal
drugs studied, with low MIC values ranging between 2 and 4 µg/mL, amphotericin B and
voriconazole being the ones that showed better activity. MIC values for amphotericin B,
voriconazole, and itraconazole are shown in Table 2.

Table 2. Results of in vitro antifungal susceptibility test of the strain Penicillium digitatum CEMT-2.

Fungal Strain Antifungal MIC (µg/mL)

Penicillium digitatum
CEMT-2

Amphotericin B 2
Voriconazole 2
Itraconazole 4

Fusarium oxysporum
ATCC 36031

Amphotericin B 2
Voriconazole 16
Itraconazole >32

Fusarium keratoplasticum
ATCC 48112

Amphotericin B 4
Voriconazole 32
Itraconazole >32

Abbreviations: ATCC, American Type Culture Collection; CEMT, Centro de Excelencia en Medicina Traslacional,
Universidad de La Frontera, Temuco, Chile.

4. Discussion

Invasive fungal infections (IFI) have shown a considerable increase in recent decades,
constituting an emerging problem worldwide. Although they mainly affect patients with
risk factors such as hematologic malignancies, solid organ and bone marrow transplants,
acquired immunodeficiency syndrome (AIDS), corticosteroid treatment, extensive use of
antibiotics, CVC, chemotherapy, or mechanical ventilation, among several others [15,16],
serious fungal infections have also been described in immunocompetent individuals [17–22].

Aspergillosis undoubtedly constitutes the most frequent IFI, not only in patients
with the aforementioned risk factors, but also in patients with pulmonary infection by
SARS-CoV-2. In this last group, cases of co-infection have been reported worldwide, even
establishing the concept of COVID-19-associated pulmonary aspergillosis (CAPA) [23].
Although COVID-19 patients are not immunocompromised patients as such, they present
a series of risk factors that make them susceptible to the development of infections by other
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agents, whether bacterial or fungal. Among them, local pulmonary hypoxia, a product of
the viral infection itself, and damage to the respiratory epithelium, mechanical ventilation,
prolonged hospitalizations, and therapy with broad-spectrum antibiotics and immunosup-
pressive drugs, particularly systemic corticosteroids, are of great relevance, since together
they contribute to the settlement and germination of external agents, facilitating coloniza-
tion and invasion [24–26].

Infections by non-Aspergillus filamentous fungi are considerably less frequent and
also constitute a challenge not only from the point of view of their treatment, due to the
high levels of resistance that some species present, but also due to the difficulty in their
correct identification, a product of the increasing number of cryptic species described
in various fungal genera [27]. Regarding the genus Penicillium, until a few years ago,
the species Penicillium marneffei was described as the most frequent in clinical infections
in humans. However, this species is currently classified within the genus Talaromyces
(T. marneffei), so the clinical reports caused by other Penicillium species are very rare.
Lyratzopoulos et al. [28] conducted a review of 31 cases of invasive fungal infection by
Penicillium species, among which they described P. chrysogenum, P. decumbens P. janthinellum,
P. lilacinum, P. purporogenum, P. citrinum, and P. brevicompactum as the majority of them,
isolated from invasive pulmonary infection [28].

Penicillium digitatum is a fungus with worldwide distribution, widely recognized as a
phytopathogen in citrus fruits, with clinical isolates being extremely rare [2]. There has only
been one previous report made in Japan, in which this species was described as an agent of
pneumonia with a fatal outcome, in an elderly patient who was suffering from pulmonary
emphysema and malnutrition [8]. Although the patient in the current case reported not
having the habit of consuming citrus fruits very frequently, she could have acquired it from
any other external source, even in her own home, precisely because it is an environmental
fungus. This is why it is very difficult to establish the source of contagion in this type
of organism with certainty. Although the patient was immunocompetent and without
underlying diseases, she was suffering from a pulmonary infection due to SARS-CoV-2,
requiring the administration of oxygen therapy, which conditioned the interruption of
her pregnancy through surgery, hospitalization in ICU, installation of CVC, connection
to mechanical ventilation, and treatment with corticosteroids and antibiotics—all of these
being risk factors that facilitate the development of IFI. Co-infection between SARS-CoV-2
and fungal species has been reported in various studies worldwide [24,29–33]. The genus
Aspergillus appears as the most frequent agent [23,34–36]; however, the present study
highlights the pathogenic potential of other emerging fungal species in patients diagnosed
with COVID-19.

Regarding the diagnostic tests recommended in COVID-19 patients for the diagnosis
of CAPA, it is important to highlight the detection of galactomannan antigen, which
constitutes an important component of the cell wall of Aspergillus spp., secreted in vivo
during the growth of the fungus [37,38]. Therefore, its detection has high sensitivity and
specificity for the diagnosis of this fungal infection; however, its usefulness in invasive
infections by other genera is limited. Based on the consensus criteria established by
ECMM/ISHAM for the diagnosis of CAPA, a patient with pulmonary infiltrates associated
with an optical density index (ODI) value in BAL ≥ 1.0 could be diagnosed with a possible
CAPA [39]. In this case, since the ODI in BAL was 0.15, it was possible to rule out CAPA,
but not an invasive pulmonary infection caused by another type of fungus.

Unfortunately, in the report by Oshikata et al. [8], antifungal susceptibility tests were
not carried out; however, they described P. digitatum as a species resistant to antifungals, an
assertion based only on the clinical evolution of the patient due to a poor response despite
the administration of itraconazole, micafungin, voriconazole, and amphotericin B. Our
results disagree with what was described by Oshikata et al. [8], since the MIC values found
were in general lower, 2 µg/mL for amphotericin B and voriconazole, or slightly higher,
4 µg/mL for itraconazole. Although amphotericin B is described as a good therapeutic
option in cases of invasive fungal infection by Penicillium non-marneffei species [28], in this
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report and unlike that described by Oshikata et al. [8], only itraconazole was administered
with good therapeutic success, showing high levels of susceptibility not only in vitro, but
also in vivo. In any case, it is essential to analyze a larger number of isolates of clinical and
environmental origin in order to establish an antifungal susceptibility profile in this species
and determine if there is intra-species variability.

Although this species still has a low clinical frequency, it clearly implies a greater
burden on the health system, generating higher costs, prolonged hospitalizations, and
greater work absenteeism. In the present study, we describe the first clinical isolation
of P. digitatum in Chile, being the second clinical report worldwide, postulating it as an
emerging opportunistic fungal pathogen that should be considered in the differential
diagnosis of Penicillium spp. isolated from infectious diseases in humans.
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