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Abstract

:

Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.
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1. Introduction


The mycological research community faces a major taxonomic problem. Only around 144,000 species of fungi have been formally described [1], a mere 8% of the lowest estimates of true fungal diversity [2]. The deficit of defined species has numerous causes, including a lack of trained mycologists, cryptic and microscopic diversity in the kingdom, and limited exploration of obscure habitats. One poorly known fungal genus, Pneumocystis, exemplifies all of these challenges and as a result remains largely taxonomically uncharacterized, despite its relevance to human health and decades of research effort.



These unculturable obligate symbionts reside exclusively in mammal lungs attached to epithelial alveolar cells, and they have been detected ubiquitously in many lineages of mammals [3,4]. Pneumocystis is an opportunistic pathogen: it is the causal agent of fungal pneumonia in susceptible hosts, although it does not generally cause disease in immunocompetent hosts [5]. As expected for an obligate symbiont that must evade the host immune system, transmission experiments in laboratory animals reveal that Pneumocystis species are at least somewhat host-specific [6,7]. Because of this, it is repeatedly asserted in the literature that there may be one Pneumocystis species for every mammal species [8,9]. Currently, only six species of Pneumocystis are recognized [10,11,12,13,14] and 6495 living species of mammals are known [15,16]. However, the true degree of host specificity in this genus has not been sufficiently tested, and evidence suggests some Pneumocystis species may be shared by closely related hosts, such as within mammalian genera [17,18,19,20]. This evidence has led researchers to reassess assumptions of single host specificity [21,22,23]. Unfortunately, we still have little direct evidence. The lack of clarity surrounding Pneumocystis species boundaries and their diversity in wild mammal populations are issues that we begin to address in this work.



Despite the potential diversity within Pneumocystis, species discovery in the genus has been slow, exemplified by the fact that the recently named Pneumocystis canis collected from domestic dogs [14] is the first described species since the rabbit-inhabiting Pneumocystis orcytolagi in 2006 [13]. Meanwhile, several papers have been published describing genetic sequences of novel Pneumocystis lineages taken from diverse mammal groups, including primates, bats, and rodents, with mitochondrial genetic divergence among these lineages commonly falling between 10 and 30% [20,23,24,25]. None of the novel lineages from these publications have been described as new species.



Several factors explain the lack of taxonomic progress. Some of these are shared by all fungal taxonomy, such as the need to designate a type specimen, adhere to the Botanical Code of Nomenclature [26], and the lack of funding for this necessary but time-intensive process [27]. Pneumocystis presents further challenges in that these fungi exist in an obscure niche, are difficult to observe, and traditional species recognition criteria cannot easily be applied. For example, mating tests are often used to identify cryptic fungal species, but they cannot be performed without cultures. Although these traditional species-recognition criteria are difficult to apply to this genus, the issue has a ready solution: previous authors suggested that DNA sequence data should be the primary information on which we rely in this group [18,28]. With phylogenetic methods accepted as the preferred mode of species delimitation, the largest impediment to describing new Pneumocystis species is actually the loci that are most commonly sequenced. Two loci are often sequenced: the mitochondrial large subunit (mtLSU) and small subunit (mtSSU). These are useful targets because they are easily amplified and can be compared to existing sequences [29]. However, their utility for Pneumocystis systematics has been challenged [21], and at least some researchers view these two mitochondrial loci as inadequate to describe new species [30]. The recognized standards suggest that at least one nuclear locus should corroborate species distinction when formally introducing new Pneumocystis species [28].



Despite the limitations of single locus species delimitation, researchers have recognized the need to automate species delimitation in diverse, poorly known clades. As such, several molecular delimitation techniques can predict species boundaries based on as few as one locus, such as the Automated Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent (GMYC), and Poisson Tree Process (PTP) methods [31,32,33]. Such methods have been used with moderate to excellent success in many organismal groups, including fungi [34,35]. Although the dozens of existing Pneumocystis mtLSU and mtSSU sequences are regarded as insufficient to formally describe the unidentified fungi, we can use these data to infer where species boundaries in the genus likely lie and subsequently predict how many species might exist.



Describing species in Pneumocystis is a fundamental step that will foster a deeper understanding of how symbiont species boundaries relate to those of their hosts, which has important ecological and management implications for fungal parasites [36,37]. We aim to advance the important effort of documenting novel Pneumocystis species by estimating species boundaries and biodiversity in the genus. Using molecular species delimitation tools and available mtLSU and mtSSU sequences from a diverse set of hosts, we infer how Pneumocystis species boundaries correspond to those of their hosts, and we use this correspondence to predict the total number of Pneumocystis species. To complement these results, we have reviewed the literature and compiled a database of all mammal host species that have been screened for Pneumocystis, including information about screening results and available genetic data representing these lineages.




2. Materials and Methods


Tree Inference—We downloaded all publicly available mtLSU and mtSSU Pneumocystis sequence data representing undescribed Pneumocystis lineages from GenBank for which both loci had been collected from the same host, on or before 25 July 2019. Any Pneumocystis specimens from which only one of these loci was collected were not included, due to the necessity of multiple loci for one of our chosen species delimitation tools, Bayesian Phylogenetics and Phylogeography (BPP) [38]. In total, we compiled 127 pairs of mtLSU and mtSSU Pneumocystis sequences from 55 mammal host species (25 rodents, 9 bats, 14 primates, 3 carnivorans, and 4 others), including sequences from the five currently recognized species of Pneumocystis (Table S1); this encompassed diversity observed at several positions in sequences from Pneumocystis jirovecii [29]. Although our taxon sampling is certainly incomplete, several of the chosen species delimitation methods are robust to incomplete taxon sampling and the presence of rare taxa [31,39]. We included homologous sequences from Taphrina deformans as an outgroup. We then aligned the mtLSU and mtSSU sequences separately using the alignment filtering tool GUIDANCE2 [40] under the MAFFT algorithm [41]. We removed any characters with a confidence score lower than 0.2, following the findings of Tan et al. [42], which suggest more aggressive filtering leads to a less accurate tree topology. We then verified and edited the alignments by eye in the program MEGA7 [43]. We concatenated these final mtLSU (404 bp including indels) and mtSSU (823 bp including indels) sequences into a single alignment. This alignment has been deposited to TreeBASE (TB2:S25117).



Using ModelFinder [44], which compares a standard set of candidate models, we found that based on the Bayesian Information Criterion (BIC) the substitution model TVM+I+G best explains these sequence data. We inferred an ultrametric tree in BEAST 2 [45] using the best-fit model. Briefly, we performed five million MCMC generations in three independent runs with a strict clock and a Yule model tree prior. We sampled parameters sampled every 1000 generations and examined convergence diagnostics by visually inspecting parameter traces and ensuring adequate effective sample sizes (ESS). After examining these diagnostics using Tracer [46], we combined the tree files of the three runs and generated a maximum clade credibility (MCCT) tree in TreeAnnotator with a 10% burn-in value. The MCCT served as the guide tree for all species delimitation analyses.



Species Delimitation—We chose four molecular species delimitation tools to predict species boundaries in Pneumocystis: ABGD, GMYC, PTP, and BPP. ABGD sorts individuals into hypothesized species such that interspecific variability of an input locus is always greater than intraspecific variability, a difference called the “barcode gap” [32,47]. On the ABGD web server (bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html, accessed on 25 July 2022), we used the concatenated sequence alignment to generate a species delimitation hypothesis given a Pmin of 0.001, Pmax of 0.1, and a relative gap width (X) of 1. We report delimitation results from the initial partition, which was the same regardless of the distance calculation model (JC69 or Simple Distance).



GMYC [31] and PTP [33] both rely on input gene trees to estimate at what point branching patterns can be attributed to intra-species population genetics rather than speciation processes, but they use different algorithms. We estimated species diversity and limits with the GMYC single-threshold method using the R package “splits” [48]. The GMYC single-threshold method has been demonstrated to outperform the multi-threshold approach [48], therefore the latter method was not considered.



We estimated species limits using PTP through species.h-its.org. For this analysis, we performed MCMC sampling for 500,000 generations with one delimitation hypothesis sampled every 100 generations and a 10% burn-in value, and we report the results of the Bayesian analysis (bPTP). Although the guide tree consists of deeply divergent Pneumocystis clades, the entire guide tree was analyzed together in GMYC and PTP, as it has been demonstrated that including multiple related clades rather than analyzing individual subclades separately improves the performance of these methods [49].



Finally, BPP is a multi-locus method that delimits species using the multispecies coalescent model, which accounts for coalescent processes that can generate conflicting gene trees to infer a species delimitation hypothesis [38]. BPP can quantitatively compare the probability of competing species delimitation hypotheses, which allows us to compare the support for the hypotheses generated by ABGD, GMYC, and bPTP. Although BPP is typically applied to multilocus nuclear data, examples exist of accurate BPP species delimitation using mitochondrial genes alone [34].



BPP allows for collapsing hypothesized species but does not allow further division of individuals that have been assigned to the same species. Therefore, we used a maximally species-rich delimitation as our input for BPP, equivalent to the PTP delimitation with an additional split in Pneumocystis from the host genus Apodemus inferred by GMYC. Because the delimitation hypotheses are equivalent to each other with various nodes collapsed, running BPP in this fashion provides a direct comparison of the posterior probability of the three hypotheses. BPP becomes progressively more computationally intensive to the point of intractability as more hypothesized species are included, so we analyzed the three major clades (referred to broadly as Rodents, Bats, and Primates; Figure 1) separately. Several taxa on long branches which were unambiguously independent species with respect to the sampled taxa were removed (Figure 2). This was done because, unlike the single-locus delimitation methods, the inclusion of clusters of many species with only one individual sampled is not compatible with the BPP algorithm and prevents chain convergence [50]. We ran algorithm A00 to estimate appropriate prior values ( θ  and  τ ) due to our lack of knowledge of the population history of Pneumocystis [51], then ran algorithm A10 (species delimitation using a fixed guide tree) on each clade given the estimated priors. The MCMC ran for 1,000,000 generations with sampling every 5 generations and burn-in of 20,000.



PneumocystisDiversity Prediction—To predict the number of Pneumocystis species in existence, we calculated the ratio of delimited Pneumocystis species to the 55 included host species for all four delimitation methods. Then, we multiplied these ratios by the number of described mammals to predict total Pneumocystis diversity.



PneumocystisDiversity Screening Database—In order to better understand the state of Pneumocystis diversity research and identify important targets of future surveillance for these fungi, we performed a literature review to compile a database representing all mammal hosts screened for Pneumocystis. We identified all articles in which wild, domestic, or captive animals were tested for the presence of Pneumocystis colonization in the lungs through any method, including histology and genetic testing such as PCR amplification. Findings were cross-referenced with Chabé et al. 2012 [52], which reported all positive findings of Pneumocystis from mammals prior to 2012. Additionally, we searched GenBank for all genetic sequences associated with Pneumocystis prior to 14 May 2020 and identified sequences from mammal hosts that had been screened for Pneumocystis but not yet included in any publication. We recorded the identities of all screened mammal hosts, as well as whether they were positive or negative for Pneumocystis and whether they are represented by available genetic data. Finally, we summarized these findings in a database (Database S1) and report the proportions of the entire class Mammalia as well as each mammal order that has been tested for Pneumocystis colonization.




3. Results


Phylogeny—For the three combined BEAST runs, ESSs exceeded 400 for all parameters, and the trends in both individual and combined trace plots were consistent with convergence. The recovered tree included Pneumocystis sequences from a phylogenetically diverse set of hosts spanning ≈170 My of mammalian evolution [53], providing an opportunity to compare Pneumocystis phylogenetic history to their mammal hosts at both deep and shallow evolutionary scales. In the MCCT inferred using BEAST, Pneumocystis lineages are largely segregated into three subclades, which we will refer to as “Rodents”, “Bats”, and “Primates”, based on the dominant (though not exclusive) host group in each clade. We recovered the topology Rodents + (Primates + Bats) (Figure 1), despite the closer relationship of rodents and primates within class Mammalia [54]. Additionally, Pneumocystis strains from several rodents appeared throughout the tree outside of the Rodents clade, including Pneumocystis from the lesser bamboo rat (Cannomys badius), the only sample that did not segregate into one of the three major subclades. Pneumocystis from one primate (Eulemur macaco, the black lemur) fell into the Bats clade rather than into Primates. Although marsupials are sister to placental mammals, we did not infer that Pneumocystis from Marmosa murina (Linnaeus’s mouse opossum) is sister to Pneumocystis from all placentals as would be expected in the case of perfect long-term cospeciation. This evolutionary discordance with mammal hosts at deep evolutionary time scales is consistent with some other work [19], but inconsistent with previous assumptions about the evolutionary history of Pneumocystis [55]. The relationship between the three major subclades was well supported, with posterior probability of 1.0 for the split between Rodents and Primates + Bats (Figure 1).



Although deep time relationships of Pneumocystis from placentals and marsupials did not match host relationships, we did recover instances of host-symbiont topological concordance at the tips of the tree. With the exception of Eulemur macaco, Pneumocystis from all primates were monophyletic, with two clades representing Pneumocystis from primarily New World and Old World primates, respectively, with some exceptions; this is consistent with previous work [24]. In the Bats clade, most Pneumocystis sequences from bats were monophyletic. Strains from all carnivorans, including representatives of cats Felis, dogs Canis, and ferrets Mustela, were monophyletic, with the exception of one divergent lineage from the domestic cat, Felis catus. Most Eurasian rodent strains also appeared together in the Rodents clade.



Many inferred relationships were well supported (≥0.95 posterior probability), with notable exceptions (here defined as any node with ≤0.70 posterior probability), particularly in the Bats clade which contains many taxa whose close relatives were not sampled, exemplified by the sparse representation of carnivorans, squirrels, lagomorphs, etc. (Figure 1). Support for relationships between Pneumocystis collected from poorly sampled host groups, such as marsupials (Marmosa murina) and pigs (Sus scrofa domesticus) was extremely poor, suggesting the clustering of these samples may be an artifact of long branch attraction [56,57].



Species Delimitation—All four delimitation methods produced different hypotheses (Figure 2), but these varied in predictable ways consistent with prior comparisons of these techniques [34,58]. ABGD delimited the fewest Pneumocystis species residing in the 55 sampled mammal species, 39, while PTP delimited the most Pneumocystis species, 53. GMYC and BPP were intermediate, estimating 47 and 48 species, respectively, (Table 1). BPP supported the species delimitation hypothesis from PTP with two exceptions: all Pneumocystis sequences collected from both Apodemus species were collapsed into one species, as were the sequences collected from domestic pigs and one strain from domestic cats (Figure 2). This unique delimitation of the Rodents and Bats clade by BPP and the retention of the PTP delimitation in the Primates clade were supported by high posterior probabilities (Table S2) with no support for the ABGD and GMYC hypotheses. This implies that the highest and lowest estimates inferred by PTP and ABGD are improbable, with true Pneumocystis diversity likely falling between these extremes.



Most notably, no tool delimited a strict one-host-species-to-one-Pneumocystis-species relationship that is commonly assumed in the literature. Delimited Pneumocystis species were found on multiple closely related mammal species, particularly those in the same genus, throughout the tree. For example, all delimitation methods grouped sequences from Pneumocystis carinii and Pneumocystis wakefieldiae into two species found in multiple host species in the genus Rattus. Similar results can be seen with Pneumocystis in the rodent genera Berylmys and Mus and the primate genus Callithrix. Some hypothesized Pneumocystis species were even found in multiple closely related genera, such as those found in the rodents Leopoldamys herberti (Herbert’s giant rat) and Maxomys surifer (red spiny rat), as well as the primates Callimico goeldii (Goeldi’s monkey) and Saguinus fuscicollis (brown-mantled tamarin). There were also many instances of delimited Pneumocystis species being found in only one mammal, especially where only a single host species in a genus was sampled. To this point, the only clade in which there was no consistently inferred example of a single Pneumocystis species inhabiting multiple host species was the Bats clade, which is also the only group for which no examples of sequences from multiple species in the same genus exist.



Additionally, we inferred that some host species are inhabited by multiple Pneumocystis species. It is already known that laboratory rats (Rattus norvegicus) can harbor both P. carinii and P. wakefieldiae [12,59], so it is likely that this is the case in other mammals. However, it should be noted that some inferences of intra-host speciation, such as the GMYC and PTP hypotheses in the genus Apodemus, are likely over-splits that simply reflect high intraspecific diversity in certain Pneumocystis lineages. This was supported by BPP collapsing all Pneumocystis collected from rodents in the genus Apodemus into one species. Some of the other more unusual inferences, such as highly divergent species of Pneumocystis found in domestic cats (Felis catus) and Egyptian fruit bats (Rousettus aegyptiacus), are consistent with prior work on these groups [19,25].



Prediction of Diversity—The number of Pneumocystis species per host species predicted by these methods ranged from 0.71 (ABGD) to 0.96 (PTP) (Table 1). Although PTP predicted a nearly 1:1 relationship, this reflects a complex evolutionary landscape of some host genera sharing one Pneumocystis species and some host species harboring multiple divergent Pneumocystis lineages, rather than a perfect correspondence. Extrapolating these ratios to the 6495 described extant species of mammals [15,16] produced estimates of Pneumocystis diversity between ≈4600 and 6250 species (Table 1).



PneumocystisDiversity Screening Database—The full database documenting all mammals that have been screened for Pneumocystis colonization to-date can be accessed in the supplementary material (Database S1). Additionally, a living version of this database which researchers can contribute to and which we will maintain and update can be found at https://github.com/sbabbbie/Pneumocystis-database (accessed on 25 July 2022). We summarize the major findings here (Table 2 and Table 3).



Most importantly, only a small percent of all mammalian diversity has been screened for Pneumocystis. The entire history of Pneumocystis research has encompassed 240 host species, or a mere 3.70% of mammalian specific diversity (Table 2). This sampling has emphasized the order Rodentia, with 116 rodent species screened compared to the next most-sampled order, Chiroptera (bats) represented by 37 species (Table 3). This is consistent with the fact that Rodentia is the most diverse mammalian order, but 116 species still amounts to only 4% of rodent diversity. Of the 240 sampled species, 98 (41%) are not represented by any available Pneumocystis genetic data, which is primarily explained by species that were screened using histology alone. At higher taxonomic levels, 15 of 27 mammal orders have had at least one representative species sampled for Pneumocystis, while the remaining unsampled 12 orders are depauperate (171 species, 2.6% of mammal diversity) (Table 3). Sampling of mammalian diversity for Pneumocystis is also highly fragmented in the sense that few or only one species are typically screened per genus, in contrast to the comparatively high average species diversity of the sampled genera (Figure 3).




4. Discussion


Much research into Pneumocystis systematics is influenced by assumptions of strict host specificity and cospeciation, which our results question. With admittedly limited data, we find consistent evidence that, while strict host specificity and infection of only one mammal species is apparent, situations in which Pneumocystis species boundaries correspond to mammal genera are common.



By using a variety of species delimitation tools, we generated conservative and liberal estimates of global Pneumocystis diversity. Although these delimitation methods are crude and influenced by population factors [34,60] that are currently unknown in Pneumocystis, consistency among the predictions of these tools allows for more confidence in species delimitation hypotheses [61]. Notably, all methods reject a strict 1:1 relationship of Pneumocystis species to their mammal hosts. Wherever multiple mammals from the same genus, or closely related genera, have been sampled for Pneumocystis, our delimitation methods often predict that these hosts share the same symbiont species. More sampling is certainly needed, as the many instances of delimited Pneumocystis species corresponding to a single host might be driven by a lack of intra-generic sampling. This is supported by the fact that, although of the 142 sampled mammal genera only 18 are monotypic, 101 genera are represented by a single species that has been screened for Pneumocystis. The disparity of actual versus sampled intrageneric mammal diversity is likely creating a sampling artifact, inflating the inferred specificity of Pneumocystis in prior analyses [22]. Assumptions of strict host specificity based on experiments in which Pneumocystis could not be transmitted between laboratory mice and laboratory rats are now being challenged by the further sampling of the genera Mus and Rattus [6,20,23]. Thus, far the evidence for multi-host Pneumocystis, in this and other work [23], is strongest in rodent hosts, which may be indicative of less strict host specificity among rapidly diversifying or closely related hosts [22]. Such a question should be addressed by further research when sampling is improved. However, our results suggest that multi-host affinity may also be the case for many more Pneumocystis species from other poorly sampled mammal lineages, as discussed.



Inferring a tree using Pneumocystis sequences from 55 mammal species at once is a novel approach. Systematic research in this genus generally starts with the assumption that all Pneumocystis from a monophyletic host group are also monophyletic [20,24,25]. However, our results imply that the Pneumocystis phylogeny is discordant with its hosts at deep time scales and may be the product of pseudo-cospeciation, which involves early host switching followed by cospeciation or host switches between closely related hosts [62]. Including sequences from a broad range of hosts generates other surprising inferences, such as the possibility of a close relationship between Pneumocystis from domestic cats and pigs [19]. These phenomena are likely indicative of host shifts across highly divergent taxa, a possibility that has been given little consideration in the Pneumocystis literature. Interestingly, there is also evidence that geography can influence Pneumocystis phylogeny more than host relationships. For example, Pneumocystis collected from Myodes glareolus (bank vole) is highly similar to that collected from Apodemus rodents (Figure 2), despite the two hosts belonging to different families: Cricetidae and Muridae. Although the hosts are distantly related, the individuals from which these Pneumocystis sequences were collected resided in overlapping home ranges [19]. This is also seen in our prediction that one Pneumocystis species colonizes the primates Callimico goeldi and Saguinus fuscicollis, which are not sisters but do inhabit overlapping ranges [63]. These results suggest transmission and speciation of Pneumocystis might be driven by geography rather than host phylogeny in some cases, and that we cannot continue research into this fungal genus under old assumptions.



Our analysis suggests that there are thousands of undescribed species of Pneumocystis; if our estimates are accurate, we have described only ≈0.1% of Pneumocystis diversity after sampling only ≈4% of mammal diversity. Accurate delimitation of species boundaries is necessary for many areas of Pneumocystis research. For example, several studies investigating cospeciation dynamics between Pneumocystis and their hosts have been completed without describing or identifying the symbiont lineages in question [17,20,25]. However, prior work on host–parasite assemblages has demonstrated that assuming parasite lineages on different host species are also distinct species artificially inflates estimates of cospeciation [64]. Although authors acknowledge the possibility that highly similar Pneumocystis strains in sister hosts may be from the same species [17,20], the lack of accurate species delimitation has likely led us to overestimate the importance of cospeciation in Pneumocystis evolution. These studies have been designed under the assumption that cospeciation is the dominant speciation process and have rarely considered the importance of factors like geography, despite emerging evidence that it can be influential.



Understanding how parasite species boundaries correspond to their hosts is also vital to understanding infection and host transmission dynamics. Fungi represent one of the greatest reservoirs of potential emerging infectious diseases [65] and cannot be ignored. Two of the most devastating emerging diseases of wild animals are fungal: amphibian Chytridiomycosis (Batrachochytrium dendrobatidis) and White Nose Syndrome (Pseudogymnoascus destructans) of bats. The struggle to understand these previously obscure fungi has slowed progress towards treatment development, demonstrating the importance of basic research into fungal pathogens [65], while assumptions of host specificity in Pneumocystis have led researchers to discount the possibility of disease spillover from host jumps between distantly related taxa, instances of closely related fungal species colonizing domestic cats and pigs suggests it can occur [66]. The example of cat and pig Pneumocystis is especially interesting, since both animals are domesticated and have not had opportunity for close contact until fairly recently, following their domestication. This provides a counterexample to the argument that the lack of transmission between animals in zoos indicates lack of host switching potential [24]. However, further investigation into these conflicting findings and understanding host transmission potential require better-defined Pneumocystis species boundaries.



Our results suggest that sampling the lungs of a few mammal species in a variety of genera would take us a long way toward understanding Pneumocystis diversity. The difficulty of visualizing these fungi in mammal lungs with low infection levels is certainly a challenge, but with the acceptance of phylogenetic species descriptions for Pneumocystis [28] and the general availability of reduced representation sequencing methods, this need not hold us back. Our findings also support a relationship between host identity, albeit at a generic rather than species-specific level, and particular Pneumocystis species. Host of origin can therefore be considered a phenotypic character to bolster genetic identity, e.g., [67,68]. Researchers need only sequence a few nuclear loci in addition to the historically important mtLSU and mtSSU to accomplish this [28]. The abundance of unexplored habitats has been identified as another serious challenge facing the description of novel fungi (Hawksworth and Rossman 1997), and the lack of documentation of mammal lung fungi supports this. However, the challenge of documenting fungi inhabiting this niche can be overcome through collaboration with mammalogists who collect voucher specimens of wildlife, who we can encourage to collect lung tissue. Working with diverse researchers, such as botanists and zoologists, will be a key part of uncovering the Earth’s fungal biodiversity, as Pneumocystis has demonstrated that a host-dependent lifestyle can be a prolific driver of speciation. Although these results beg many more questions than they answer, that is exactly what we wish to point out. We hope to highlight the enormous gap between what we know and what there is to know in Pneumocystis. Clearly, discovering and describing this diversity will be no small task, as we estimate ≈4600 to 6250 species have yet to be described. However, it is a vital first step if we hope to unravel the evolutionary history of these fungal symbionts.








Supplementary Materials


The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8080799/s1, Table S1: Genetic sequences sampled; Database S1: Pneumocystis diversity database; Table S2: Species delimitation posterior probabilities.





Author Contributions


S.J.B.-B. conceived of this project, compiled relevant data, performed analyses, and drafted the initial manuscript. J.A.E. and V.P.D. both supervised the project and contributed to the final manuscript. All authors have read and agreed to the published version of the manuscript.




Funding


This work was supported by the Louisiana Board of Regents (Award Number: B754), Louisiana State University AgCenter, the National Science Foundation (DEB-1441634 and 1754393), and the Alfred Gardner and Mark Hafner Mammalogy Fund.




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


Sequence alignments can be found at TreeBase, Project TB2:S25117. The living Pneumocystis diversity database can be found at https://github.com/sbabbbie/Pneumocystis-database (accessed on 25 July 2022).




Acknowledgments


We thank Frederick Sheldon for their advice during the early development of this work, as well as the many researchers who collected and uploaded the relevant Pneumocystis sequence data to GenBank. Thank you also to Christine Demanche and Jacques Guillot for personally sending us Pneumocystis sequences collected from Marmosa murina.




Conflicts of Interest


The authors declare no conflict of interest.




Abbreviations


The following abbreviations are used in this manuscript:



	mtSSU
	Mitochondrial small subunit



	mtLSU
	Mitochondrial large subunit



	ABGD
	Automatic Barcode Gap Discovery



	GMYC
	Generalized Mixed Yule Coalescent model



	PTP
	Poisson Tree Processes model



	BPP
	Bayesian Phylogenetics and Phylogeography









References


	



Kew Royal Botanic Gardens. State of the World’s Fungi; Technical Report; Royal Botanic Gardens: Kew, UK, 2018. [Google Scholar]

	



Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, 5–14. [Google Scholar] [CrossRef]

	



Yoshida, Y.; Matsumoto, Y.; Yamada, M.; Okabayashi, K.; Yoshikawa, H.; Nakazawa, M. Pneumocystis carinii: Electron microscopic investigation on the interaction of trophozoite and alveolar lining cell. Zentralblatt fur Bakteriologie Mikrobiologie Hygiene Ser. A Med Microbiol. Infect. Dis. Virol. Parasitol. 1984, 256, 390–399. [Google Scholar] [CrossRef]

	



Kelly, M.N.; Shellito, J.E. Current understanding of pneumocystis immunology. Future Microbiol. 2010, 5, 43–65. [Google Scholar] [CrossRef] [PubMed]

	



Aliouat-Denis, C.M.; Chabé, M.; Demanche, C.; Aliouat, E.M.; Viscogliosi, E.; Guillot, J.; Delhaes, L.; Dei-Cas, E. Pneumocystis species, co-evolution and pathogenic power. Infect. Genet. Evol. 2008, 8, 708–726. [Google Scholar] [CrossRef] [PubMed]

	



Aliouat, E.; Mazars, E.; Dei-Cas, E.; Cesbron, J.; Camus, D. Intranasal Inoculation of Mouse, Rat or Rabbit-Derived Pneumocystis to SCID Mice. J. Protozool. Res. 1993, 3, 94–98. [Google Scholar]

	



Durand-Joly, I.; Aliouat, E.M.; Recourt, C.; Guyot, K.; François, N.; Wauquier, M.; Camus, D.; Dei-Cas, E. Pneumocystis carinii f. sp. hominis is not infectious for SCID mice. J. Clin. Microbiol. 2002, 40, 1862–1865. [Google Scholar] [CrossRef]

	



Walzer, P.D. The ecology of Pneumocystis: Perspectives, personal recollections, and future research opportunities. J. Eukaryot. Microbiol. 2013, 60, 634–645. [Google Scholar] [CrossRef] [PubMed]

	



Hauser, P.M. Is the unique camouflage strategy of Pneumocystis associated with its particular niche within host lungs? PLoS Pathog. 2019, 15, e1007480. [Google Scholar] [CrossRef] [PubMed]

	



Frenkel, J. Pneumocystis jiroveci n. sp. From Man: Morphology, Physiology, and Immunology in Relation to Pathology. Natl. Cancer Inst. Monogr. 1976, 43, 13–30. [Google Scholar] [PubMed]

	



Keely, S.P.; Fischer, J.M.; Cushion, M.T.; Stringer, J.R.; Scott Keely, C.P. Phylogenetic identification of Pneumocystis murina sp. nov., a new species in laboratory mice. Microbiology 2004, 150, 1153–1165. [Google Scholar] [CrossRef]

	



Cushion, M.T.; Keely, S.P.; Stringer, J.R. Molecular and Phenotypic Description of Pneumocystis wakefieldiae sp. nov., a New Species in Rats. Mycologia 2004, 96, 429–438. [Google Scholar] [CrossRef] [PubMed]

	



Dei-Cas, E.; Chabé, M.; Moukhlis, R.; Durand-Joly, I.; Aliouat, E.M.; Stringer, J.R.; Cushion, M.; Noël, C.; Sybren De Hoog, G.; Guillot, J.; et al. Pneumocystis oryctolagi sp. nov., an uncultured fungus causing pneumonia in rabbits at weaning: Review of current knowledge, and description of a new taxon on genotypic, phylogenetic and phenotypic bases. FEMS Microbiol. Rev. 2006, 30. [Google Scholar] [CrossRef]

	



Cissé, O.H.; Ma, L.; Dekker, J.P.; Khil, P.P.; Youn, J.H.; Brenchley, J.M.; Blair, R.; Pahar, B.; Chabé, M.; Van Rompay, K.K.; et al. Genomic insights into the host specific adaptation of the Pneumocystis genus. Commun. Biol. 2021, 4, 305. [Google Scholar] [CrossRef] [PubMed]

	



Burgin, C.J.; Colella, J.P.; Kahn, P.L.; Upham, N.S. How many species of mammals are there? J. Mammal. 2018, 99, 1–14. [Google Scholar] [CrossRef]

	



Mammal Diversity Database. 2022. Available online: https://www.mammaldiversity.org/ (accessed on 25 July 2022).

	



Hugot, J.P.; Demanche, C.; Barriel, V.; Dei-Cas, E.; Guillot, J. Phylogenetic Systematics and Evolution of Primate-Derived Pneumocystis Based on Mitochondrial or Nuclear DNA Sequence Comparison. Syst. Biol. 2003, 52, 735–744. [Google Scholar] [CrossRef] [PubMed]

	



Chabé, M.; Aliouat-Denis, C.M.; Delhaes, L.; Aliouat, E.M.; Viscogliosi, E.; Dei-Cas, E. Pneumocystis: From a doubtful unique entity to a group of highly diversified fungal species. FEMS Yeast Res. 2011, 11, 2–17. [Google Scholar] [CrossRef] [PubMed]

	



Danesi, P.; da Rold, G.; Rizzoli, A.; Hauffe, H.C.; Marangon, S.; Samerpitak, K.; Demanche, C.; Guillot, J.; Capelli, G.; de Hoog, S.G. Barcoding markers for Pneumocystis species in wildlife. Fungal Biology 2016, 120, 191–206. [Google Scholar] [CrossRef]

	



Latinne, A.; Bezé, F.; Delhaes, L.; Pottier, M.; Gantois, N.; Nguyen, J.; Blasdell, K.; Dei-Cas, E.; Morand, S.; Chabé, M. Genetic diversity and evolution of Pneumocystis fungi infecting wild Southeast Asian murid rodents. Parasitology 2018, 145. [Google Scholar] [CrossRef] [PubMed]

	



Demanche, C.; Guillot, J.; Chabé, M. Pneumocystis Species Co-evolution: State-of-the-Art Review. OBM Genet. 2019, 3, 1. [Google Scholar] [CrossRef]

	



Babb-Biernacki, S.J.; Esselstyn, J.A.; Doyle, V.P. Rethinking host range in Pneumocystis. PLoS Pathog. 2020, 16, e1008824. [Google Scholar] [CrossRef] [PubMed]

	



Latinne, A.; Chen, H.W.; Kuo, C.C.; Lorica, R.; Singleton, G.; Stuart, A.; Malbas, F.F.; Demanche, C.; Chabé, M.; Michaux, J.; et al. Revisiting the Pneumocystis host specificity paradigm and transmission ecology in wild Southeast Asian rodents. Infect. Genet. Evol. 2021, 93, 104978. [Google Scholar] [CrossRef] [PubMed]

	



Demanche, C.; Berthelemy, M.; Petit, T.; Polack, B.; Wakefield, A.E.; Dei-Cas, E.; Guillot, J. Phylogeny of Pneumocystis carinii from 18 primate species confirms host specificity and suggests coevolution. J. Clin. Microbiol. 2001, 39, 2126–2133. [Google Scholar] [CrossRef] [PubMed]

	



Akbar, H.; Pinçon, C.; Aliouat-Denis, C.M.; Derouiche, S.; Taylor, M.L.; Pottier, M.; Carreto-Binaghi, L.H.; González-González, A.E.; Courpon, A.; Barriel, V.; et al. Characterizing pneumocystis in the lungs of bats: Understanding pneumocystis evolution and the spread of pneumocystis organisms in mammal populations. Appl. Environ. Microbiol. 2012, 78. [Google Scholar] [CrossRef] [PubMed]

	



Redhead, S.A.; Cushion, M.T.; Frenkel, J.K.; Stringer, J.R. Pneumocystis and Trypanosoma cruzi: Nomenclature and typifications. J. Eukaryot. Microbiol. 2006, 53, 2–11. [Google Scholar] [CrossRef] [PubMed]

	



Britz, R.; Hundsdörfer, A.; Fritz, U. Funding, training, permits—The three big challenges of taxonomy. Megataxa 2020, 1. [Google Scholar] [CrossRef]

	



Stringer, J.R.; Cushion, M.; Wakefielp, A.E. New nomenclature for the genus Pneumocystis. J. Eukaryot. Microbiol. 2001, 184S–189S. [Google Scholar] [CrossRef]

	



Beard, C.B.; Roux, P.; Nevez, G.; Hauser, P.M.; Kovacs, J.A.; Unnasch, T.R.; Lundgren, B. Strain Typing Methods and Molecular Epidemiology of Pneumocystis Pneumonia. Emerg. Infect. Dis. 2004, 10, 1729–1735. [Google Scholar] [PubMed]

	



Zamora, J.C.; Svensson, M.; Kirschner, R.; Olariaga, I.; Ryman, S.; Parra, L.A.; Geml, J.; Rosling, A.; Adamčík, S.; Ahti, T.; et al. Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus 2018, 9, 167–175. [Google Scholar] [CrossRef]

	



Pons, J.; Barraclough, T.G.; Gomez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006, 55, 595–609. [Google Scholar] [CrossRef]

	



Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed]

	



Luo, A.; Ling, C.; Ho, S.Y.; Zhu, C.D. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst. Biol. 2018, 67, 830–846. [Google Scholar] [CrossRef] [PubMed]

	



Boluda, C.G.; Rico, V.J.; Divakar, P.K.; Nadyeina, O.; Myllys, L.; McMullin, R.T.; Zamora, J.C.; Scheidegger, C.; Hawksworth, D.L. Evaluating methodologies for species delimitation: The mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. implexae, Parmeliaceae). Persoonia Mol. Phylogeny Evol. Fungi 2019, 42, 75–100. [Google Scholar] [CrossRef]

	



Lima, N.B.; Lima, W.G.; Tovar-Pedraza, J.M.; Michereff, S.J.; Câmara, M.P. Comparative epidemiology of Colletotrichum species from mango in northeastern Brazil. Eur. J. Plant Pathol. 2015, 141, 679–688. [Google Scholar] [CrossRef]

	



Veloso, J.S.; Câmara, M.P.; Lima, W.G.; Michereff, S.J.; Doyle, V.P. Why species delimitation matters for fungal ecology: Colletotrichum diversity on wild and cultivated cashew in Brazil. Fungal Biol. 2018, 122, 677–691. [Google Scholar] [CrossRef] [PubMed]

	



Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 2015, 61, 854–865. [Google Scholar] [CrossRef]

	



Millanes, A.M.; Truong, C.; Westberg, M.; Diederich, P.; Wedin, M. Host switching promotes diversity in host-specialized mycoparasitic fungi: Uncoupled evolution in the biatoropsis-usnea system. Evolution 2014, 68, 1576–1593. [Google Scholar] [CrossRef] [PubMed]

	



Sela, I.; Ashkenazy, H.; Katoh, K.; Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015, 43, 7–14. [Google Scholar] [CrossRef] [PubMed]

	



Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]

	



Tan, G.; Muffato, M.; Ledergerber, C.; Herrero, J.; Goldman, N.; Gil, M.; Dessimoz, C. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 2015, 64, 778–791. [Google Scholar] [CrossRef] [PubMed]

	



Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]

	



Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]

	



Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [PubMed]

	



Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]

	



Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]

	



Fujisawa, T.; Barraclough, T.G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 2013, 62, 707–724. [Google Scholar] [CrossRef] [PubMed]

	



Ahrens, D.; Fujisawa, T.; Krammer, H.J.; Eberle, J.; Fabrizi, S.; Vogler, A.P. Rarity and incomplete sampling in DNA-based species delimitation. Syst. Biol. 2016, 65, 478–494. [Google Scholar] [CrossRef] [PubMed]

	



Flouri, T.; Jiao, X.; Rannala, B.; Yang, Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 2018, 35, 2585–2593. [Google Scholar] [CrossRef] [PubMed]

	



Leaché, A.D.; Fujita, M.K. Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proc. R. Soc. B Biol. Sci. (R. Soc.) 2010, 277, 3071–3077. [Google Scholar] [CrossRef]

	



Chabé, M.; Hugot, J.P.; Dei-Cas, E. Pneumocystis molecular phylogeny: A way to understand both pneumocystosis natural history and host taxonomy. In New Frontiers of Molecular Epidemiology of Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]

	



Dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R.J.; Donoghue, P.C.; Yang, Z. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 2012, 279, 3491–3500. [Google Scholar] [CrossRef] [PubMed]

	



Esselstyn, J.A.; Oliveros, C.H.; Swanson, M.T.; Faircloth, B.C. Investigating difficult nodes in the placental mammal tree with expanded taxon sampling and thousands of ultraconserved elements. Genome Biol. Evol. 2017, 9, 2308–2321. [Google Scholar] [CrossRef]

	



Guillot, J.; Demanche, C.; Hugot, J.P.; Berthelemy, M.; Wakefield, A.E.; Dei-Cas, E.; Chermette, R. Parallel Phylogenies of Pneumocystis Species and their Mammalian Hosts. J. Eukaryot. Microbiol. 2001, 48, 113–115. [Google Scholar] [CrossRef]

	



Pollock, D.D.; Zwickl, D.J.; McGuire, J.A.; Hillis, D.M. Increased taxon sampling is advantageous for phylogenetic inference. Syst. Biol. 2002, 51, 664–671. [Google Scholar] [CrossRef] [PubMed]

	



Kolaczkowski, B.; Thornton, J.W. Long-branch attraction bias and inconsistency in bayesian phylogenetics. PLoS ONE 2009, 4, e7891. [Google Scholar] [CrossRef] [PubMed]

	



Nantarat, N.; Sutcharit, C.; Tongkerd, P.; Wade, C.M.; Naggs, F.; Panha, S. Phylogenetics and species delimitations of the operculated land snail Cyclophorus volvulus (Gastropoda: Cyclophoridae) reveal cryptic diversity and new species in Thailand. Sci. Rep. 2019, 9, 7041. [Google Scholar] [CrossRef]

	



Stringer, J.R.; Beard, C.B.; Miller, R.F.; Wakefield, A.E. A new name (Pneumocystis jiroveci) for Pneumocystis from humans. Emerg. Infect. Dis. 2002, 8, 891–896. [Google Scholar] [CrossRef]

	



Esselstyn, J.A.; Evans, B.J.; Sedlock, J.L.; Khan, F.A.A.; Heaney, L.R. Single-locus species delimitation: A test of the mixed yule-coalescent model, with an empirical application to Philippine round-leaf bats. Proc. R. Soc. B Biol. Sci. 2012, 279, 3678–3686. [Google Scholar] [CrossRef]

	



García-Melo, J.E.; Oliveira, C.; Da Costa Silva, G.J.; Ochoa-Orrego, L.E.; Garcia Pereira, L.H.; Maldonado-Ocampo, J.A. Species delimitation of neotropical Characins (Stevardiinae): Implications for taxonomy of complex groups. PLoS ONE 2019, 14, e0216786. [Google Scholar] [CrossRef]

	



Herrera, C.S.; Hirooka, Y.; Chaverri, P. Pseudocospeciation of the mycoparasite Cosmospora with their fungal hosts. Ecol. Evol. 2016, 6, 1504–1514. [Google Scholar] [CrossRef] [PubMed]

	



Vallejos-Garrido, P.; Rivera, R.; Inostroza-Michae, O.; Rodríguez-Serrano, E.; Hernández, C.E. Historical dynamics and current environmental effects explain the spatial distribution of species richness patterns of New World monkeys. PeerJ 2017, 2017, e3850. [Google Scholar] [CrossRef] [PubMed]

	



Refrégier, G.; Le Gac, M.; Jabbour, F.; Widmer, A.; Shykoff, J.A.; Yockteng, R.; Hood, M.E.; Giraud, T. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evol. Biol. 2008, 8, 100. [Google Scholar] [CrossRef] [PubMed]

	



Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]

	



Danesi, P.; Corrò, M.; Corrò, C.; Falcaro, C.; Carminato, A.; Furlanello, T.; Cocchi, M.; Krockenberger, M.B.; Meyer, W.; Capelli, G.; et al. Molecular detection of Pneumocystis in the lungs of cats. Med. Mycol. 2018, 57, 813–824. [Google Scholar] [CrossRef]

	



Doyle, V.P.; Oudemans, P.V.; Rehner, S.A.; Litt, A. Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America. PLoS ONE 2013, 8, e62394. [Google Scholar] [CrossRef] [PubMed]

	



Freudenstein, J.V.; Barrett, C.F. Fungal host utilization helps circumscribe leafless Coralroot orchid species: An integrative analysis of Corallorhiza odontorhiza and C. wisteriana. Taxon 2014, 63, 759–772. [Google Scholar] [CrossRef]








[image: Jof 08 00799 g001 550] 





Figure 1. Topology of Pneumocystis from 55 host species recovered by BEAST analysis of concatenated mtLSU and mtSSU sequences. Sequences collected from the same host genus are collapsed where they are monophyletic for viewability, represented by triangles at branch ends. Highly supported and highly uncertain nodes are marked; unmarked nodes have posterior probabilities between 70% and 95%. Tip labels refer to the name of the host, with Pneumocystis species names included in brackets where sequences in the lineage were identified as belonging to a described species. 
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Figure 2. Species delimitation estimates from Pneumocystis in the “Rodents” (on left) and the “Bats” and “Primates” clades (on right) generated with four molecular delimitation methods. Node labels refer to the name of the host except where sequences were identified as belonging to a described Pneumocystis species (shown in underlined font). Dark bars represent the boundaries of sequences that were grouped into one species by each method. 
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Figure 3. Representation of disparity between mean intrageneric diversity of Pneumocystis screening (left) and actual mean diversity of the genera sampled for Pneumocystis screening (right). 
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Table 1. Inferred species delimitations and host:symbiont ratios    a   Although ten Pneumocystis samples were not included in the BPP analysis, we include them in the result here due to the confidence that they cannot be grouped into any other species. This makes the result comparable to the other three methods.
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	Delimitation Method
	Inferred Pneumocystis Species
	Host: Symbiont Ratio
	Predicted Global Pneumocystis Species





	ABGD
	39
	1:0.71
	4606



	GMYC
	47
	1:0.85
	5550



	PTP
	53
	1:0.96
	6259



	BPP
	48    a  
	1:0.87
	5668
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Table 2. Summary of findings of literature search identifying all mammals screened for Pneumocystis. Number of mammal species, genera, and orders sampled for Pneumocystis screening. Percentages of total mammal diversity are shown as well as the proportion of species from which Pneumocystis genetic sequences are available.
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	Taxonomic Rank
	Number Screened for Pneumocystis
	Total in Mammalia
	Percent Sampled
	Pneumocystis Genetic Data Available
	Percent Screened with Genetic Data
	Percent Total with Genetic Data





	Mammal Species
	240
	6495
	3.7
	129
	54
	1.99



	Mammal Genera
	142
	1342
	10.58
	-
	-
	-



	Mammal Orders
	15
	27
	55.56
	-
	-
	-
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Table 3. Number of species screened per sampled mammal order. The 12 unsampled mammal orders are not listed.
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	Mammal Order
	Species Screened for Pneumocystis
	Total Species in Order
	Percent Screened





	Afrosoricida
	1
	55
	1.82



	Artiodactyla
	7
	359
	1.95



	Carnivora
	14
	307
	4.56



	Chiroptera
	37
	1447
	2.56



	Diprotodontia
	1
	150
	0.67



	Didelphimorphia
	2
	129
	1.56



	Eulipotyphlya
	17
	564
	3.01



	Hyracoidea
	1
	6
	16.67



	Lagomorpha
	3
	106
	2.83



	Monotremata
	1
	5
	20



	Perissodactyla
	1
	18
	5.56



	Pilosa
	1
	16
	6.25



	Primates
	35
	516
	6.78



	Rodentia
	116
	2623
	4.42



	Scandentia
	1
	23
	4.35
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