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and Astrid R. Mach-Aigner 1,2,*

1 Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a,
A-1060 Vienna, Austria

2 Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of
Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a,
A-1060 Vienna, Austria

* Correspondence: astrid.mach-aigner@tuwien.ac.at
† These authors contributed equally to this work.

Abstract: Engineering transcription factors is an interesting research target gaining increasing at-
tention, such as in the case of industrially used organisms. With respect to sustainability, biomass-
degrading saprophytic fungi, such as Trichoderma reesei, are promising industrial work horses because
they exhibit a high secretory capacity of native and heterologously expressed enzymes and com-
pounds. A single-point mutation in the main transactivator of xylanase and cellulase expressions
in T. reesei Xyr1 led to a strongly deregulated and enhanced xylanase expression. Circular dichro-
ism spectroscopy revealed a change in secondary structure caused by this mutation. According to
electrophoretic mobility shift assays and determination of the equilibrium-binding constants, the
DNA-binding affinity of the mutated Xyr1 was considerably reduced compared to the wild-type Xyr1.
Both techniques were also used to investigate the allosteric response to carbohydrates (D-glucose-
6-phosphate, D-xylose, and sophorose) signalling the repression or induction of Xyr1 target genes.
The mutated Xyr1 no longer exhibited a conformational change in response to these carbohydrates,
indicating that the observed deregulation is not a simple matter of a change in DNA-binding of
the transactivator. Altogether, we postulate that the part of Xyr1 where the mutation is located
functions as a nuclear receptor-like domain that mediates carbohydrate signals and modulates the
Xyr1 transactivating activity.

Keywords: carbohydrate signalling; eukaryotic transactivator; Xylanase regulator 1; circular
dichroism; Trichoderma reesei

1. Introduction

The filamentous ascomycete, Trichoderma reesei (teleomorph Hypocrea jecorina, [1]), is a
saprophyte that is industrially exploited for its ability to secrete vast amounts of cellulolytic
and hemicellulolytic enzymes. Among those are the two main cellobiohydrolases, CBHI
and CBHII (EC 3.2.1.91) [2], and the two main endo-β-1,4-xylanases, XYNI and XYNII
(EC.3.2.1.8) [3]. Together with other enzymes, they degrade cellulose and xylan to yield
oligo- and monosaccharides such as D-glucose, D-xylose, and the transglycosylation prod-
uct sophorose, among others [4]. These, in turn, affect the expression of these cellulolytic
and hemicellulolytic enzymes (reviewed by, e.g., [5,6]).

The Gal4-like Zn2Cys6 binuclear cluster protein, Xylanase regulator 1 (Xyr1), works
as a wide domain activator for the production of all major cellulose- and hemicellulose-
degrading enzymes. Accordingly, it was shown that a xyr1 deletion mutant no longer
expresses cellulases or xylanases [7,8]. Furthermore, the transcript formation of the major
cellulase-encoding genes, cbh1 and cbh2, encoding CBHI and CBHII, respectively, directly
correlates with the transcript pattern of xyr1, encoding their activator, Xyr1 [9,10]. In
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particular, this becomes obvious as both the regulator and these target genes are induced by
sophorose and repressed by glucose [10,11]. In contrast, the xylanase-encoding genes xyn1
and xyn2 are induced by low D-xylose concentrations and repressed by glucose or high
D-xylose concentrations (e.g., [12,13]), and their expression does not precisely correlate with
xyr1 transcript levels. This suggests that the expression of cellulases is strongly dependent
on the concentration of available Xyr1, while the expression of xylanases also depends on
additional mechanisms [10].

Derntl and co-workers reported on an industrially used T. reesei mutant strain, which
exhibits a strongly enhanced and de-regulated xylanase-expressing phenotype [10]. Even
though carbon catabolite repression, triggered by easily usable carbon sources, is a mecha-
nism affecting xylanase expression in T. reesei, this strain was reported to be “glucose-blind”.
This strain was obtained from an industrial ancestor strain by UV mutagenesis and subse-
quent screening for elevated xylanase activity. Genomic analysis revealed that this strain
bears—amongst other mutations—a point mutation that results in an A824V transition in
the so-called fungal transcription factor regulatory middle homology (FTFRMH)3 region of
Xyr. The introduction of this mutation into the parental strain and the reconstitution of the
wild-type xyr1 in the mutant strain demonstrated that the xylanase-deregulated phenotype
is indeed related to this mutation. Moreover, a detailed analysis (different carbon sources,
different time points) of the transcript levels of important Xyr1 target genes (such as xyn1,
xyn2, cbh1, cbh2) in a strain bearing Xyr1A824V and its parent strain revealed a strong dereg-
ulation of endo-xylanase-encoding genes and a strongly elevated, basal level of cellulase
encoding genes. A subsequent in silico secondary structure prediction of Xyr1 finds A824
in the middle of an α-helix, which suggests that the A824V mutation might possibly lead to
a change in secondary structure, which could be responsible for the observed deregulation
of xylanase expression and the generally enhanced cellulase expression [10].

In case of the orthologue of Xyr1 in Aspergillus niger, XlnR [14,15], mutants were
investigated bearing the following changes: the mutation V756F and the introduction of
stop codons after residues L668 and G797. All modifications resulted in higher xylanolytic
activity of the fungus as well as an increased expression of target genes of XlnR, such as
xlnB (coding for endoxylanase B), even in repressing conditions using D-glucose as the sole
carbon source [16]. The region that contains these mutations is located between a putative
coiled-coil region and a C-terminal transcriptional activation domain, and is probably
related to the modulation of activity of XlnR by D-glucose [16].

Circular dichroism (CD) spectroscopy is very useful for the characterisation of the
protein secondary structure (in % α-helix, β-sheets, turns), as well as structural changes
resulting from DNA–protein, protein–protein or protein–ligand interactions (e.g., reviewed
by [17,18]). Especially in the case of transcription factors, this method is used to investigate
the influence of DNA-binding on the protein and DNA structure, an example of which is
the investigation into structural changes of the transcription factor NF-κB induced by DNA
binding [19].

Though in an earlier study on T. reesei an unexpected phenotype was observed and
could be related to a A824V mutation in Xyr1, the molecular mechanism remained unsolved.
In this study, we used CD spectroscopy, blue native polyacrylamide gel electrophoresis
(BN-PAGE), and electrophoretic mobility shift assay (EMSA) to investigate the influence
of the previously described mutation on the secondary structure of Xyr1 and its DNA-
binding affinity. Finally, the response of the two Xyr1 variants to carbohydrates in the
form of conformational changes mediating different signals, which affect (hemi)cellulase
expression (D-glucose-6-phosphate, D-xylose, and sophorose), was investigated concerning
the putative function of this part of Xyr1 as a nuclear receptor (NR)-like domain.

2. Materials and Methods
2.1. Plasmid Construction

A 2945 bp-fragment comprising the T7 promoter, the lac operator, and the cod-
ing region of xyr1 fused with a C-terminal six-histidine tag was chemically synthesized
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(GeneArt®, part of Life Technologies, Paisley, UK) with codon optimization for Escherichia
coli. This expression cassette was cloned into the Novagen® pET28a vector (Merck, Darm-
stadt, Germany) using BglII/NotI restriction sites and yielding pTS1. Likewise, the mutated
gene version, xyr1A824V, bearing the A824V transition, was chemically synthesized and
cloned into pET28a, yielding pTS2. Insertion of the correct fragments into both expression
vectors was confirmed by restriction profile analysis and automated sequencing (LGC
Genomics, Berlin, Germany).

2.2. Protein Expression and Purification

A total of 300 mL of LB medium with D-glucose (1% w/v) and kanamycin (50 µg/mL)
was inoculated with E. coli BL21(DE3)pLysS (Promega, Madison, WI, USA), carrying the
respective expression vectors. At OD600 protein expression was induced by adding IPTG
to a final concentration of 0.5 mM. The culture was incubated at 18 ◦C for 24 h. The cells
were harvested by centrifugation and stored frozen at −20 ◦C overnight. Cells were then
resuspended in a 10 mL binding buffer (0.5 M NaCl, 20 mM Tris-HCl, 5 mM imidazole,
pH 7.9) and sonicated using a Sonifier® 250 Cell Disruptor (Branson, Danbury, CT, USA)
(power 40%, duty cycle 70%, power for 30 s, pause for 30 s, 4 cycles). After centrifugation,
the protein (105 kDa) was purified from the extract using Novagen® HisBind® resin (Merck)
and a modified elution buffer (0.5 M NaCl, 20 mM Tris-HCl, 120 mM imidazole, pH 7.9),
according to the manufacturer’s guidelines.

2.3. Circular Dichroism Spectroscopy

Before CD spectroscopy measurements, PD-10 columns (GE Healthcare, Uppsala,
Sweden) were used for exchanging buffer to buffer A (50 mM Tris, 200 mM NaCl, 50 mM
NaH2PO4, 10% (v/v) glycerol, pH 7.5). The protein samples were centrifuged at 14,000× g
for 10 min to remove aggregates, and thereafter, the protein concentration was determined
using Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA). A total of 200 µL of a 250 nM
protein solution was used for CD spectroscopy measurements. To study DNA binding
to the URR of xyn1, synthetic complementary oligonucleotides (Sigma-Aldrich, St. Louis,
MO, USA) were annealed and used at a final concentration of 75, 150, 225, 300, 375, 450,
525, 600, 675, 750, 825, and 900 nM. Oligonucleotide sequences are provided in Table 1. To
study the influence of D-glucose-6-phosphate, D-xylose, and sophorose, the sugars were
used at final concentrations (or sugar-to-protein ratios, respectively) of 40 (1:5), 200 (1:1),
and 1000 nM (5:1). Measurements were carried out in 0.2 cm SUPRASIL® quartz cells
(HellmaAnalytics, Müllheim, Germany) in a J-815 CD Spectrometer (Jasco, Tokio, Japan) at
22 ◦C. CD spectra of the proteins were collected from 260–200 nm as an average of 3 scans
and subtracted baseline in order to exclude buffer influences. Data are presented as the
mean residue ellipticity [θ] in deg cm2 dmol−1, i.e., (millidegrees ×MRW)/(pathlength in
mm × concentration in mg/mL), where MRW (mean residue weight) is 109.69 Da. The
equilibrium-binding constants (Kd) of the DNA–protein complexes were determined by
following the changes of [θ]222, using the non-linear least squares method to fit a curve
based on Engel’s equation [20] with n = 2 to the measured data. For an investigation of the
temperature-dependent unfolding, the temperature was increased from 10 ◦C to 100 ◦C
at a rate of 5 ◦C/min for the heat-denaturation process. Both proteins were used in a
concentration of 250 nM in buffer A.

Table 1. Oligonucleotides used in the study.

Name Sequence (5′–3′) Employment

Pxyn1f_FAM [FAM]-
TTGGCAGGCTAAATGCGACATCTTAGCCGGATGCA EMSA

Pxyn1f TTGGCAGGCTAAATGCGACATCTTAGCCGGATGCA CD
Pxyn1r TGCATCCGGCTAAGATGTCGCATTTAGCCTGCCAA EMSA/CD
CKT067 CACTCCACATGTTAAAGGCGCATTCAACCAGCTTC EMSA
CKT068 GAAGCTGGTTGAATGCGCCTTTAACATGTGGAGTG EMSA
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2.4. Electrophoretic Mobility Shift Assay

Synthetic FAM-labelled oligonucleotides (Sigma-Aldrich) used for EMSA were an-
nealed with their complementary oligonucleotides (Table 1). The protein–DNA-binding
assay and non-denaturing polyacrylamide gel electrophoresis were performed essentially
as described previously [21]. Binding was achieved by incubating 350 ng of the heterol-
ogously expressed Xyr1 or Xyr1A824V with 15 ng of a labelled, double-stranded DNA
fragment in buffer A (10 min, 22 ◦C). The addition of p(dIdC) at a final concentration of
0.2 µg/µL and an unspecific oligonucleotide (CKT067/CKT068) avoid unspecific binding.
Fluorescence and image analysis of the gels was carried out using a Typhoon 8600 variable
mode imager (Amersham Bioscience, part of GE Healthcare, Chicago, IL, USA).

2.5. Blue Native Polyacrylamide Gel Electrophoresis

The separation of the protein complexes was performed with 200 nM of each protein
in non-denaturing conditions according to the modified protocol [22]. For the second
dimension, proteins were denatured in the gel strip after separation by BN-PAGE and
subsequently subjected to SDS-PAGE, as previously described [23]. The identity of the
proteins was confirmed by Western blot.

3. Results
3.1. A Single-Point Mutation in the Zinc Finger Regulatory Protein Xyr1 Changes Its Secondary
Structure

Recently, it was demonstrated that a mutation in the main transactivator Xyr1, namely
a A824V transition, leads to a glucose blind, (hemi)cellulase-expressing phenotype [10].
Generally, transcript formation in the mutant strain seems to be carbon source-independent
or non-responsive. As Derntl and co-workers reported that the mutation is located in the
α-helices-rich, C-terminal part of the domain that might lead to structural changes of the
protein, we investigated this assumption by employing CD spectroscopy. Therefore, the
wild-type Xyr1 and the Xyr1A824V were heterologously expressed in E. coli. The spectrum
of the negative ellipticity strongly differed between the wild-type Xyr1 and the Xyr1A824V
(Figure 1a), thus, demonstrating that these proteins vary in their secondary structure.
The mutation A824V resulted in a 61% decrease in mean residue ellipticity at 222 nm
and a strong decrease in the fraction of residues involved in helical conformation, hence,
indicating a possible role of this region for a specific folding of Xyr1. A BN-PAGE of
both Xyr1 variants revealed that both of them are present as monomers (strong bands
in the middle of the BN-PAGE) and homodimers (fainter, upper bands in the BN-PAGE)
in comparable ratios (Figure 1b). A subsequent SDS-PAGE provided evidence that all
bands are different agglomerations of the Xyr1 protein (104 kDa) (Figure 1c,d). Therefore, a
different protein–protein interaction of the two variants is not responsible for the different
CD spectra. Moreover, the observation that both monomer and dimer migration differed
between Xyr1 and Xyr1A824V (Figure 1b) supports the assumption of a structural change
caused by the point mutation.
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stranded DNA probe, we found indication for protein–DNA interactions for both pro-
teins, reflected by changes in the spectra of the protein alone compared to protein with 
target DNA. These changes indicate a change in secondary structure content (Figure 2a,b). 
The observed reduction in the negative ellipticity due to a potential DNA interaction re-
sulted in a 27% loss of α-helical content for the wild-type Xyr1 and a 53% loss for the 
Xyr1A824V. Here, again, we applied BN-PAGE as a control experiment and found that the 
presence of DNA did not affect the monomer-to-homodimer ratio of both Xyr1 variants, 
and thus, is not responsible for the differences in CD spectra (see Supplementary Data, 
Figure S1a). 

As CD spectroscopy analyses are not a direct proof for a protein–DNA complex for-
mation, we performed EMSA analysis employing the same fragment of the URR of xyn1 
as a fluorescently labelled probe. Using different amounts of wild-type Xyr1, two shifts in 
mobility could be observed at lower concentrations of the protein (Figure 2c). This obser-
vation is in accordance with previous findings that reported the binding of Xyr1 to the 
xyn1 URR as a monomer and as a dimer [24], yielding two shifts in EMSA experiments. 
The application of increasing amounts of protein favours binding as a dimer in a concen-
tration-dependent way (Figure 2c, compare [24]). Using Xyr1A824V yielded only a weak 

Figure 1. Characterization of the wild-type Xyr1 and the A824V mutant protein. (a) Far-UV spectra
(200–260 nm) from CD analyses of Xyr1 (red line) and Xyr1A824V (blue line) at 22 ◦C are given.
(b) Blue native polyacrylamide gel electrophoresis (BN-PAGE) of the wild-type Xyr1 (WT) and
the mutated Xyr1 (MU). Subsequent SDS-PAGE of the wild-type Xyr1 BN-PAGE lane (c) and the
Xyr1A824V BN-PAGE lane (d). Size is indicated in kDa.

3.2. The A824V Mutation Changes DNA-Binding Properties of Xyr1

To investigate whether the change in secondary structure of Xyr1 caused by the A824V
mutation also influences its DNA-binding properties, we analysed Xyr1 binding to the
upstream regulatory region (URR) of the xyn1 gene, the expression of which was affected
by the mutation and which is a well-studied target gene within the Xyr1 regulon. For this
purpose, CD spectroscopy analysis was used again. In the presence of the double-stranded
DNA probe, we found indication for protein–DNA interactions for both proteins, reflected
by changes in the spectra of the protein alone compared to protein with target DNA. These
changes indicate a change in secondary structure content (Figure 2a,b). The observed
reduction in the negative ellipticity due to a potential DNA interaction resulted in a 27%
loss of α-helical content for the wild-type Xyr1 and a 53% loss for the Xyr1A824V. Here,
again, we applied BN-PAGE as a control experiment and found that the presence of DNA
did not affect the monomer-to-homodimer ratio of both Xyr1 variants, and thus, is not
responsible for the differences in CD spectra (see Supplementary Data, Figure S1a).
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contradicts the superior xylanase formation observed in the T. reesei strain bearing this 
mutation. Therefore, the equilibrium dissociation constants of both wild-type Xyr1 and 
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Figure 2. Analyses of Xyr1 and Xyr1A824V binding to target DNA. Far-UV spectra (200–260 nm)
of a CD spectroscopy analysis of Xyr1 (a) or Xyr1A824V (b) alone (blue lines) and their respective
protein–DNA complexes (red lines) using a xyn1 URR fragment (−430 to −396 bp from ATG) in
a molar ratio of 1:1. Data were plotted after correction for the contribution of the DNA. (c) EMSA
analysis of Xyr1 and Xyr1A824V DNA-binding behaviour using increasing amounts of protein (170 ng,
340 ng, 680 ng, and 1360 ng, respectively) and a fluorescently labelled xyn1 URR fragment. FP,
free probe.

As CD spectroscopy analyses are not a direct proof for a protein–DNA complex
formation, we performed EMSA analysis employing the same fragment of the URR of
xyn1 as a fluorescently labelled probe. Using different amounts of wild-type Xyr1, two
shifts in mobility could be observed at lower concentrations of the protein (Figure 2c). This
observation is in accordance with previous findings that reported the binding of Xyr1 to the
xyn1 URR as a monomer and as a dimer [24], yielding two shifts in EMSA experiments. The
application of increasing amounts of protein favours binding as a dimer in a concentration-
dependent way (Figure 2c, compare [24]). Using Xyr1A824V yielded only a weak double
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shift (monomer and dimer) at the highest protein concentration (Figure 2c), indicating a
decrease in the protein–DNA complex formation due to the A824V mutation.

3.3. Determination of the Equilibrium Dissociation Constant of the Xyr1 Variants

At first glance, the decreased ability of Xyr1A824V to form complexes with xyn1 URR
contradicts the superior xylanase formation observed in the T. reesei strain bearing this
mutation. Therefore, the equilibrium dissociation constants of both wild-type Xyr1 and
Xyr1A824V were determined. For this purpose, a constant amount of protein with varying
amounts of target DNA was analysed by CD spectroscopy following the changes of the
mean residue ellipticity at 222 nm. Then, a non-linear least squares method was used
to fit a curve based on Engel’s equation [20] to the measured data. Figure 3a depicts the
curve fitting results of both Xyr1 variants. The higher Kd value of Xyr1A824V (523 nM) in
comparison to the one of the wild-type Xyr1 (128 nM) indicates a lower DNA-binding
affinity for Xyr1A824V and supports the former findings of this study.
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Figure 3. CD spectroscopy-based analysis of the Xyr1 variants. (a) Determination of the equilibrium
dissociation constants (Kd). Titrations were performed with Xyr1 (blue squares) or Xyr1A824V (red tri-
angles) and increasing amounts of DNA (xyn1 URR fragment, -430 to -396 bp from ATG), ranging from
0 to 900 nM. The values are means of three independent experiments. Error bars indicate standard
errors of the means. If no error bar was depicted, standard deviation was below 5%. (b) Temperature-
dependent unfolding of Xyr1 and Xyr1A824V. The apparent fraction of unfolding (fU) of the proteins
Xyr1 (blue squares) and Xyr1A824V (red triangles) was obtained by (θN − θ)/(θN − θU), where θN

and θU are the values of the native and the unfolding state, respectively, and θ is the observed value
of θ222 at a given temperature. The value of fU was plotted as a function of the temperature.

As this is a rather unexpected finding in the case of a transactivator’s mutation, which
caused an enhanced deregulated xylanase production in the respective strain, we assume
that the regulatory mechanism is not a simple matter of change in Xyr1–DNA affinity. The
reason can neither be found in a general change in protein stability as the temperature-
dependent unfolding of both proteins demonstrated that the point mutation had hardly
any effect on the stability of the protein (Figure 3b).

3.4. Conformational Response to Carbohydrates Is Partly Lost in Xyr1A824V

As it is known that in eukaryotes the presence of a certain metabolic signal can cause
conformational changes in a regulatory protein, this prompted us to investigate possible
allosteric modulations of Xyr1 induced by certain carbohydrates. Therefore, we analysed
both proteins alone and in the presence of D-glucose-6-phosphate (the first intercellular
metabolite of extracellular D-glucose that caused the repression of Xyr1 target genes and
xyr1 [11]), D-xylose, or sophorose (induction of Xyr1 target genes) by CD spectroscopy
measurements. Please note that the data with sophorose are not shown since they are
highly similar in comparison to those observed with D-xylose. All three carbohydrates
cause a change in the Xyr1 secondary structure, the extent of which directly correlates
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with the amount of carbohydrate present (Figure 4a,b). Notably, the greater loss of α-helix
structures occurred in the presence of D-xylose or sophorose (up to 31%) compared to
D-glucose-6-phosphate (21%) (also compare Figure 4a,b). This suggests that Xyr1 assumes
different conformations depending on the carbohydrate used. Again, as a complementing
experiment, EMSA analysis using the xyn1 URR fragment as a probe and the same ratios of
protein to carbohydrate as for the CD spectroscopy analyses was performed. Interestingly,
the induced changes in secondary structure did not interfere with the ability to form protein–
DNA complexes, since exactly the same shifts were obtained, regardless if carbohydrate
was added and in which carbohydrate-to-protein ratio (data not shown).
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The same assay was applied to Xyr1A824V and analysed by CD spectroscopy. Interest-
ingly, in contrast to the wild-type Xyr1, in this case, no different results were obtained for
D-glucose-6-phosphate in comparison to D-xylose or sophorose (Figure 4c,d). Again, we
performed BN-PAGE with both proteins and the carbohydrates as a control experiment to
exclude that the observed differences are due to a changed protein–protein interaction (see
Supplementary Data, Figure S1b). These findings are in good accordance with the carbon
source-independent expression of (hemi)cellulases in the respective T. reesei mutant strain.
Furthermore, it supports the assumption that the mutation is located in a domain that
signals the carbohydrate presence. However, the observed changes in secondary structure
at a high carbohydrate-to-protein ratio did not, again, affect the DNA–protein complex
formation, according to EMSA analysis (data not shown), pointing to other regulatory
mechanism(s) than mere DNA binding.

4. Discussion

As mentioned above, a mutant of an industrially used T. reseei strain showed an
unusual deregulated and enhanced xylanase expression profile that prompted transcrip-
tional analyses of prominent xylanase- and cellulase-encoding genes and their common
transactivator-encoding gene, xyr1 [10]. In the present study, we aimed to identify a mecha-
nistic explanation for the observed phenotype by investigating the effect of the identified
A824V mutation in Xyr1 [10] on the protein structure. While we could generally observe
a different secondary structure when comparing the CD spectrum of the wild-type Xyr1
and the Xyr1A824V consistent with a considerable loss of helical content in the mutant Xyr1,
we also found a reduced capability of Xyr1A824V for the protein–DNA complex formation.
This finding was rather the opposite of what we expected because Xyr1 is the essential
transactivator of the xylanase expression, and the mutation led to an increased xylanase
expression. However, the lower DNA-binding affinity of Xyr1A824V was supported by the
comparison of the Kd of both the wild-type Xyr1 and the Xyr1A824V for the corresponding
part of the URR of xyn1. This observed reduced binding affinity in combination with the
ability of the carbohydrates to induce a conformational change in the wild-type Xyr1, but
not in the A824V mutant, suggests that there is more at play in the xylanase-deregulated
phenotype of the mutant strain than just a loss of DNA-binding affinity. Of course, it
remains open if the DNA-binding affinity plays a major role in regulating the expression
of cellulase-encoding genes as they strictly follow the xyr1 expression pattern, unlike the
xylanase-encoding genes such as xyn1, the URR of which was used for investigations
during this study. In contrast, a strong deregulation (i.e., a general loss of repression and
induction) was reported for the xylanase expression. This makes the xylanase regulon an
interesting research target and prompted us to investigate a possible allosteric response of
Xyr1 in an NR-like way.

The modulation of the transactivating function of Zn2Cys6 binuclear cluster proteins
in response to metabolic signals has been reported before. Wang and colleagues reported
that the activating regulatory protein LEU3 of Saccharomyces cerevisiae [25,26] undergoes
a conformational change in the presence of isopropylmalate, a metabolic intermediate of
the biosynthesis of leucine, which exposes its transcriptional activation domain [27]. In the
case of GAL4, the best-studied of the Zn2Cys6 binuclear cluster proteins, a masking of the
transcriptional activation domain occurs through the regulator GAL80. In the presence
of galactose, a third protein, GAL3, forms a heterodimer with GAL80, thus, freeing the
GAL4 activation domain (reviewed by [28]). Besides a modulation of the activity of GAL4
through intermolecular interactions, there is evidence for a direct mechanism of inhibition
by D-glucose. Stone and Sadowski showed that in the central region of GAL4, there is a
domain responsive to D-glucose with an intramolecular role in inhibiting the transcriptional
activity of the factor. In this model, the hypothesis of a direct interaction of D-glucose or
its metabolites triggering the conformational change in GAL4 is considered [29]. Notably,
this study provides one of the so far rare evidences of a direct interaction between a fungal
transcription factor and a carbohydrate molecule. Until now, such findings were usually
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reported for prokaryotic regulatory systems (e.g., the Escherichia coli lac or gal operons). For
eukaryotes, the study has the impact that more direct regulatory mechanisms should not
be per se excluded.

In the case of the closely related orthologue of Xyr1 in A. niger, XlnR, the proposed
model for repression by D-glucose (provided by [16]), was speculated to occur through an
inter- or intramolecular interaction with the C-terminal region of the protein, which would
result in an inactive state. It is noteworthy that Xyr1 has a high sequence identity in this
region, including the V756 residue of XlnR, as described above. This amino acid correlates
with position 821 in Xyr1, close to the described mutation, A824V.

Notably, we found that the allosteric response of Xyr1 to three carbohydrates, which
are responsible for either an induced or repressed gene expression in the parental strain,
was lost in the mutant strain expressing Xyr1A824V. These observations strongly suggest
that the C-terminal part of the Xyr1 protein functions as a NR-like domain, which is in
good accordance with the observed deregulation of the xylanase expression. In addition,
we found that in the wild-type Xyr1, the response to D-glucose-6-phosphate is different
compared to inducing carbohydrates such as D-xylose or sophorose (compare Figure 4a,b).
In our postulated model (see Figure 5), we propose that the mutation in the NR-like domain
of Xyr1 leads to an altered presentation of the activation domain, independently of the
carbohydrate signal (Figure 5b). In contrast, the intact NR-like domain in the wild-type
Xyr1 would, in the simplest scenario, interact directly with the carbohydrate and expose or
hide the transactivating domain according to the received signal (Figure 5a). To study this
more extensively, a crystallographic study of Xyr1 variants alone and in the presence of
carbohydrates would be beneficial.
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Figure 5. Schematic presentation of the allosteric response of Xyr1 variants. A simplified model
of the structure of the wild-type Xyr1 (a) and the Xyr1A824V (b) without carbohydrates and their
conformational change in the presence of D-xylose (X) or D-glucose-6-phosphate (G), respectively, is
presented. Yellow box, DNA-binding domain; red box, NR-like domain; red-framed box, NR-like
domain bearing the A824V mutation; blue box, transactivating domain.

Overall, this study supports the usefulness of engineering transcription factors as a
beneficial tool to change their mode of regulation for desired properties, e.g., in this case,
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the carbohydrate-independence response. This is also well reflected by a number of studies,
whereby a mutated Xyr1 was used for an improved enzyme expression in T. reesei [30–32],
but also in other organisms such as Penicillium oxalicum [33].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8121254/s1, Figure S1. Blue native polyacrylamide gel elec-
trophoresis of the wild-type Xyr1 and the mutant Xyr1A824V.
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