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Abstract: Mitogen-activated protein kinase (MAPK) signaling pathways control fundamental aspects
of growth and development in fungi. In the soil-inhabiting ascomycete Fusarium oxysporum, which
causes vascular wilt disease in more than a hundred crops, the MAPKs Fmk1 and Mpk1 regulate an
array of developmental and virulence-related processes. The downstream components mediating
these disparate functions are largely unknown. Here we find that the GATA-type transcription factor
Pro1 integrates signals from both MAPK pathways to control a subset of functions, including quorum
sensing, hyphal fusion and chemotropism. By contrast, Pro1 is dispensable for other downstream
processes such as invasive hyphal growth and virulence, or response to cell wall stress. We further
show that regulation of Pro1 activity by these upstream pathways occurs at least in part at the level
of transcription. Besides the MAPK pathways, upstream regulators of Pro1 transcription also include
the Velvet regulatory complex, the signaling protein Soft (Fso1) and the transcription factor Ste12
which was previously shown to act downstream of Fmk1. Collectively, our results reveal a role of
Pro1 in integrating the outputs from different signaling pathways of F. oxysporum thereby mediating
key developmental decisions in this important fungal pathogen.

Keywords: Fusarium oxysporum; MAPK; Mpk1; Fmk1; Pro1; transcription factor; hyphal fusion;
virulence

1. Introduction

Signal transduction pathways control fundamental aspects of growth, development
and reproduction in fungi. Among the main signaling pathways are mitogen-activated
protein kinase (MAPK) cascades [1], which are present in all eukaryotic organisms and
function in series to transmit a wide variety of cellular signals [2,3]. The model fungus
Saccharomyces cerevisiae has five different MAPKs, Fus3, Kss1, Mpk1, Hog1 and Smk1 [4]
while most ascomycetes possess only three MAPKs, which are orthologous to S. cerevisiae
Kss1/Fus3, Mpk1 and Hog1 [3]. In the soil-inhabiting fungus Fusarium oxysporum, which
causes vascular wilt on a wide variety of economically important crop plants [5], three
orthologous MAPKs, Fmk1, Mpk1 and Hog1 have been reported [3]. Among these, Fmk1
and its downstream transcription factor Ste12 are essential for invasive hyphal growth
and plant infection [6,7], as well as for key developmental processes such as hyphal fusion
and adhesion, and for chemotropic growth towards nutrient sources [6,8–11]. Some Fmk1-
controlled functions, such as pathogenicity on plants, hyphal fusion or adhesion, also
depend on the cell wall integrity (CWI) Mpk1 MAPK cascade [12,13]. In addition, Mpk1
controls filamentation on a solid surface, response to cell wall stress and chemotropism
towards plant root exudates and peptide pheromones [10,12–14]. The transcriptional
regulators mediating these disparate functions downstream of the MAPK cascades are
largely unknown [3].
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Pro1 was originally identified in the filamentous fungus Sordaria macrospora as being
required for the formation of sexual fruiting bodies [15]. It belongs to the Gal4 family of
Zn(II)2Cys6 zinc cluster transcription factors, whose main characteristic is the presence of a
conserved domain consisting of six cysteine residues which coordinate two zinc ions [16].
Pro1 orthologs were subsequently found to function in sexual development in several
ascomycetes such as Neurospora crassa, Cryphonectria parasitica, Aspergillus nidulans and
Podospora anserina [17–22]. Furthermore, Pro1 was shown to contribute to developmental
processes that are jointly regulated by the two MAPKs Fmk1 and Mpk1 such as hyphal
fusion in N. crassa, Epichloë festucae and Aspergillus flavus [21,23–25], chemotropism and cell
wall remodeling in N. crassa [18,21] and virulence on plants in C. parasitica, Alternaria brassi-
cicola and A. flavus [20,25,26]. Interestingly, the A. flavus and N. crassa Pro1 orthologs were
shown to transcriptionally regulate different components of the MAK-1 (Mpk1) and MAK-2
(Fmk1) MAPK pathways [21]. Moreover, Western blot analysis suggested that the N. crassa
Pro1 ortholog ADV-1 binds to components of the MAK-1 and MAK-2 pathways [24]. Fur-
thermore, transcript levels of adv-1 were markedly reduced in germlings of mak-1∆ and
mak-2∆ when compared to the wild type strain, suggesting that these two MAPK pathways
control expression of this transcription factor [27].

Here we investigated the role of F. oxysporum Pro1 in mediating a variety of responses
regulated by the Fmk1 and Mpk1 MAPKs. Our findings suggest that Pro1 acts downstream
of these two broadly conserved signaling cascades to control important developmental
functions in this economically important fungal pathogen.

2. Materials and Methods
2.1. Fungal Isolates and Growth Conditions

The tomato pathogenic isolate Fusarium oxysporum f. sp. lycopersici 4287 (race 2;
FGSC 9935) and its derivatives were used in all experiments. Fungal strains were stored
at −80 ◦C as microconidial suspensions in 30% glycerol (v/v). For microconidia produc-
tion, DNA extraction and fungal development, strains were grown for 3–4 days in liquid
potato dextrose broth (PDB) at 28 ◦C and 170 rpm. For RNA extraction, freshly obtained
microconidia were germinated in Puhalla’s minimal medium (MM) [28] adjusted to pH
7.4 and supplemented with 25 mM sodium glutamate and 20 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid, and germlings were harvested after 10 h by vacuum
filtration. Hygromycin (20 µg/mL) or neomycin G418 (10 µg/mL) were added as needed.

2.2. Nucleic Acid Manipulation and Quantitative Real-Time Reverse Transcription-Polymerase
Chain Reaction (RT-qPCR) Analysis

Genomic DNA and total RNA were extracted from F. oxysporum mycelium as previ-
ously reported [9,29]. Plasmid DNA extraction was carried out as described [30]. DNA was
quantified in a Nanodrop® ND1000 spectrophotometer at 260 nm and 280 nm wavelengths.
The quality of the DNA was monitored by electrophoresis in 0.7% agarose gels (w/v). PCR
reactions were performed with the high-fidelity template PCR system (Roche Diagnostics)
in a MJ Mini personal thermal cycler (Bio-Rad).

To measure transcript levels of the pro1 gene, total RNA was isolated from snap frozen
tissue of three biological replicates and used for reverse transcription quantitative PCR
(RT-qPCR) analysis as described [9,31]. Briefly, RNA was extracted using the Tripure
Reagent and treated with DNAase (both from Roche Diagnostics SL, Barcelona, Spain).
Reverse transcription and qPCR were carried out with the using the FastStart Essential
DNA Green Master (Roche) in a CFX Connect Real-Time System (Bio-Rad) according to the
manufacturer’s instruction. Primers used for RT-qPCR analysis are listed in Table S3. Data
were analyzed using the double delta Ct method [32] by calculating the relative transcript
level in relation to the act1 gene (FOXG_01569).
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2.3. Generation of Gene Deletion Mutants and Complemented Strains

Targeted deletion of the pro1 gene (FOXG_01740) was performed by gene replacement
with the hygromycin B (Hygr) resistant cassette using the split marker method [33]. Briefly,
two PCR fragments encompassing 1.5 kb of the 5′- and 3′-flanking regions were amplified by
PCR with the primer pairs Pro1PF + Pro1 PR and Pro1TF + Pro1TR (Table S3). The amplified
fragments were then fused to the hygromycin resistance cassette, previously amplified with
primers Gpda15B + Trpter8B, using the fusion primer combinations Pro1PFN/HygG and
Pro1TRN/HygY, respectively. The two resulting DNA constructs were used to co-transform
freshly prepared F. oxysporum protoplasts [6]. Obtained transformants were purified by
two rounds of monoconidial isolation as described [34].

Hygromycin-resistant transformants were analyzed for targeted replacement of the
pro1 gene using PCR with the primer pairs Pro1PF + HygG and Pro1TR + HygY, as
well as by Southern blot analysis with a gene-specific probe. For initial screening of
transformants, colony PCR was performed using the Phire Plant Direct PCR Master Mix
(Thermo Scientific™, Shanghai, China) kit according to the manufacturer’s instructions,
with minor modifications [35]. Briefly, colonies were collected from transformation plates
using sterile pipette tips, suspended in 20 µL kit dilution buffer, crushed with the pipette
tip by pressing it against the tube wall, and incubated at room temperature for 2 h. Then
the tubes were centrifuged for 2 min at 13,400 rpm and 0.5 µL of the supernatant was used
as a template for a 20 µL PCR reaction. PCR amplifications with the primers CloverPro1
and Pro1compRnest were performed following the manufacturer’s instructions (Table S3),
using the following protocol: initial step of denaturation (5 min, 98 ◦C); 35 cycles (5 s, 98 ◦C,
5 s, 67 ◦C, 20 s/kb, 72 ◦C); and a final extension step (1 min, 72 ◦C).

For complementation of the pro1 knockout mutant, a DNA fragment with the wild
type pro1 allele encompassing the coding region plus 1577 bp 5′- and 1066 bp 3′-flanking
sequence was amplified from genomic DNA. A constitutively expressed and fluorescently
tagged pro1 allele driven by the Aspergillus nidulans gpdA promoter [36] (Pgpdpro1-clover),
encompassing the pro1 coding region N-terminally fused to the GFPclover gene containing
a Linker and a 3xFLAG epitope followed by 1066 bp of 3′-flanking region (Figure S2D),
was obtained by fusion PCR with overlapping ends of the gpdA promoter; the GFPclover-
Linker3-3xFLAG cassette amplified from plasmid pUC57-1XFomClover3-3XFLAG with
primer pair GpdA15B + Sv40revnest; and the pro1 coding region with a 1066 bp downstream
region amplified from gDNA with primers CloverPro1 and Pro1compR. The obtained PCR
fragments were fused in a single PCR reaction with the primer pair GpdA15 nest and
Pro1compRnest (Table S3).

The resulting linear DNA fragments were used to co-transform protoplasts of the
pro1∆#23 mutant with the neomycin resistance cassette amplified from the NeoR plasmid
with the primer pair GpdA15B + TrpC8B [37]. Co-transformants were purified by two
rounds of monoconidial isolation in presence of geneticin G418 (InvivoGen) and analyzed
for genomic integration of the transforming DNA fragments using PCR with primer pairs
CloverPro1 and Pro1compRnest for pro1 and Gpda5 and Pro1Rev (Figure S2) for Pgpdpro1-
clover (Figure S3B).

2.4. Cellophane Penetration Assay

Cellophane penetration assays were performed as described [8]. Briefly, an autoclaved
cellophane sheet was placed on top of a PDA plate and 5 µL of a suspension of 2 × 107 mi-
croconidia mL−1 was spot-inoculated at the center of the plate. After 3 days incubation at
28 ◦C, the cellophane sheet with the fungal colony was removed carefully and the plate was
incubated for an additional day at 28 ◦C before the presence or absence of fungal mycelium
on the underlying medium was recorded. All experiments included three replicates and
were performed three times with similar results.
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2.5. Quantification of Vegetative Hyphal Fusion and Hyphal Aggregation

To quantify germling fusion events, 40 µL of a suspension of 7 × 107 mL−1 freshly
collected microconidia was spread on top of a plate containing 5 mL of water agar (2%,
w/v) supplemented with 25 mM NaNO3 with the help of 10 sterile glass beads (0.5 cm
diameter) and the plate was incubated for 15 h at 28 ◦C. Hyphal fusion events were counted
in an Olympus BH-2 microscope (Olympus Iberia, Barcelona, Spain) using differential
interference contrast imaging (400×magnification). The number of germ tubes undergoing
hyphal fusion was expressed as percentage of the total number of counted hyphae. For each
strain, a total 300 germlings were examined. Experiments were performed at least three
times. Statistical analysis was conducted using one-way ANOVA followed by Tukey’s mul-
tiple comparison performed using GraphPad Prism version 8.0.1 for Windows, GraphPad
Software, San Diego, California USA, www.graphpad.com (accessed on 6 December 2021).

For macroscopic analysis of hyphal aggregate formation, 4.76 × 106 mL−1 freshly
collected microconidia were inoculated in MM supplemented with 25 mM NaNO3. After
36 h at 28 ◦C and 170 rpm, hyphal aggregates were imaged using a SteReo Lumar V12
stereomicroscope equipped with an AxioCam MR5 camera (Carl Zeiss, Barcelona, Spain).

2.6. Quantification of Microconidial Germination and Hyphal Chemotropism

To quantify cell-density-dependent repression of conidial germination, 109 mL−1

freshly obtained microconidia were washed with sterile double-distilled water, transferred
to MM adjusted to pH 5.0 and supplemented with 0.1% (w/v) sucrose to obtain a final
concentration of either 3.2 × 105 mL−1 (low density) or 8.6 × 107 conidia mL−1 (high
density), and incubated for 13 or 15 h, respectively, at 28 ◦C and 170 rpm. The percentage of
germinated conidia was determined using an Olympus BH2 microscope with differential
interference contrast imaging at 400× magnification. At least 300 conidia were exam-
ined for each isolate and experimental condition, and all experiments were performed
at least 3 times. Statistical analysis was conducted using t test with Welch’s correction
performed using GraphPad Prism version 8.0.1 for Windows, GraphPad Software, San
Diego, California USA, www.graphpad.com (accessed on 6 December 2021).

Quantification of hyphal chemotropism was performed as previously described [10].
For each condition, 4–5 independent batches of cells (n = 100–150 cells per batch) were
scored. Experiments were performed at least twice. Statistical analysis was conducted using
Yates’ corrected chi-squared test (two-sided) performed using GraphPad Prism version
8.0.1 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com
(accessed on 6 December 2021).

2.7. Colony Growth Assays

For phenotypic analysis of colony growth, 5 µL of serial dilutions (2 × 108, 2 × 107,
2 × 106 and 2 × 105 mL−1) of freshly obtained microconidia were spotted onto 50 mM
2-(N-morpholino)ethanesulfonic acid (MES)-buffered YPD agar plates (YPDA-MES) at pH
6.5. For cell wall and oxidative stress assays, Congo Red (CR) prepared in water (final
concentration 50 µg/mL), Calcofluor white (CFW) prepared in 0.5% w/v KOH and 83%
v/v glycerol (final concentration 40 µg/mL), menadione in ethanol (final concentration
10 µg/mL) and H2O2 (final concentration 0.8 mM) (all from Sigma–Aldrich, St. Louis, MO,
USA) were added to the YPDA-MES medium [12]. Plates were incubated for 2 days at
28 ◦C and imaged, except for heat stress assays in which they were incubated for 4 days at
34 ◦C. The colony area was measured using ImageJ software (U. S. National Institutes of
Health, Bethesda, MD, USA). Experiments were performed at least three times with similar
results. The data presented are from one representative experiment. Statistical analysis was
conducted using one-way ANOVA followed by Tukey’s multiple comparison performed
using GraphPad Prism version 8.0.1 for Windows, GraphPad Software, San Diego, CA,
USA, www.graphpad.com (accessed on 6 December 2021).

www.graphpad.com
www.graphpad.com
www.graphpad.com
www.graphpad.com
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2.8. Tomato Plant Infection Assay

Tomato root infection assays were performed as described [33]. Briefly, two-week-old
tomato seedlings (cultivar Moneymaker) were inoculated with F. oxysporum strains by
immersing the roots in a suspension of 2.5 × 108 mL−1 freshly obtained microconidia in
water, planted in minipots with vermiculite and maintained in a growth chamber (14/10 h
light/dark cycle) at 28 ◦C. Plant survival was recorded daily. Mortality was calculated
by the Kaplan–Meier method and compared among groups using the log-rank test. All
infection assays included 10 plants per treatment and were performed at least twice with
similar results. Statistical analysis was conducted using the Log-rank (Mantel–Cox) test.
Data were plotted using GraphPad Prism version 8.0.1 for Windows, GraphPad Software,
San Diego, California USA, www.graphpad.com (accessed on 6 December 2021).

2.9. Sequence Retrieval and Phylogenetic Analysis

The predicted F. oxysporum Pro1 ortholog as well as other fungal orthologs were
identified by performing a BLASTP search in the genome database of the National Center
for Biotechnology Information with the Sordaria macrospora k-hell Pro1 amino acid sequence
(NCBI database: XP_003351793.1). Amino acid sequences of the different Pro1 proteins
were aligned using Clustal W [38] and manually inspected. Only fully aligned regions of
the multiple sequence alignment were used. The phylogenetic tree was made using the
Clustal W Modelgenerator algorithm.

3. Results
3.1. Pro1 in F. oxysporum Is under Complex Transcriptional Control by the Fmk1 and Mpk1
MAPK Cascades and the Regulators Fso1 and Velvet

A BLASTp analysis of the F. oxysporum genome database identified a single pro1
orthologue, FOXG_01740, which encodes a predicted protein of 686 amino acids sharing
a high degree of identity with Pro1 proteins from ascomycetes (Figure S1; Table S1). To
study the transcriptional control of the pro1 gene, we measured pro1 transcript levels by
RT-qPCR analysis during early stages of germling fusion in the F. oxysporum wild type (wt)
strain as well as in isogenic mutants lacking the MAPKs Fmk1 or Mpk1, the transcription
factor Ste12 [7], the regulator of hyphal fusion Fso1 [8], the Velvet regulatory complex
component VeA or its downstream regulator LaeA [39]. Compared to the wt, expression
of pro1 was moderately downregulated in the fmk1∆ and ste12∆ mutants and strongly
reduced in the mpk1∆, fso1∆, laeA∆ and the veA∆ mutant (Figure 1). We conclude that pro1
transcription during early developmental stages of F. oxysporum is controlled by different
signaling pathways and regulators.
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Figure 1. Transcriptional analysis of pro1 in different F. oxysporum strains. Quantitative real-time
RT-PCR analysis was performed in the indicated strains germinated for 10 h in Puhalla min-
imal medium supplemented with 25 mM sodium glutamate and 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid and adjusted to pH 7.4. Transcript levels of the pro1 gene are expressed
relative to those of the wild type strain (wt). Data show means ± s.d. **, p < 0.001; ***, p < 0.0001
versus wt according to t test with Welch’s correction.
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3.2. Generation of Pro1 Deletion Mutants

To examine the role of Pro1 in F. oxysporum, we generated pro1∆ mutants by replacing
the entire FOXG_01740 coding region with the hygromycin resistance cassette (Figure S2A).
PCR analysis identified twelve hygromycin-resistant transformants producing amplifi-
cation patterns indicative of homologous replacement of the pro1 gene. Two of these
transformants were further tested by Southern blot analysis, confirming the replacement
of a 5196 bp HindIII fragment corresponding to the wt pro1 allele, with a fragment of
9098 bp consistent with homologous insertion of the deletion construct at the pro1 locus
(Figure S2B). Next, we complemented the mutant strain by re-introducing either the wt
pro1 allele (pro1∆ + pro1) or a constitutively expressed pro1 allele fused to the fluores-
cent GFP-derivative clover and driven by the strong Aspergillus nidulans gpdA promoter
(pro1∆ + PgpdA-pro1-clover) by co-transforming pro1∆ protoplasts with the neomycin re-
sistance cassette together with a 4.7-kb DNA fragment encompassing the complete pro1
gene, or with a construct of the pro1 coding region fused to the clover gene and driven by
the strong constitutive A. nidulans gpdA promoter, respectively (Figure S2D). PCR analysis
with gene-specific primers identified six independent transformants showing a PCR am-
plification product identical to that obtained from the wild type strain, which was absent
in the pro1∆ mutants, suggesting that these pro1∆ + pro1 transformants had integrated
the wild type pro1 allele (Figure S2C). Furthermore, PCR analysis with specific primers
for the PgpdA-pro1-clover construct identified 4 independent transformants carrying the
constitutively expressed pro1-clover allele (Figure S2E). RT-qPCR analysis revealed that
expression of pro1 was abolished in the pro1∆ knockout mutant, but only partially restored
in the pro1∆ + pro1 complemented strain (Figure 1). By contrast, transcript levels in the
pro1∆ + PgpdA-pro1-GFP strain were fully restored to wt level.

3.3. Pro1 Is Required for Vegetative Hyphal Fusion and Hyphal Aggregation

We next examined vegetative hyphal fusion and hyphal adhesion, two processes
that collectively lead to the formation of macroscopically visible hyphal networks during
growth of F. oxysporum in liquid medium [6,8,9]. Hyphal fusion is a highly regulated devel-
opmental process required for the formation of networks and multicellular structures [40].
Here we found that approximately half of the conidial germ tubes of the F. oxysporum wt
strain engaged in hyphal fusion whereas in the pro1∆ mutant hyphal fusion was largely
abolished, similar to the previously described fusion-defective fmk1∆ and mpk1∆ mutants
(Figure 2A) [8,12]. We also noted that hyphal fusion was fully rescued in the pro1∆ + PgpdA-
pro1-clover strain but only partially so in the pro1∆ + pro1 strain.

While the wild type strain formed dense hyphal aggregates, the pro1∆ mutants failed
to produce such networks similar to the fmk1∆ and mpk1∆ mutants (Figure 2B) [9,12].
Although hyphal fusion was reduced in pro1∆ + pro1 complemented strain, aggregate
formation was restored to the same extent as in the pro1∆ + PgpdA-pro1-clover strain.

3.4. Pro1 Contributes to Quorum Sensing during Germination of Microconidia

In F. oxysporum, as well as in other fungi [41,42], germination of conidia is inhibited at
high inoculum concentrations, a process that is mediated by quorum sensing via the Mpk1
MAPK pathway [13]. Here we tested the role of Pro1 in this process. Germination rates
of the pro1∆ mutants at an optimal spore concentration of 3.2 × 105 mL−1 were similar to
those of the wt (Figure 3A). By contrast, at an inhibitory concentration of 8.6 × 107 mL−1,
the germination rates of the pro1∆ mutants were significantly higher than those of the wt
(Figure 3B), similar to those previously reported for the mpk1∆ mutant, which is defective
in quorum sensing [13].
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Figure 3. Pro1 controls quorum sensing of F. oxysporum microconidia. The percentage of germinated
microconidia of the indicated strains at optimal (3.2 × 105 mL−1) (A) or inhibitory microconidial
concentrations (8.6 × 107 mL−1) (B) was determined after 13 or 15 h, respectively, of incubation
in minimal medium supplemented with 0.1% (w/v) sucrose and adjusted to pH 5.0. Data show
means ± s.d. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001 versus wt according to one-way
ANOVA followed by Tukey’s multiple comparison test.

3.5. Pro1 Is Required for Chemotropic Growth towards Nutrients, Plant Chemoattractants and
Peptide Pheromone

Chemotropism is the ability of directed growth towards a chemical gradient. In F. oxys-
porum, chemotropism towards nutrients such as glucose or glutamate depends on the Fmk1
MAPK cascade directed growth towards peptide sex pheromones and chemoattractants
secreted by plant roots requires the Mpk1 MAPK cascade [10,11,13]. Here we found that,
in contrast to the wt and the pro1∆ + pro1 complemented strain, the pro1∆ mutants failed to
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respond chemotropically to the nutrient glucose, peptide α-pheromone and tomato root
exudate (Figure 4). Somewhat unexpectedly, only chemotropism towards glucose, but not
towards pheromone and root exudate, was restored in the strain carrying the constitutively
expressed pro1∆ + PgpdA-pro1-clover strain.
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Figure 4. Pro1 is required for hyphal chemotropism towards nutrients (A), sex pheromone (B) and
plant roots (C). Directed growth of germ tubes of the indicated strains towards a gradient of indicated
chemoattractants was determined. Data show means± s.d. *, p < 0.05; **, p < 0.01 versus wt according
to Yates’ corrected chi-squared test (two-sided).

3.6. Pro1 Does Not Contribute to Cell Wall, Oxidative and Heat Stress Responses

The CWI Mpk1 MAPK cascade mediates adaptation of F. oxysporum to different types
of stresses [10,12]. To test the role of Pro1 in this response, growth assays were performed
in the presence of the cell wall targeting compounds Congo Red and Calcofluor white, the
oxidative stress generating compounds menadione and H2O2, as well as high temperature
(34 ◦C). Comparison of the colony diameters did not reveal any significant differences
between the pro1∆ mutants and the wt (Figure S3). By contrast, as reported previously,
growth of the mpk1∆ mutant was strongly affected on Congo Red and Calcofluor white.

3.7. Pro1 Is Dispensable for Invasive Hyphal Growth and Plant Infection

In other ascomycetes, Pro1 was shown to contribute to developmental processes
that are jointly controlled by the two MAPKs Fmk1 and Mpk1 [18,21,24] as well as to
virulence on plant hosts [20,23,26]. In F. oxysporum, Fmk1 controls invasive hyphal growth,
a major virulence-related function that can be defined by the capacity to penetrate across
a cellophane membrane [7,8]. Here we found that the pro1∆ mutants were unaffected in
cellophane penetration, indicating that Pro1 is dispensable for Fmk1-mediated invasive
growth (Figure 5A). In line with this, the pro1∆ mutants caused similar levels of mortality
on tomato plants as the wt (Figure 5B; Table S5). By contrast, the fmk1∆ mutant was
non-pathogenic as previously described [6].
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Figure 5. Pro1 is dispensable for invasive hyphal growth and virulence of F. oxysporum on tomato
plants. (A) Cellophane penetration assay. The indicated strains were spot-inoculated on top of a
cellophane membrane on a PDA plate, grown for 3 days at 28 ◦C and imaged (Before). The cellophane
with the fungal colony was removed and plates were incubated for an additional day to determine the
presence of mycelial growth on the plate, indicating penetration of the cellophane (After). (B) Tomato
root infection assay. Kaplan–Meier plot showing survival of groups of 10 tomato plants (cv. Monica)
inoculated by dipping roots into a suspension of 5 × 106 microconidia/mL of the indicated fungal
strains. Percentage survival was plotted for 30 days (****, p < 0.0001). Data shown are from one
representative experiment. All experiments were performed at least three times with similar results.

4. Discussion

The soil-inhabiting vascular wilt pathogen F. oxysporum uses the Fmk1 and Mpk1
MAPK cascades to regulate a variety of developmental and stress-related processes, some
of which are relevant for infection [3]. Thus, Fmk1 controls invasive hyphal growth,
which is essential for pathogenicity on plant hosts, as well as hyphal fusion and nutrient
chemosensing [6,9,10]. Meanwhile, the CWI MAPK Mpk1 is required for hyphal fusion,
quorum sensing and chemotropic growth towards peptide sex pheromones and root
exudates [10,12,13]. Moreover, this Mpk1 is essential for fungal adaptation to cell wall
stress [3,12]. How these two distinct MAPK cascades regulate common developmental
processes through downstream transcription factors is poorly understood. For example, the
zinc finger transcription factor Ste12 was previously shown to mediate invasive growth and
nutrient chemosensing, but is dispensable for hyphal fusion and aggregation, suggesting
that these different Fmk1-dependent processes are controlled through distinct downstream
regulators [7,10]. On the other hand, the transcription factors operating downstream of
Mpk1 in F. oxysporum remain to be identified.

Here we functionally characterized the F. oxysporum ortholog of Pro1, a Zn(II)2Cys6
transcription factor known to regulate developmental processes controlled by Fmk1 and
Mpk1 orthologs in different ascomycetes [43]. We show that Pro1 is essential for vegetative
hyphal fusion and hyphal aggregation of F. oxysporum, as previously reported in N. crassa,
E. festucae and A. flavus [21,23–25]. Hyphal fusion is a complex developmental process that
requires independent inputs from the Fmk1 and the Mpk1 cascade. In addition, F. oxysporum
Pro1 was also required for hyphal chemotropism, mirroring the results from N. crassa where
the Pro1 ortholog regulates chemoattraction prior to hyphal fusion [18,21]. Importantly,
we found that Pro1 is required both for nutrient chemosensing (which is regulated by the
Fmk1 cascade) and for chemotropism towards pheromones and root exudates (which is
under control of the Mpk1 pathway) [10,11,13]. Taken together, our result suggest that Pro1
controls developmental processes downstream of both MAPK cascades. Finally, Pro1 is
also required for quorum sensing during conidial germination, a process previously shown
to be mediated by the Mpk1 MAPK pathway [13].

By contrast, we found that Pro1 is dispensable for invasive hyphal growth through
cellophane membranes, a key infection-related process controlled by Fmk1. In line with
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this, Pro1 was also dispensable for virulence of F. oxysporum on tomato plants. Interestingly,
in the saprophytic fungus P. anserina, Pro1 was also dispensable for cellophane penetra-
tion [22]. This finding complements our previous study showing that Fmk1-dependent
invasive growth is predominantly regulated by the homeobox transcription factor Ste12 [7].
Furthermore, we found that Pro1 is not required for the response of F. oxysporum to cell
wall stress, which depends crucially on Mpk1 [10,12], thus providing strong evidence for
the presence of an additional transcription factor mediating cell wall integrity downstream
of Mpk1.

How is Pro1 regulated by different upstream components? RT-qPCR analysis showed
drastically and moderately reduced transcript levels of pro1 in mpk1∆ and fmk1∆ mu-
tants, respectively, compared to those in the wt. This is in line with a previous report
on N. crassa [27], but contrasts with results from P. anserina where pro1 transcript levels
were unaltered in mutants lacking either the Fmk1 or the Mpk1 orthologs [22]. The dis-
crepancy could be due to differences in the developmental stage used for transcriptional
analysis among these studies. Furthermore, we found that mutants lacking VeA or LaeA
exhibited a strong decrease in pro1 transcript levels. LaeA was previously reported to
contribute to transcriptional regulation of pro1 in A. flavus [25]. Interestingly, both VeA and
LaeA function in the Velvet regulatory complex which controls fungal development and
secondary metabolism [44–46], thus adding an additional layer of transcriptional regula-
tion of pro1. Finally, a F. oxysporum mutant in the regulatory protein Fso1 also exhibited
strongly reduced pro1 transcript levels, suggesting a possible role of Pro1 downstream of
Fso1. Taken together, these results suggest a combinatorial transcriptional regulation of the
F. oxysporum pro1 gene by at least three upstream pathways (Figure 6). Further evidence for
the relevance of transcriptional control for Pro1 function comes from the finding that the
pro1∆ + pro1 complemented strain, in which the pro1 transcript levels were only partially
restored compared to the wt (Figure 1), did not fully complement some of the phenotypes
such as hyphal fusion (see Figure 2A). On the other hand, constitutive expression of pro1
by the gpdA promoter failed to restore chemotropism towards peptide pheromone or plant
root exudates. Taken together, these results suggest that a tight regulation of pro1 at the
transcriptional level is essential for its correct function in F. oxysporum.
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In summary, we demonstrate here that the Zn(II)2Cys6 transcription factor Pro1 func-
tions as a key regulator of developmental processes downstream of a variety of MAPK and
other signaling cascades. It remains to be determined whether Pro1 activity by some of the
upstream components is also controlled via additional mechanisms, such as phosphory-
lation and/or protein-protein interactions. Further studies are required to fully elucidate
the complex interplay of Pro1, Ste12 and other transcriptional regulators in the control of
development and pathogenicity of F. oxysporum.
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