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Abstract: Lasiodiplodia (family Botryosphaeriaceae) is a widely distributed fungal genus that causes a
variety of diseases in tropical and subtropical regions. During 2020–2021, a routine survey of fruit tree
plants was conducted in five Egyptian Governorates, and fresh samples exhibiting dieback, decline,
leaf spot and root rot symptoms were collected. Collection from eight different symptomatic leaves,
twigs, branches and roots of fruit trees yielded 18 Lasiodiplodia-like isolates. The sequencing data
from the internal transcribed spacer region (ITS), partial translation elongation factor 1-alpha (tef1-a)
and β-tubulin (tub2) were used to infer phylogenetic relationships with known Lasiodiplodia species.
Two isolates obtained from black necrotic lesions on Phoenix dactylifera leaves were identified as a
putative novel species, L. newvalleyensis sp. nov., and were thus subjected to further morphological
characterization. The results of isolation and molecular characterization revealed that L. theobromae
(n = 9) was the most common species on Mangifera indica, Citrus reticulata, C. sinensis, Ficus carica,
Prunus persica, Prunus armeniaca and Pyrus communis trees. Lasiodiplodia pseudotheobromae (n = 5) was
isolated from M. indica, Prunus persica and C. sinensis. Lasiodiplodia laeliocattleyae (n = 2) was isolated
from C. reticulata. Pathogenicity test results suggested that all Lasiodiplodia species were pathogenic
to their hosts. The present study is considered the first to characterize and decipher the diversity
of Lasiodiplodia species associated with fruit trees in Egypt, using the multi-locus ITS, tef1-a and
tub2 sequence data, along with morphological and pathogenic trials. To our knowledge, this is the
first report of L. newvalleyensis on Phoenix dactylifera and L. laeliocattleya on C. reticulata in Egypt and
worldwide.

Keywords: elongation factor 1-alpha; β-tubulin; ITS; morphological characterization; pathogenicity
phylogenetic analysis

1. Introduction

The family Botryosphaeriaceae encompasses several fungal species that are found in all
environmental and climatic zones of the world as endophytes or saprophytes pathogens [1].
Lasiodiplodia (family Botryosphaeriaceae) is a pluralistic genus distributed in tropical and
subtropical areas that causes a variety of diseases, including cankers, dieback, fruit or
root rot, branch blight, stem end rot and gummosis on a wide range of woody and fruit
trees [1–5]. Since 2004 and until 2017, 43 species of Lasiodiplodia have been described [1,3,4,6].
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Nonetheless, five new Lasiodiplodia species associated with blueberries have recently been
discovered in China [7], bringing the genus Lasiodiplodia to forty-eight species. Members
of the genus Lasiodiplodia exhibit diverse lifestyles on a wide range of host plants, ranging
from endophytes, which cause asymptomatic infection on different plant tissues, pathogens,
which cause diseases and saprophytes [1,8]. Among the Lasiodiplodia species, L. theobromae
is a well-known plant pathogen associated with up to 500 hosts [9]. Diseases caused
by species in the Botryosphaeriaceae have been reported since 1971 when Botryodiplodia
theobromae was isolated from fruit rot and dieback of mango in Egypt. The fungal agent
was later synonymized under L. theobromae and regarded as a causal pathogen for dieback
on mango [3,10,11]; root rot on sugar beet dieback [12]; and canker and soft rot on other
hosts, such as grapevine [13], walnut [14], maize [15], citrus [16], Annona spp. [17], Phoenix
dactylifera [18], pome, stone fruit [19], Citrus sinensis, C. aurantifolia [20] and ornamental
Ficus trees [21].

Characterization of Lasiodiplodia species has primarily relied on cultural and conidial
characteristics and phylogenetic data [3,5,8,22–25]. Cultural and conidial characterization
are often misleading and result in inaccurate identification due to overlapping in morphol-
ogy [25,26]. Therefore, molecular characterization based on multi-locus sequence data has
widely been applied to identify the Lasiodiplodia species, especially the L. theobromae species
complex, which is difficult to distinguish based on morphology [1,8,23]. Recent multi-locus
phylogenetic approaches using DNA sequence data of the internal transcribed spacers (ITS)
of genomic rDNA [27], along with protein-coding genes such as translation elongation
factor 1-alpha (tef1-a) and β-tubulin (tub2) [1,5,7,23], have aided in the identification of
Lasiodiplodia species with strong phylogenetic support.

Based on the cosmopolitan presence of Lasiodiplodia species on various hosts and
a very recent study [20], the distribution and prevalence of this fungal agent could be
extended to other hosts in Egypt. In this sense, Lasiodiplodia species considered as a major
pathogens occurring on a variety of hosts causing stem-end rot, fruit rot, decline, cankers
and dieback. The current study was aimed at characterizing and deciphering the diversity
of Lasiodiplodia species associated with wider fruit tree hosts in Egypt, using the ITS, tef1-a
and tub2 sequence data, together with morphological and pathogenic trials.

2. Materials and Methods
2.1. Sampling and Isolation

During 2020–2021, surveys of fruit tree plants, including Mangifera indica, Citrus
reticulata, Citrus sinensis, Ficus carica, Prunus persica, Prunus armeniaca, Pyrus communis
and Phoenix dactylifera, were conducted across five Egyptian Governorates: Beheira, Giza,
Kaliobyia, Sharkia and New Valley (Table S1). A total of fifty-seven symptomatic leaves,
twigs, branches and roots of plants exhibiting leaf spot, dieback, decline and root rot
symptoms were collected. Samples were subjected to pathogen isolation, as previously
described [22]. The obtained Lasiodiplodia-like isolates and other associated fungi were cul-
tured on potato dextrose agar (PDA) and stored at 5 ◦C in a refrigerator. The cultures were
maintained in the culture collection facility at the Vegetable Diseases Research Department,
Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt.

2.2. DNA Extraction and PCR Amplification

Genomic DNA was extracted from 5-day-old cultures of isolated fungi [28]. PCR
amplification and sequencing of the ITS region of rDNA, including 5.8S, was performed
using the primers ITS4 and ITS5 [27]. Part of the tef1-α region was amplified using EF1-728F
and EF1-986R [29], and the tub2 region was amplified using Bt1a and Bt1b primers [30].
PCR amplifications were carried out in an ESCO Swift Maxi Thermal Cycler [31]. The resul-
tant PCR amplicons were gel purified using the CloneJet PCR cloning kit (ThermoFisher
Scientific, Waltham, MA, USA) and sequenced in both directions using Sanger sequencing
at Macrogen Inc. (Seoul, Korea). Sequences obtained in this study were deposited in
GenBank database, and their accession numbers were obtained (Table 1).
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Table 1. Lasiodiplodia sequences and their accession numbers used in the phylogenetic analyses.

Species Strain Host Country
GenBank Accession Numbers

ITS tef1-α tub2

L. aquilariae GuoLD01961 * Aquilaria crassna Laos KY783442 KY848600 -
L. avicenniae CMW 41467 * Avocennia

marina
South Africa KP860835 KP860680 KP860758

L. avicenniae LAS 199 Avocennia
marina

South Africa KU587957 KU587947 KU587868

L. americana CERC 1961 =
CFCC 50065 * Pistachia vera China KP217059 KP217067 KP217075

L. brasiliensis GuoLD01736 Carica papaya Brazil KY783475 KY848612 KY848556

L. brasiliensis CMW35884 Adansonia
madagascariensis Madagascar KU887094 KU886972 KU887466

L. bruguierae CMW41470 * Bruguiera
gymnorrhiza South Africa KP860833 KP860678 KP860756

L. bruguierae CMW42480 * Bruguiera
gymnorrhiza South Africa KP860832 KP860677 KP860755

L. caatinguensis CMM1325 * Citrus sinensis Brazil KT154760 KT008006 KT154767

L. caatinguensis IBL381 * Spondias
purpurea Brazil KT154757 KT154751 KT154764

L. chinensis CGMCC3.18066
*

Hevea
brasiliensis China KX499899 KX499937 KX500012

L. chinensis CGMCC3.18067 Sterculia
lychnophora China KX499901 KX499939 KX500014

L. chonburiensis MFLUCC
16-0376 * Pandanaceae Thailand MH275066 MH412773 MH412742

L. cinnamomi CFCC 51997 * Cinnamomum
camphora China MG866028 MH236799 MH236797

L. citricola IRAN1521C * Citrus sp. Iran GU945353 GU945339 KU887504
L. citricola IRAN1522C * Citrus sp. Iran GU945354 GU945340 KU887505

L. clavispora CGMCC
3.19594 *

Vaccinium
uliginosum China MK802166 OL773697 MK816339

L. clavispora CGMCC
3.19595

Vaccinium
uliginosum China MK802165 OL773696 MK816338

L. crassispora CMW 13488 Eucalyptus
urophylla Venezuela DQ103552 DQ103559 KU887507

L. crassispora WAC12533 Santalum album Australia DQ103550 DQ103557 -
L. curvata GuoLD01755 Aquilaria crassna Laos KY783443 KY848601 KY848532
L. curvata GuoLD01906 Aquilaria crassna Laos KY783437 KY84859 KY848529

L. euphorbicola CMW36231 * Adansonia
digitata Botswana KU887187 KU887063 KU887494

L. euphorbicola CMW 3609 * Adansonia
digitata Zimbabwe KF234543 KF226689 KF254926

L. endophytica MFLUCC
18-1121

Magnolia
acuminata China MK501838 MK584572 MK550606

L. exigua IBL 104 = CBS
137785 * Retama raetam Tunisia KJ638317 KJ638336 KU887509

L. fujianensis CGMCC3.19593 Vaccinium
uliginosum China MK802164 MK887178 MK816337

L. gilanensis IRAN 1501C Unknown Iran GU945352 GU945341 KU887510
L. gilanensis IRAN 1523C * Unknown Iran GU945351 GU945342 KU887511

L. gonubiensis CMW 14077 * Syzygium
cordatum South Africa AY639595 DQ103566 DQ458860

L. gonubiensis CMW 14078 * Syzygium
cordatum South Africa AY639594 DQ103567 EU673126

L. gravistriata CMM 4564 * Anacardium
humile Brazil KT250949 KT250950 -

L. gravistriata CMM 4565 * Anacardium
humile Brazil KT250947 KT266812 -
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Table 1. Cont.

Species Strain Host Country
GenBank Accession Numbers

ITS tef1-α tub2

L. henanica
XCN6 =
CGMCC
3.19176

Vaccinium
uliginosum China MH729351 MH729357 MH729360

L.
hormozganensis IRAN 1498C * Mangifera indica Iran GU945356 GU945344 KU887514

L.
hormozganensis IRAN 1500C * Olea sp. Iran GU945355 GU945343 KU887515

L. hyalina CGMCC
3.17975 * Acacia confusa China KX499879 KX499917 KX499992

L. iraniensis CMW 36237 * Adansonia
digitata

Mozambique KU887121 KU886998 KU887499

L. iraniensis CMW 36239 * Adansonia
digitata

Mozambique KU887123 KU887000 KU887501

L. iraniensis IRAN 1502C * Juglans sp. Iran GU945347 GU945335 KU887517
L. iraniensis IRAN 1520C * Salvadora persica Iran GU945348 GU945336 KU887516
L. irregularis GuoLD01673 Aquilaria crassna Laos KY783472 KY848610 KY848553

L. laeliocattleyae CBS 130992 * Mangifera indica Egypt JN814397 JN814424 KU887508
L. laeliocattleyae EGY2033 Citrus

reticulata
Egypt ON392181 OP080238 OP080255

L. laeliocattleyae EGY2038 Citrus
reticulata

Egypt ON392185 OP080242 OP080259

L. laosensis GuoLD01818 Aquilaria crassna Laos KY783471 KY848609 KY848552
L. laosensis GuoLD01963 Aquilaria crassna Laos KY783450 KY848603 KY848536
L. lignicola CBS 134112 * dead wood Thailand JX646797 KU887003 JX646845

L. macroconidica GuoLD01752 * Aquilaria crassna Laos KY783438 KY848597 KY848530
L. macrospora CMM3833 * Jatropha curcas Brazil KF234557 KF226718 KF254941

L. magnoliae
MFLUCC18-

0948
*

Magnolia
candolii China MK499387 MK568537 MK521587

L. mahajangana CMW 27801 * Terminalia
catappa Madagascar FJ900595 FJ900641 FJ900630

L. mahajangana CMW 27818 * Terminalia
catappa Madagascar FJ900596 FJ900642 FJ900631

L. margaritacea CBS 122519 * Adansonia
gibbosa Australia EU144050 EU144065 KU887520

L. mediterranea CBS 137783 * Quercus ilex Italy KJ638312 KJ638331 KU887521
L. mediterranea CBS 137784 * Vitis vinifera Italy KJ638311 KJ638330 KU887522
L. microcondia GuoLD01889 Aquilaria crassna Laos KY783441 KY848614 -
L. missouriana UCD 2193MO * Vitis vinifera USA HQ288225 HQ288267 HQ288304
L. missouriana UCD 2199MO * Vitis vinifera USA HQ288226 HQ288268 HQ288305

L. nanpingensis CGMCC3.19597 Vaccinium
uliginosum China MK802168 OL773699 MK816341

L. nanpingensis CGMCC319596 Vaccinium
uliginosum China MK802168 OL773698 MK816340

L.
newvalleyensis EGY20113 * Phoenix

dactylifera
Egypt ON392175 OP080253 OP080271

L.
newvalleyensis EGY20114 * Phoenix

dactylifera
Egypt ON392180 OP080254 OP080272

L. pandanicola MFLUCC
16-0265 * Pandanaceae Thailand MH275068 MH412774 -

L. paraphysoides CGMCC
3.19174 = QD7

Vaccinium
uliginosum China MH729349 MH729355 MH729358

L. paraphysoides CGMCC
3.19175 = QD8

Vaccinium
uliginosum China MH729350 MH729356 MH729359

L. parva CBS 456.78 * Cassava
field-soil USA EF622083 EF622063 KU887523
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Table 1. Cont.

Species Strain Host Country
GenBank Accession Numbers

ITS tef1-α tub2

L. parva CBS 494.78 Cassava
field-soil USA EF622084 EF622064 EU673114

L. plurivora STE-U 4583
*/CBS 121103 Vitis vinifera South Africa AY343482 EF445396 KU887525

L. pontae IBL12 =
CMM1277 *

Spondias
purpurea Brazil KT151794 KT151791 KT151797

L. pseudotheobro-
mae CBS 116459 * Gmelina arborea Costa Rica EF622077 EF622057 EU673111

L. pseudotheobro-
mae

CGMCC
3.18047

Pteridium
aquilinum China KX499876 KX499914 KX499989

L. pseudotheo-
bromae EGY2041 Citrus sinensis Egypt ON392168 OP080243 OP080260

L. pseudotheo-
bromae EGY2043 Mangifera

indica Egypt ON392170 OP080245 OP080262

L. pseudotheo-
bromae EGY2048 Prunus persica Egypt ON392172 OP080247 OP080264

L. pseudotheo-
bromae EGY2049 Mangifera

indica
Egypt ON392173 OP080248 OP080265

L. pseudotheo-
bromae EGY20101 Mangifera

indica
Egypt ON392179 OP080252 OP080270

L. pyriformis CBS 121770 * Acacia mellifera Namibia EU101307 EU101352 KU887527
L. pyriformis CBS 121771 * Acacia mellifera Namibia EU101308 EU101353 KU887528

L. rubropurpurea WAC 12535 * Eucalyptus
grandis Australia DQ103553 DQ103571 EU673136

L. rubropurpurea WAC 12536 * Eucalyptus
grandis Australia DQ103554 DQ103572 KU887530

L. sterculiae CBS342.78 * Sterculia oblonga Germany KX464140 KX464634 KX464908
L. subglobosa CMM3872 * Jatropha curcas Brazil KF234558 KF226721 KF254942
L. subglobosa CMM4046 * Jatropha curcas Brazil KF234560 KF226723 KF254944

L. tenuiconidia GuoLD01857 Aquilaria crassna Laos KY783466 KY848619 KY848586
L. thailandica CPC22795 * Albizia chinensis China KJ193637 KJ193681 KY751301
L. theobromae CBS 111530 * Unknown Unknown EF622074 EF622054 KU887531

L. theobromae CBS 164.96 Fruit on coral
reef coast

Papua New
Guinea AY640255 AY640258 KU887532

L. theobromae EGY2035 Citrus
reticulata Egypt ON392182 OP080239 OP080256

L. theobromae EGY2036 Citrus
reticulata

Egypt ON392183 OP080240 OP080257

L. theobromae EGY2037 Citrus
reticulata

Egypt ON392184 OP080241 OP080258

L. theobromae EGY2042 Mangifera
indica Egypt ON392169 OP080244 OP080261

L. theobromae EGY2046 Pyrus
communis

Egypt ON392171 OP080246 OP080263

L. theobromae EGY2050 Pyrus
communis

Egypt ON392174 OP080249 OP080266

L. theobromae EGY2082 Mangifera
indica Egypt ON392176 OP080237 OP080267

L. theobromae EGY2083 Ficus carica Egypt ON392177 OP080250 OP080268

L. theobromae EGY20100 Prunus
armeniaca Egypt ON392178 OP080251 OP080269
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Table 1. Cont.

Species Strain Host Country
GenBank Accession Numbers

ITS tef1-α tub2

L. tropica GuoLD01846 Aquilaria crassna Laos KY783454 KY848616 KY848540
L. venezuelensis WAC 12539 * Acacia mangium Venezuela DQ103547 DQ103568 KU887533
L. venezuelensis WAC 12540 * Acacia mangium Venezuela DQ103548 DQ103569 KU887534

L. viticola UCD 2553AR * Vitis sp. USA HQ288227 HQ288269 HQ288306
L. viticola UCD 2604MO * Vitis sp. USA HQ288228 HQ288270 HQ288307

L. vitis CBS 124060 * Vitis vinifera Italy KX464148 KX464642 KX464917

Diplodia mutila CMW 7060 * Fraxinus
excelsior Netherlands AY236955 AY236904 AY236933

* Isolates represent ex-type. The isolates obtained in this study are boldfaced, and those new species are in red
boldface.

2.3. Phylogenetic Analyses

MEGA XI (version 11.0.8) was used to trim and edit the obtained ITS, tef1-α and
tub2 sequences to remove ambiguous ends from both directions [32]. MAFFT version
7 was used to assemble and align the sequences with the closely related Lasiodiplodia
spp. [33]. Sequences were retrieved from the NCBI GenBank database (http://www.ncbi.
nlm.nih.gov, accessed on 25 July 2022). Phylogenetic analysis was conducted using PAUP
version 4.0a [34]. Maximum parsimony (MP) analysis was conducted using the heuristic
search option with random stepwise addition based on 1000 replicates, tree bisection and
reconnection (TBR) as branch swapping algorithms, and random taxon addition sequences
for the construction of MP trees. Branches of zero length were collapsed, and all multiple
equally parsimonious trees were saved. MAXTREES was set to 10,000. In the analysis, all
characters were unordered and had equal weight; gaps were treated as missing data. Tree
length (TL), consistency index (CI), rescaled consistency index (RC), retention index (RI) and
the homoplasy index (HI) were calculated for parsimony [35]. The phylogenetic relationship
was inferred with 1000 bootstrap replicates and included 104 sequences, representing 103
of Lasiodiplodia species, and a Diplodia mutila (CMW 7060) sequence as an outgroup taxon
(Table 1). Bayesian analysis was performed using MrBayes v3.2.7a [36] on Cipres Science
Gateway (www.phylo.org, accessed on 25 July 2022) [37], on the combined, partitioned
dataset with the substitution models, calculated for each partition, by ModelFinder on
IQ-TREE multicore version 2.2.0 [38,39]. Bayesian analysis was run in duplicate with four
Markov chain Monte Carlo (MCMC) chains, with random trees for 10,000,000 generations,
sampled every 1000 generations. The temperature value was lowered to 0.10, burn-in was
set to 0.25 and the run was automatically stopped when the average standard deviation
of split frequencies ended up below 0.01. A total of 4222 trees were read in the two
runs, 2111 each, and 25% of trees were discarded in each run as the burn-in phase of the
analysis. Posterior probabilities were determined from a consensus tree generated from
the remaining 1584 trees of each run. Maximum likelihood (ML) analysis was computed
with IQ-TREE multicore version 2.2.0, setting ModelFinder + tree reconstruction + ultrafast
bootstrap based on 10,000 replicates [39–41]. The phylogenetic trees of the MP, ML and BP
were viewed in FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree, accessed
on 25 July 2022).

2.4. Morphological Examination

Fungal structures were examined by inducing sporulation on 2% water agar (WA)
medium supplemented with double-autoclaved pine needles, as described by Ismail
et al. [3]. A 5-mm mycelial plug from each isolate was placed in the center of WA plates and
incubated for 10–20 days at 25 ± 2 ◦C near direct light with a 12 h photoperiod. Sections
were made through conidiomata using Leica CM1100 microtome and mounted in lactic
acid. Measurements were done for 30 conidiogenous cells, 30 paraphyses and 50 conidia
from material mounted in water. Fungal structures were imaged with a Nikon Coolpix 995

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
www.phylo.org
http://tree.bio.ed.ac.uk/software/figtree
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digital camera connected to a Leica, DM 25,000 LED microscope. Colony morphology was
observed on PDA medium after 7 days of incubation at 25 ◦C in the dark.

2.5. Evaluation of Temperature’s Effect on the Mycelial Growth

The effects of different temperature on the mycelial growth of L. newvalleyensis were
investigated. Three plates for each temperature were inoculated with 6-mm plugs from
the actively margins of 5-days-old cultures in the center of the 85-mm PDA. Petri dishes
were incubated in the dark at 6 different temperatures (10, 15, 20, 25, 30 and 35 ◦C). After
3 days, colony diameters were determined, and the data were converted to radial growth
in millimeters.

2.6. Pathogenicity Test on Seedlings and Leaves

Lasiodiplodia isolates were tested for their pathogenicity against their hosts of origin.
Pathogenicity was determined in 6–10-month-old seedlings of Citrus reticulata, M. indica,
Prunus persica, Prunus armeniaca and Pyrus communis. Apparently healthy leaves of Citrus
reticulata, F. carica, M. indica and Phoenix dactylifera were selected for pathogenicity. Three
replicates were used, and each replicate consisted of three leaves, meaning a total of
12 leaves were used for each isolate. Lasiodiplodia isolates were plated on PDA for 5-days
at 25 ± 2 ◦C in the dark prior to inoculation [3,22]. Inoculations of seedlings and leaves
were performed according to Ismail et al. [3,22]. Three replicates were used per isolate,
and each replicate comprised three plants with a total of 12 seedlings for each isolate. The
inoculated plants were maintained under greenhouse conditions at 25 ± 2 ◦C and 70–80%
relative humidity, and examined periodically for symptom development. The trials were
arranged in a completely randomized factorial design, and the trials were repeated once.
After 30 days, the pathogenicity of the tested isolates was terminated, and the results
were recorded as the extent of necrotic lesions (in centimeters) developed around the
inoculation sites for seedlings and leaves. The dimensions of the inoculated wounds were
not subtracted from final measurements. Values were transformed by Log2 for analysis and
separation of means. Re-isolation of the tested isolates was performed from the margins of
the necrotic lesions on PDA medium amended with streptomycin sulfate (0.1g L−1) and
incubated in the dark at 25 ± 2 ◦C.

2.7. Data Analysis

The obtained data were subjected to one-way ANOVA [42]. The data of lesion lengths
were not normally distributed and were then log transformed. Mean values of the trans-
formed lesion diameters (cm) and mycelial growth (mm) were compared using the least-
significant difference (LSD) test at (p < 0.05). The statistical program SPSS 8.0 was used to
analyse the data.

3. Results
3.1. Symptoms, Isolation and Frequency

Several symptom patterns on different fruit tree organs were observed, but the most
prevalent disease phenotype was dieback and decline. On mango trees, stem cracking
symptoms with black liquid oozing from infected tissues were also observed (Figure 1A).
Other symptoms observed included dieback of the young twigs starting from the tip and
extending downward (Figure 1B), infected twigs (cross section) showing brown vascular
discoloration of tissues on one side (Figure 1C), brown to black lesions on the leaf margins
(Figure 1D), root rot of mango seedlings (Figure 1E), black lesions under cambium tissues
of the crown area (Figure 1F) and apical part of roots (cross section) showing brown
discoloration of internal tissues (Figure 1G).
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Figure 1. Symptoms observed on M. indica plants included stem cracking and gummosis (A) and
dieback of the young twigs starting from the tip and extending downward (B). Cross-section of
infected twigs showing the brown vascular discoloration of tissues in one side (C). Brown to black
lesions on the leaf margins of the affected leaves (D). Root rot of mango seedlings (E). Black lesions
under cambium tissues of the crown area (F), and cross-section of an apical part of roots showing
brown discoloration of internal tissues (G).

On Prunus persica trees, the observed symptoms were dieback of the young twigs
and branches starting from the tip and extending downward (Figure 2A); infected twigs
(cross and longitudinal sections) showing the brown vascular discoloration of tissues in
one side (Figure 2B–D); brown and root rot, especially on old trees (Figure 2E); and brown
discoloration under cambium tissues of the crown area (Figure 2F). The symptom on
Pyrus communis trees was dieback of the young twigs starting from the tip and extending
downward (Figure 3A). Cross-sections of infected twigs to compare the infected and healthy
tissues also showed brown vascular discoloration of tissues on one side (Figure 3B,C). It was
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possible to observe dieback and decline of the young twigs and branches of Prunus armeniaca
starting from the tip extending downward (Figure 3D) and dieback of the branches on one
side, giving V-shape symptoms (Figure 3E,F). Lesions with different appearances were
observed on C. reticulata: large necrotic black lesions starting from the leaf margins and
inside the leaf blades (Figure 4A,B). In addition, dieback symptoms were observed on
young twigs of C. reticulata (Figure 4C) and C. sinensis (Figure 4D). Furthermore, brown
to black lesions were recorded on the young leaves of F. carica (Figure 4E,F) as well as
on the leaves of Phoenix dactylifera (Figure 4G,H). A total of 18 Lasiodiplodia-like isolates
(growing fast on medium, with a greenish brown to dark greyish blue mycelium) and other
associated fungi (4 isolates of Alternaria spp., 2 isolates of Cladosporium spp. and 2 isolates
of Pestalotiopsis spp.) were isolated from eight different fruit trees from five Egyptian
Governorates. In total, 18 Lasiodiplodia-like isolates were isolated—4 from branches, 7 from
leaves, 4 from twigs, 2 from roots and 1 from stem cracking (Table S2). All isolates were
included in the phylogenetic study.
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Figure 3. Symptoms on Pyrus communis plants included dieback of the young twigs starting from
the tip and extending downward (A); cross-sections of infected twigs showing the brown vascular
discoloration of tissues on one side (B,C); dieback and decline of the young twigs and branches of
Prunus armeniaca starting from the tip and extending downward (D); dieback of the branches on one
side, giving V-shape symptoms (E,F).
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Figure 4. Symptoms on C. reticulata: large necrotic black lesions that start from the leaf margins and
inside leaf blade (A,B); dieback on young twigs of C. reticulata (C) and C. sinensis (D); brown to black
lesions on F. carica (E,F) and on Phoenix dactylifera (G,H).

3.2. Phylogenetic Analyses

The sequences of the three gene regions were combined, yielding a dataset consisting
of 1114 characters (ITS: 482 bps; tef-1α: 274 bps; tub2: 358 bps), including gaps of 104 La-
siodiplodia taxa (Table S3). Of these characters, 72 characters were parsimony-uninformative,
156 were parsimony-informative and 886 (proportion = 0.795) were constant. Heuristic
search with the random addition of taxa (1000 replicates) resulted in the phylogenetic tree
(TL = 445 steps, CI = 0.633, RI = 0.868, RC = 0.550, HI = 0.366) and the most parsimonious
tree is presented in Figure 5. The topology of the tree generated by MP analysis was
congruent with the 50% majority-rule consensus tree. The phylogenetic tree generated by
ML analysis based on the combined ITS, tef-1α and tub2 sequence alignments is presented
in Figure 6. Based on the ITS, tef-1α and tub2 dataset, ML analysis revealed that Lasiodiplodia
isolates can be grouped into five major clades. Among all, five isolates belong to clade
containing L. pseudotheobromae (CBS116459 and CGMCC3 18047), as highly supported by
the bootstrap (BS)/posterior probability (PP) values of 98/0.92%. Most of the isolates
(nine isolates) grouped with L. theobromae (CBS111530 and CBS164.96) in a clade, which
was strongly supported with BS/PP values of 84/0.91% (Figure 6). Additionally, two
isolates clustered with L. laeliocattleyae (CBS130992) in a clade, which was supported with
strong values of BS/PP, 100/1.0%. Notably, two isolates, EGY20113 and EGY20114, of L.
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newvalleyensis, representing a potential novel species grouped together in an distant clade,
which was supported with BS/PP 93/0.91%, sister to a clade containing L. exigua BL104
and L. americana CERC1961, that highly supported with BS/PP 100/1.0% and to a clade
containing L. mahajangana CMW27801 and CMW27818, which was supported with BS/PP
99/1.0%.
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Figure 6. Phylogenetic tree based of maximum likelihood analyses (ML) based on the combined ITS,
tef-1α and tub2 dataset of Lasiodiplodia species. Branches are shown on nodes with bootstrap values
(BS %) and Bayesian posterior probabilities (PP). Branches not supported with BS or PP are marked
with –, and isolates representing ex-type are marked with *. Diplodia mutila CMW 7060 was used as
an outgroup taxon to validate the tree. The isolates obtained in this study are blue, and those newly
described and ex-type species are in red boldface.

3.3. Taxonomy

Lasiodiplodia newvalleyensis A.M. Ismail, S.M. El-Ganainy and E.S Elshewy, sp. nov
(Figure 6).



J. Fungi 2022, 8, 1203 14 of 22

MycoBank: MB843771.
The etymology refers to the place New Valley Governorate from where this species

was isolated.
Sexual morph: Absent. Asexual morph; Conidiomata (Figure 7b) produced on pine nee-

dles on WA within 10–15 days; mostly solitary or in aggregates; dark-grey to black; globose
to subglobose; covered with dense hairy mycelium; semi-immersed; becomes erumpent
when mature. A vertical section through pycnidia shows outer layers of pycnidia composed
of approximately 4–8 dark-brown, thick-walled cells layers of textura angularis, followed by
hyaline thin-walled cells towards the centre (Figure 7c). Paraphyses (Figure 7d,e), hyaline
and subcylindrical, arise between the conidiogenous cells. They are aseptate, wider at the
base, slightly swollen at the apex, 14.9–44.5 µm long and 1.9–3.7 µm wide. Conidiophores
reduced to conidiogenous cells. Conidiogenous cells (Figure 7f,g) are holoblastic, thin-walled
hyaline, cylindrical and sometimes swollen slightly at the base. They have a rounded apex,
proliferate recurrently to produce 1–2-minute annelations, are 4.6–10.5 µm long and are
3.2–5 µm wide. Conidia (Figure 7h–k) are initially hyaline, smooth, thick-walled, aseptate
and obovoid to ellipsoid, contain granular contents and are mostly round at both ends;
they have the same form when mature. Conidia become brown, are septate with 1-septum,
have longitudinal striations and measure 17.2–26.7 × 10.5–13.3 µm (av. of 50 conidia ± SD
= 22 ± 1.8 µm long, 11.7 ± 0.7 µm wide, L/W ratio = 1.8).

Cultural characteristics (Figure 7a): Colonies raised on a mycelium mat were moderately
dense, and initially white to smoke-grey but turned greenish grey on the front side and
greenish grey on the reverse side. The colour becomes dark slate blue with age. Pycnidia
was produced on PDA after 7 days under the above-mentioned conditions. Colonies
reached the edge of the Petri plate, 85 mm, after 3-days in the dark at 30 ◦C. Cardinal
temperature requirements for growth: minimum, 15 ◦C; maximum, 35 ◦C; and optimum,
30 ◦C (Figure 8). No growth was observed at 10 ◦C. Isolates produced a pink pigment in
PDA medium at 35 ◦C.

Materials examined: Egypt, New Valley Governorate—large dark-brown lesions on
leaves of date palm trees (Phoenix dactylifera), May 2020, A.M. Ismail, (holotype; a dry
culture on pine needles: EGY H-240483); living culture ex-type: EGY20114.

Notes: Lasiodiplodia newvalleyensis is phylogenetically distinct from other species of
Lsiodiplodia. It forms a basal clade comprised of L. nanpingensis, L. mahajangana, L. curvata, L.
irregularis, L. pandanicola, L. magnoliae, L. chonburiensis, L. caatinguensis, L. exigua and L. ameri-
cana. Morphologically, the unbranched and shorter paraphyses
(14.9– 44.5 × 1.9–3.7 µm) of L. newvalleyensis make the latter distinct from L. nanpingensis
(102 × 3.5 µm) [7], L. caatinguensis (31.1–60.2 × 2.1–5.0 µm) [5] and L. exigua (66 × 5 µm) [43].
Furthermore, the aseptate paraphyses of L. newvalleyensis distinguished it from 1-septate
L. irregularis [44] and from L. mahajangana [45]. The curved shape of conidia of L. curvata
distinguished it from L. newvalleyensis [44]. Moreover, L. newvalleyensis have longer conidia
(17.2–26.7 × 10.5–13.3 µm) than L. caatinguensis (13–20.2 × 10.1–12.5 µm) [5]. In addition,
the conidia dimensions of L. newvalleyensis (17.2–26.7 × 10.5–13.3 µm) are distinguishable
from those of L. pandanicola (14–38 × 9–22 µm) [46] and L. magnoliae (24–30 × 11–15 µm) [47].
The conidia shape (obovoid to ellipsoid) and dimensions (17.2–26.7 × 10.5–13.3 µm) of L.
newvalleyensis are also distinguishable from those of L. chonburiensis that has subglobose
to oval conidia with dimensions 23 × 12 µm [46]. Lasiodiplodia newvalleyensis and L. ameri-
cana share almost the same conidia characteristics; however, the later differs by its longer
(90 × 2–3.5 µm) and 1–3-septate paraphyses [48].
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Figure 7. Lasiodiplodia newvalleyensis holotype EGY H-240483. (a) Colony morphology, front and re-
verse sides; (b) conidiomata formed on pine needles on WA; (c) vertical section through pycnidia; 
(d,e) hyaline septate paraphyses formed between conidiogenous cells; (f,g) conidiogenous cells; (h,i) 
hyaline immature thick-walled conidia; and (j,k) dark mature conidia at two different focal planes 
to show longitudinal striation. Scale bars: (c) = 20 µm; (d–k) = 10 µm. 

Figure 7. Lasiodiplodia newvalleyensis holotype EGY H-240483. (a) Colony morphology, front and
reverse sides; (b) conidiomata formed on pine needles on WA; (c) vertical section through pycnidia;
(d,e) hyaline septate paraphyses formed between conidiogenous cells; (f,g) conidiogenous cells;
(h,i) hyaline immature thick-walled conidia; and (j,k) dark mature conidia at two different focal
planes to show longitudinal striation. Scale bars: (c) = 20 µm; (d–k) = 10 µm.
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Figure 8. The effect of temperature on the mycelial growth of L. newvalleyensis after 3-days on
PDA medium. Means followed by the same letter are not significantly different according to LSD
test (p < 0.05).

3.4. Pathogenicity Tests on Seedlings and Leaves

Pathogenicity tests revealed that all isolates were pathogenic to their hosts of origin to
different degrees of severity. The control plants exhibited small zones of necrotic tissues
due to wound reaction. Not all Lasiodiplodia isolates from the same species reacted in the
same manner on the tested hosts. There was significant (p < 0.05) variation between isolates
of L. theobromae and L. pseudotheobromae in terms of lesion length (Figure 9A). Out of all
L. theobromae isolates, only EGY2082 and EGY2042 were aggressive on Mangifera indica,
producing the largest lesions measuring 6.33 and 5.65cm (Figure 9A). EGY2048 was the
most aggressive among L. pseudotheobromae isolates, causing lesions of 6.26 cm on Prunus
persica (Figure 9A). The remaining L. theobromae and L. pseudotheobromae isolates induced
smaller lesions that were not significantly different according to the LSD test (p < 0.05).
Some isolates (EGY2048, EGY2082 and EGY20100) induced typical dieback symptoms on
Mangifera indica in the early stage of infection, which progressed further with the fungal
growth (upward and downward) and led to wilting and drying of the apical part and the
terminal leaves, giving the scorched appearance (Figure 10A). The L. theobromae isolate
(EGY2082) was pathogenic to F. carica and induced necrotic tissues similar to those observed
on the origin host (Figure 10B). Both L. laeliocattleyae isolates (EGY2033 and EGY2038) were
pathogenic to C. reticulata leaves (Figure 10B) with average lesion lengths of 3.27 and
3.49 cm, respectively, and were not statistically different (p < 0.05) from each other (Fig-
ure 9B). Additionally, the two isolates (EGY20113 and EGY20114) of the novel L. new-
valleyensis species were highly pathogenic to Phoenix dactylifera leaves (Figure 10D,E) and
produced lesions with average diameters of 4.44 and 3.91 cm, respectively (Figure 9B).
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Figure 9. Mean lesion size (mm) (y-axis) on stems (A) and leaves (B) of fruit trees inoculated with 9
isolates (6 of L. theobromae and 3 of L. pseudotheobromae) and 4 isolates (2 of L. laeliocattleyae and 2 of L.
newvalleyensis) (x-axis). Data in these columns are the means of n = 9 lesions. Bars above the columns
represent standard deviation of the mean. Columns bearing the same letters are not significantly
different according to the LSD test (p < 0.05).
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Figure 10. Typical dieback symptoms on mango seedlings after 30 days of inoculation (A): necrotic
lesions developed around the inoculated tissues of F. carica (B), C. reticulata (C) and Phoenix dactylifera
(D), and black pycnidia developed on the necrotic area of Phoenix dactylifera (E).

4. Discussion

Based on the results of the current study, four species of Lasiodiplodia associated with
diseases on different fruit trees were isolated and characterized. These were identified
as L. theobromae, L. pseudotheobromae, L. laeliocattleya and the newly recognized species L.
newvalleyensis. The new species was distinguished from other taxa in Lasiodiplodia based on
the phylogenetic inferences of the ITS, tef1-α and tub2 and morphological characteristics.
To our knowledge, this is the first report of L. newvalleyensis causing leaf lesions on Phoenix
dactylifera in Egypt and worldwide.

Lasiodiplodia species do not only occur as latent endophytes in asymptomatic plants, but
are also associated with different symptoms occurring on a variety of hosts, including stem-
end rot, fruit rot, decline, cankers and dieback [3,49]. In Egypt, L. theobromae, previously
known as Botryodiplodia theobromae, was considered as the main causal agent of fruit rot
and dieback of mango [10]. In the current work, L. theobromae was the most commonly
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isolated species causing different kinds of symptoms on M. indica, C. reticulata, C. sinensis,
F. carica, Prunus persica and Pyrus communis trees. This finding is supported by previous
studies which showed that L. theobromae has the ability to target a wide variety of fruit and
woody trees plants in Egypt [18,19], along with ornamental Ficus trees [21]. Lasiodiplodia
theobromae was also reported to cause gummosis and dieback of Prunus persica in Egypt [50].
Very recently, L. theobromae was reported as a causal agent of dieback, branch cankers and
gummosis on C. sinensis and C. aurantifolia in Egypt [20]. Similar results were reported,
and L. theobromae was the most frequently isolated from M. indica in Western Australia and
Brazil [51,52].

In our study, L. pseudotheobromae ranked second in terms of isolation frequency and
was associated with leaf lesions and dieback of M. indica and C. sinensis, along with root rot
on Prunus persica. This species has a worldwide distribution and causes mainly stem-end
rot, dieback and cankers on a wide range of hosts [3–5,24,25,49,53–56]. It was reported
to cause dieback in only mango trees in Egypt [3]. However, the current study reported
the presence of L. pseudotheobromae on other trees in Egypt. Reports on various hosts in
different geographical areas suggested that L. pseudotheobromae has a wide host range and
that its distribution might extend to other plant hosts and areas [45]. The low frequently
with which L. laeliocattleya was isolated from C. reticulata suggests that this species has
a limited geographical distribution. However, it has previously been reported to be on
mango trees in Egypt [3] and Peru [57] and on coconut and mango trees in Brazil [52,58].

The extensive phylogenetic Inference based on multiple gene sequences has played
an important role in delimiting novel species in the genus Lasiodiplodia [7,25,59]. In this
study, the use of combined ITS, tef1-α and tub2 sequence data enabled us to resolute the
single cryptic species within L. theobromae species complex and provide novel clues into
taxonomic novelties. The newly identified species was named as L. newvalleyensis, and
its morphological description is supplemented. Several studies have demonstrated that
using a single gene region is insufficient to delimit cryptic species [60–62], and therefore,
to resolve species boundaries in the genus Lasiodiplodia, more than one gene region is
required. This approach has revealed the presence of cryptic species in several genera
in the family Botryosphaeriaceae. The multi-locus sequence data of ITS, tef1-α and tub2
were used to separate Lasiodiplodia species in this study. Several studies have relied on
morphological characteristics such as conidia dimensions, morphology and morphology;
the sizes of paraphyses; and DNA sequence data for identifying Lasiodiplodia species
[7,44,46–48]. However, several morphological features can overlap [25,26,63] but are still
complimentary tools when combined with DNA phylogeny to distinguish new species
in Botryosphaeriaceae. In this study, the shapes and lengths of paraphyses were used to
differentiate L. newvalleyensis from the closely related species (Figure 7). Burgess et al.
relied on the septation of paraphyses to discriminate between Lasiodiplodia spp. and
indicated that L. crassispora, L. gonubiensis and L. venezuelensis have septate paraphyses,
whereas other species are aseptate [64]. However, in this study, septate paraphyses were
observed for L. pseudotheobromae, as previously reported by Alves et al. [56]. Using a similar
approach, Damm et al. distinguished L. plurivora from L. crassispora and L. venezuelensis
based on the morphology of the paraphyses [65]. This was also followed by a study of
Abdollahzadeh et al. who distinguished L. gilanensis from L. plurivora and L. hormozganensis
from L. parva and L. citricola using the morphology of the paraphyses [25]. In addition,
Ismail et al. relied on the morphology of the paraphyses to distinguish L. laeliocattleya from
the phylogenetically related L. hormozganensis [3].

Culture characteristics have also played a role in distinguishing Lasiodiplodia species.
Alves et al. discriminated L. parva and L. pseudotheobromae from L. theobromae based on the
production of a pink pigment in culture [56]. In contrast, the findings of Abdollahzadeh
et al. revealed that L. theobromae and other Lasiodiplodia species, with the exception of
L. hormozganensis, produce pink pigment on PDA at 35 ◦C [25]. In the present study, L.
newvalleyensis produced a dark-pink pigment in PDA after 4 days at 35 ◦C; the color become
darker with age. Colonies of L. newvalleyensis covered the 90 mm plates after 3 d at the
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optimum temperature of 30 ◦C. This finding is supported by those reported in previous
studies that the optimum growth temperature for Lasiodiplodia species ranges between 25
and 30 ◦C [66,67]. Moreover, L. newvalleyensis could not grow at 10 ◦C, which is in contrast
with the observations made by Alves et al. [56] and those of Abdollahzadeh et al., who
found that all studied Lasiodiplodia isolates grow at the same temperature [25]. Our results
are corroborated by those of a study on the mycelial growth of L. viticola, which could
not grow at 10 ◦C [68]. However, the recently described novel species L. guilinensis, L.
huangyanensis, L. linhaiensis and L. ponkanicola showed the ability to grow at 10 ◦C [67]. Thus,
culture characteristics are of limited value in species determination due to their variation
between isolates of a given species.

All Lasiodiplodia species showed the ability to spread through the internal tissues above
and below the points of inoculation, causing brown to black necrotic lesions (Figure 10).
The upward and downward progression inside the apparently healthy tissues reflected the
well-known endophytic nature of these fungi [68–71]. In our study, we could not compare
the severity of certain species on their hosts due to the low number of isolates recovered
from the same hosts. This was evident for the single isolates of L. theobromae obtained
from Pyrus communis, M. indica, Prunus armeniaca, C. reticulata and F. carica. There was
significant (p < 0.05) variation within isolates of L. pesudotheobromae and L. theobromae in
terms of severity. Variation in severity among L. theobromae and L. brasiliensis was also
reported [72]. Recent findings confirmed that isolates of L. theobromae are more virulent
than D. seriata on grapevines in Mexico [73]. Our results indicated that L. theobromae was
more aggressive than L. pesudotheobromae, which induced the largest lesions and severe
dieback symptoms on M. indica. These results are in contrast with those obtained by
Ismail et al., who demonstrated that L. pesudotheobromae was highly pathogenic to M. indica
than L. theobromae [3]. Furthermore, Leala et al. confirmed that L. pesudotheobromae and
L. theobromae are pathogenic to acid lime and valencia orange [20]. Therefore, the high-
frequency isolation, together with the results of pathogenicity, led us to consider that L.
pesudotheobromae and L. theobromae are important fungal pathogens in Egypt. The low
incidence, together with the fact that the only two isolates of L. laeliocattleya induced the
smallest lesions on C. reticulata, suggest that this species is of a little importance and does
not contribute significantly to citrus diseases. Our implications are based on earlier reports
which demonstrated that L. mahajagana was not a primary pathogen due to its low incidence
and virulence on Terminalia catappa [45], and Fusicoccum bacilliforme is a weak pathogen on
mango plants due to its low isolation frequency and the small lesions it produces on mango
plants [74]. A recent study also confirmed our suggestion that only L. pesudotheobromae and
L. theobromae have been reported on citrus in Egypt [20]. Likewise, it was stated that species
of Lasiodiplodia were more virulent against citrus, L. pesudotheobromae being the most widely
distributed in China [73]. The two isolates of the newly described species L. newvalleyensis
showed pathogenic ability on the leaves of Phoenix dactylifera, and there was no significant
(p < 0.05) difference among them in terms of severity [66].

To conclude, the studies demonstrated here added a new species and two new host
records to the list of Lasiodiplodia species. Therefore, this is the first report of L. laeliocattleya
on C. reticulata and L. newvalleyensis on Phoenix dactylifera in Egypt and worldwide. The L.
laeliocattleya and the newly described species L. newvalleyensis might pose a major threat
to citrus and date palm cultivations and other fruit trees in the reported area. Therefore,
further studies are needed, including extensive surveys and pathogenicity assays to clarify
the ecology and to highlight their relative roles in causing diseases on other hosts. The
external and internal symptoms developed by Lasiodiplodia species can evidently reflect
the capacity of inoculated fungi to cause diseases and to spread rapidly throughout the
vascular tissues, even if their hosts are not subjected to stress factors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8111203/s1, Table S1: Best-fit model of evolution according to
BIC; Table S2: Isolates obtained in this study and their origins; Table S3: SNP positions of ITS, tef, and
tub2 genes.
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