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Abstract: The aim of this study was to investigate the effects of purified β-glucosidases from
Issatchenkia terricola SLY-4, Pichia kudriavzevii F2-24, and Metschnikowia pulcherrima HX-13 (named as
SLY-4E, F2-24E, and HX-13E, respectively) on the flavor complexity and typicality of wines. Cabernet
Sauvignon wines were fermented by Saccharomyces cerevisiae with the addition of SLY-4E, F2-24E,
and HX-13E; the fermentation process and characteristics of wines were analyzed. The addition
of SLY-4E, F2-24E, and HX-13E into must improved the contents of terpenes, higher alcohols, and
esters, and decreased the contents of C6 compounds and fatty acids, which enhanced the fruity, floral,
and taste aspects, reducing the unpleasant green of wines with no significant difference in their
appearance. β-glucosidases from different yeast species produced different aroma compound profiles
which presented different flavor and quality. F2-24EW had the best effect on flavor and quality of
wine followed by SLY-4EW and HX-13EW. These research results can provide references for the use
of β-glucosidases from non-Saccharomyces yeasts to improve the flavor complexity, typicality, and
quality of wines.
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1. Introduction

Wine is popular with customers for its high nutritional value and health benefits. In
2020, the consumption of wine was about 2.34 × 1010 L in the world (OIV, 2021). However,
the flavor complexity and typicality of wine fermented by Saccharomyces cerevisiae are
poor [1], which would affect its competitiveness on the fruit wine market.

Volatile aroma compounds are very important to the flavor of wine. The release of
aroma compounds occurs via a sequential hydrolysis mechanism involving several gly-
cosidases [2]. β-glucosidases are the most important flavor enzymes which can hydrolyze
non-volatile glycoside compounds to release volatile compounds [3].

Therefore, co-fermentation using non-Saccharomyces yeasts with β-glucosidases and
S. cerevisiae could increase the contents of volatile varietal aroma compounds, which
would improve the flavor complexity and typicality of wines [4–7]. However, the non-
Saccharomyces yeasts were easily inhibited by S. cerevisiae or the vinification environ-
ment [8–10]. Under this context, more and more researchers found that adding crude
extracts of β-glucosidases from non-Saccharomyces yeasts into must could significantly
hydrolyze non-volatile glycoside compounds to release the volatile compounds to improve
the flavor complexity and typicality of wines [3,11–13]. Previous research also found crude
extracts of β-glucosidases from Issatchenkia terricola SLY-4, Pichia kudriavzevii F2-24, and
Metschnikowia pulcherrima HX-13 could significantly improve the flavor complexity and
characteristics of wines [14]. Recently, several β-glucosidases from non-Saccharomyces
yeasts were characterized and purified; the addition of purified β-glucosidases from non-
Saccharomyces yeasts into must could hydrolyze grape-derived aroma precursors, enhancing
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the aroma of wine [2,15–17]. Purified β-glucosidases from I. terricola SLY-4 (named as SLY-
4E), P. kudriavzevii F2-24 (named as F2-24E), and M. pulcherrima HX-13 (named as HX-13E)
about characterization were studied in our previous research, however, the effects of SLY-4E,
F2-24E, and HX-13E on the flavor complexity and typicality of wines are still unclear.

Therefore, to investigate the effects of SLY-2E, F2-24E, and HX-13E on the flavor
complexity and typicality of wines, Cabernet Sauvignon wines were fermented by S.
cerevisiae with adding SLY-4E, F2-24E, and HX-13E into must, respectively. The fermentation
kinetics of S. cerevisiae, physicochemical properties, volatile aroma compounds, and sensory
indicators of the wines were analyzed. The research results can provide references for
the use of β-glucosidases from non-Saccharomyces yeasts to improve the flavor complexity,
typicality, and quality of wines.

2. Materials and Methods
2.1. Strains and Media

I. terricola SLY-4, P. kudriavzevii F2-24, and M. pulcherrima HX-13 were isolated from a vine-
yard (Ningxia, China). S. cerevisiae was a commercial strain Actiflore® F33 (Laffort, France).

Yeast extract peptone dextrose medium (YPD, 10 g/L yeast extract, 20 g/L peptone,
20 g/L glucose) was used for starter preparation. YPD agar medium (YPDA) was prepared
by adding 20 g/L agar into YPD for S. cerevisiae cell counting.

Fermentation medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose, 3 g/L
NH4NO3, 4 g/L KH2PO4, 0.5 g/L MgSO4·7H2O, 10 mL/L Tween 80) was used for the
fermentation of non-Saccharomyces yeasts to produce β-glucosidases.

The β-glucosidases from SLY-4, F2-24, and HX-13 were purified by a high-pressure
homogenizer, salting out by ammonium sulfate, DEAE-52 anion exchange chromatography,
and SephadexG-75 chromatography. The characteristics of the purified β-glucosidases
were as follows. The Topt and pHopt of SLY-4E were 55 ◦C and 5.5. The Topt and pHopt
of F2-24E were 45 ◦C and 6.5. The Topt and pHopt of HX-13E were 50 ◦C and 5.5. They
were stable at 20–30 ◦C and pH 5–7. In pH 4, the relative activities of SLY-4E, F2-24E, and
HX-13E were 53.97%, 46.74%, and 64.79%, respectively.

2.2. Laboratory-Scale Fermentation of Wine

200 mL Cabernet Sauvignon must (residual sugar 212.9 g/L, total acidity 3.2 g/L
expressed as tartaric acid) in a 250 mL bottle was macerated at 4 ◦C for 12 h after adding
50 mg/L total SO2. Then, wines were fermented at 20 ◦C by inoculating 106 CFU/mL S.
cerevisiae and 1 U/L SLY-4E, F2-24E, and HX-13E, which were named as SLY-4EW, F2-24EW,
and HX-13EW, respectively. Wine with no β-glucosidase was used as a control. Each
experiment was conducted in triplicate. Fermentation ended when the reducing sugar
content in the fermentation broth was less than 4 g/L.

2.3. Growth and Sugar Consumption Kinetics of S. cerevisiae

The cell number of S. cerevisiae were counted through dilution coating on YPD plate,
and the residual sugar was determined through the method recommended by OIV every
day during wine fermentation (2009).

2.4. Analysis of Physicochemical Characteristics and Volatile Compounds in Wines

Alcohol, total acid, and volatile acid were determined through methods recommended
by Shi et al. (2019) [6]. The residual sugar content was expressed as glucose (g/L). The
total acid content was expressed as tartaric acid (g/L), and the volatile acid content was
expressed as acetic acid (g/L). Each experiment was conducted in triplicate.

The volatile compounds from wines were extracted by headspace solid-phase micro-
extraction with 50/30 µm DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA, USA) and
analyzed with an Agilent 6890 N gas chromatograph with a DB-5 capillary column
(30 m × 0.32 mm × 0.25 µm) coupled to an Agilent 5975B mass spectrometer (GC-MS) [3]
with little modification. A total of 8.0 mL wine, 2.0 g NaCl, and 10µL 450 µg/L cyclo-
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hexanone (internal standard) were added into a 20 mL headspace bottle and incubated at
40 ◦C for 15 min with magnetic stirring. The fiber was pushed into the headspace of the
bottle for 30 min and immediately desorbed in the injector of GC at 250 ◦C for 5 min. The
analysis condition of GC was as follows: increasing temperature from 40 ◦C to 130 ◦C at
3 ◦C/min, and then to 250 ◦C at 4 ◦C/min. The temperatures of injector and detector were
set at 250 ◦C and 260 ◦C, respectively. The MS was operated in electron impact ionization
mode at 70 eV, and ion source temperature was 250 ◦C. The volatile compounds were
identified by comparing the MS fragmentation pattern of each compound with that in
database Wiley 7.0 and NIST05. The following formula was used to calculate the content
of compounds:

Compound content (µg/mL) =
GC peak areas o f the compound × Quality o f internal standard (µg)
GC peak area o f the internal standard × Volume o f the sample (mL)

2.5. Sensory Evaluations of Wine

The sensory evaluation was performed as described by Shi et al. (2019) [6]. Wines
were evaluated by ten well-trained panelists (five females and five males) in a tasting room
at 20 ◦C. Approximately 20 mL wine samples were poured into wine glasses and presented
in triplicate. Potable water was provided for rinsing the palate during testing. Sensory
descriptions, including appearance, aroma (fruity, floral, and green), and taste of wine,
were scored from zero (weak) to nine (intense), respectively.

2.6. Data Analyses

Microsoft Office 2016 and GraphPad Prism 6.0 were used to complete the data and
charts. SPSS 19.0 software (SPSS Inc., Chicago, IL, USA) was used to do one-way analysis
of variance (ANOVA) and multiple mean comparisons were completed by the Duncan test.
SIMCA-P 14.1 (Umetrics AB, Umea, Sweden) was used for principal component analysis
(PCA) of volatile aroma components. MultiExperiment Viewer 4.9.0 (TIGR, Sacramento,
CA, USA) was used for hierarchical clustering and heat map visualization of fermentative
aroma compounds from wines after the z-score standardization.

3. Results and Discussions
3.1. Growth and Sugar Consumption Kinetics of S. cerevisiae during Wine Fermentation

The growth and sugar consumption kinetics of S. cerevisiae indicated that S. cerevisiae
could grow normally during wine fermentation. Compared with the control
(8.91 × 107 CFU/mL), the maximum biomass of S. cerevisiae in SLY-4EW (1.06 × 108 CFU/mL),
HX-13EW (1.26 × 108 CFU/mL), and F2-24EW (1.04 × 108 CFU/mL) were higher (Figure 1).
The fermentation periods were 7 days with no significant difference among wines. The
results indicated that adding SLY-4E, F2-24E, and HX-13E into must was beneficial for
the growth of S. cerevisiae, which could ensure successful wine fermentation, but it had
no effect on the fermentation periods of wines. Zhang et al. (2020) [14] reported that
adding crude extracts of β-glucosidase from I. terricola, P. kudriavzevii, and M. pulcherrima
into must could increase the maximum biomass of S. cerevisiae. However, Belda et al.
(2015) [18] and Hu et al. (2020) [19] reported that the maximum biomass of S. cerevisiae was
decreased during co-fermentation with Torulaspora delbrueckii, Hanseniaspora opuntiae, and
Hanseniaspora uvarum, respectively. These results indicated that adding β-glucosidases into
must could enhance the maximum biomass of S. cerevisiae and had no significant effect on
the fermentation periods of wines, but the co-fermentation of yeasts with β-glucosidase
activity would decrease the maximum biomass of S. cerevisiae and prolong the fermentation
periods. The increase in maximum biomass of S. cerevisiae might be explained by the
following. Adding β-glucosidases could cause the hydrolysis of glycosides to glucose
which was used as a carbon source [20], while in co-fermentation, the maximum biomass
of the yeasts might be decreased due to competition.
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Figure 1. Growth and sugar consumption kinetics of S. cerevisiae during wine fermenta-
tion. (A) Control; (B) SLY-4EW; (C) HX-13EW; (D) F2-24EW; -�-Growth kinetics; -•-Sugar
consumption kinetics.

3.2. The Physicochemical Characteristics and the Volatile Aroma Compounds of Wines

The content of residual sugar (3.83–4.00 g/L), alcohol (11.62–11.99% v/v), total acid
(6.56–6.75 g/L), and volatile acid (0.27–0.29 g/L) of SLY-4EW, F2-24EW, and HX-13EW had
no significant differences (Table 1).

Table 1. Physiochemical characteristics of wines.

Wine Fermentation
Period (d)

Residual
Sugar (g/L)

Alcohol (%,
v/v)

Total Acid
(g/L)

Volatile Acid
(g/L)

Control 7 3.83 ± 0.02 a 11.62 ± 0.15 a 6.66 ± 0.13 a 0.29 ± 0.02 a

SLY-4EW 7 4.00 ± 0.08 a 11.99 ± 1.02 a 6.75 ± 0.27 a 0.28 ± 0.01 a

HX-13EW 7 3.93 ± 0.05 a 11.95 ± 0.15 a 6.56 ± 0.27 a 0.27 ± 0.01 a

F2-24EW 7 3.98 ± 0.16 a 11.63 ± 0.59 a 6.66 ± 0.40 a 0.27 ± 0.01 a

Notes: Subscripts in the same column indicate significant differences (α = 0.05).

The detected 58 kinds of volatile aroma compounds were categorized into varietal
aroma compounds and fermentative aroma compounds. Eleven variety aroma compounds
were clustered into C6 compounds and terpenes. Forty-seven fermentative aroma com-
pounds were clustered into higher alcohols, fatty acids, fatty acid ethyl esters, acetic esters,
and carbonyl compounds (Table 2).
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Table 2. Concentration of volatile aroma compounds in wines (mg/L).

Compounds
Wines Odor

Threshold OAV Sensory Description

SLY-4EW HX-13EW F2-24EW Control

1-Hexanol 0.91 ± 0.08 ab 0.84 ± 0.04 b 0.79 ± 0.04 b 0.98 ± 0.07 a 8 [21] 0.1–1 Herbaceous,
grass [21]

E-3-Hexen-1-ol - - 0.03 ± 0.00 a - 0.4 [22] <0.1 Herbaceous,
grass [21]

C6 compounds 0.91 ± 0.08 ab 0.84 ± 0.04 b 0.82 ± 0.04 b 0.98 ± 0.07 a

Linalool 0.40 ± 0.03 a 0.39 ± 0.01 a 0.30 ± 0.02 b 0.21 ± 0.05 c 0.1 [22] >1 Muscat, flowery,
fruity [23]

Citronellol 0.24 ± 0.00 a 0.23 ± 0.03 a 0.14 ± 0.03 b 0.08 ± 0.01 c 0.1 [23] >1 Green lemon [21]
1-Octen-3-ol 0.20 ± 0.03 a 0.14 ± 0.04 b 0.16 ± 0.04 ab 0.08 ± 0.01 c 0.02 [23] >1 Mushroom [23]

Geranylacetone 0.05 ± 0.02 a 0.06 ± 0.03 a 0.04 ± 0.00 a - 0.06 [24] 0.1–1 Flowery [24]

Nerolidol 0.12 ± 0.01 a 0.10 ± 0.01 b 0.06 ± 0.00 c 0.07 ± 0.00 c 0.7 [23] 0.1–1 Roses, apple, orange
[23]

Terpineol - 0.06 ± 0.01 a 0.02 ± 0.02 b - 0.25 [25] 0.1–1 Flowery, piny [26]
Geraniol 0.06 ± 0.01 b 0.07 ± 0.00 a - - 0.03 [25] >1 Roses [25]

Caryophyllene - - 0.08 ± 0.01 a - 0.064 >1 Spicy, woody, orange
Lavandulol - - 0.02 ± 0.000 a - -

Terpenes 1.07 ± 0.11 a 1.04 ± 0.13 a 0.82 ± 0.08 b 0.43 ± 0.07 c

Varietal aroma
compounds 1.98 ± 0.19 a 1.88 ± 0.17 a 1.64 ± 0.12 a 1.41 ± 0.13 b

Isoamyl alcohol 211.78 ± 15.74 b 238.09 ± 1.14 a 217.26 ± 6.67 b 114.37 ± 1.24 c 30 [27] >1 Whiskey, malt, burnt
[27]

2,3-Butanediol 0.93 ± 0.31 a 1.15 ± 0.35 a 0.98 ± 0.04 a 1.19 ± 0.12 a 120 [28] <0.1 Butter, creamy [28]
1-Pentanol 0.02 ± 0.00 d 0.10 ± 0.00 a 0.09 ± 0.01 b 0.08 ± 0.01 c 80 <0.1 Mellow, astringency

1-Octanol 0.85 ± 0.06 a 0.70 ± 0.21 ab 0.56 ± 0.06 b 0.74 ± 0.15 ab 0.9 [29] 0.1–1 Flesh orange, rose,
sweetherb [29]

1-Nonanol 0.71 ± 0.36 ab 0.82 ± 0.04 a 0.39 ± 0.06 b 0.51 ± 0.02 b 0.015 [30] >1 Orange [30]
1-Decanol 0.19 ± 0.07 a 0.16 ± 0.07 a 0.13 ± 0.00 a 0.18 ± 0.01 a 0.4 [27] 0.1–1 Flowery [27]

4-Methyl-1-Pentanol 0.47 ± 0.01 a 0.41 ± 0.03 b 0.48 ± 0.01 a 0.47 ± 0.08 a 50 [31] <0.1 Almonds, toast [31]
3-Methyl-1-Pentanol 0.98 ± 0.17 a 0.98 ± 0.07 a 0.85 ± 0.02 a 0.96 ± 0.14 a 0.5 [31] >1 Soil, mushroom [31]
Active amyl alcohol 48.44 ± 3.11b 52.32 ± 0.77 a 48.76 ± 1.32 b 50.01 ± 0.44 ab 65 [32] 0.1–1 Hetero alcohol,

almond [32]
Benzyl alcohol 0.24 ± 0.01 a 0.17 ± 0.00 b 0.16 ± 0.03 b 0.23 ± 0.05 a 200 [29] <0.1 Almond [29]

Benzene alcohol 154.28 ± 2.76 a 125.79 ± 23.35 b 132.20 ± 5.58 b 88.23 ± 9.09 c 7.5 [29] >1 Soil, mushroom [29]

Higher alcohols 418.89 ± 22.60 a 420.71 ± 26.03 a 401.83 ± 13.79 a 256.97 ± 11.36 b

Isobutyric acid 0.04 ± 0.00 c 0.13 ± 0.04 b 0.28 ± 0.01 a 0.27 ± 0.04 a 2.3 [25] 0.1–1 Cheese, rancid [25]
Isovaleric acid 0.77 ± 0.04 a 0.97 ± 0.30 a 0.74 ± 0.08 a 0.90 ± 0.04 a 0.03 [25] >1 Fatty [25]

2-Methyl butyric acid 0.66 ± 0.01 b 0.97 ± 0.08 a 0.71 ± 0.28 b 0.69 ± 0.06 b 0.033 [21] >1 Cheese [21]
Octanoic acid 1.10 ± 0.04 b 0.69 ± 0.04 d 0.93 ± 0.05 c 1.46 ± 0.23 a 0.5 [22] >1 Cheese, rancid [22]
Decanoic acid 0.25 ± 0.00 a 0.16 ± 0.03 b 0.16 ± 0.02 b 0.27 ± 0.01 a 1 [25] 0.1–1 Fatty, unpleasant [25]

Fatty acids 2.81 ± 0.09b 2.92 ± 0.50 b 2.82 ± 0.44 b 3.58 ± 0.38 a

Ethyl acetate 0.10 ± 0.02 a - - - 7.5 [29] <0.1 Fruity, sweet
taste [29]

Ethyl propionate 0.36 ± 0.11 a 0.30 ± 0.03 a 0.28 ± 0.03 a 0.25 ± 0.08 a 1.8 [23] 0.1–1 Pineapples, bananas,
apples [23]

Ethyl butyrate 0.77 ± 0.43 a 0.48 ± 0.05 a 0.83 ± 0.54 a 0.41 ± 0.14 a 0.02 [27] >1 Strawberries, apples,
bananas [27]

Ethyl isovalerate 1.05 ± 0.42 a - 0.11 ± 0.01 bc 0.38 ± 0.02 b 0.003 >1 Bananas, fruity

Ethyl caproate 21.46 ± 2.68 a 9.26 ± 0.80 b 21.58 ± 4.69 a 7.27 ± 1.28 b 0.014 [27] >1 Green apples, fennel
[27]

Ethyl heptanoate 0.11 ± 0.01 a 0.07 ± 0.01 b 0.13 ± 0.05 a 0.07 ± 0.01 b 0.002 [27] >1 Sweet, strawberries,
bananas [27]

Diethyl succinate 0.31 ± 0.10 a 0.29 ± 0.01 ab 0.21 ± 0.01 b 0.26 ± 0.09 ab 200 [27] <0.1 Fruity, melons [27]
Ethyl octanoate 9.80 ± 0.27 b 10.48 ± 1.19 b 16.60 ± 0.61 a 7.10 ± 0.19 c 0.25 [27] >1 Fruity [27]
Ethyl nonanoate 0.44 ± 0.24 a 0.29 ± 0.03 ab 0.25 ± 0.03 b 0.21 ± 0.06 b 1.3 [27] 0.1–1 Flowery, fruity [27]

Ethyl caprate 7.29 ± 0.28 a 5.79 ± 0.60 b 4.01 ± 0.61 c 3.27 ± 0.57 d 0.2 [33] >1 Apples, flowery [29]
Ethyl laurate 0.53 ± 0.15 a 0.57 ± 0.05 a 0.35 ± 0.04 b 0.34 ± 0.07 b 1.5 [34] 0.1–1 Fruity, fatty [34]

Ethyl palmitate 0.15 ± 0.01 a 0.08 ± 0.05 b 0.06 ± 0.01 c 0.08 ± 0.00 b 1.5 [34] <0.1 Fatty, fruity,
sweet [34]

Fatty acid ethyl esters 42.32 ± 4.72 a 27.60 ± 2.82 b 44.40 ± 6.62 a 19.63 ± 2.52 c

Isoamyl acetate 6.82 ± 0.44 b 3.44 ± 0.44 d 8.43 ± 0.32 a 3.64 ± 0.08 c 0.2 [27] >1 Green apples,
bananas [27]

2-Methylbutyl acetate - 1.61 ± 0.48 b 6.33 ± 0.38 a 2.16 ± 0.35 b 0.16 [27] >1 Bananas, fruity [27]
Isobutyl acetate 0.29 ± 0.14 a 0.19 ± 0.07 a 0.36 ± 0.23 a 0.21 ± 0.02 a 1.6 [27] 0.1–1 Bananas [29]

Hexyl acetate 0.44 ± 0.00 b 0.32 ± 0.09 b 0.73 ± 0.47 a 0.42 ± 0.07 ab 1.5 [27] 0.1–1 Fruity, pear,
cherry [27]

Octyl acetate 0.20 ± 0.09 a - 0.13 ± 0.04 a 0.15 ± 0.01 a -
Phenylethyl acetate 13.89 ± 0.19 a 10.761 ± 0.241 c 9.39 ± 0.21 d 13.17 ± 0.42 b 0.65 [34] >1 Fruity, flowery [34]
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Table 2. Cont.

Compounds
Wines Odor

Threshold OAV Sensory Description

SLY-4EW HX-13EW F2-24EW Control

Acetic esters 21.63 ± 0.86 ab 16.33 ± 1.31 b 25.36 ± 1.65 a 19.74 ± 0.94 b

Octanoic acid-2-methyl
butyl ester 0.30 ± 0.00 a 0.12 ± 0.00 d 0.21 ± 0.01 b 0.16 ± 0.02 c

Isoamyl acetate 0.35 ± 0.08 a 0.13 ± 0.03 c 0.23 ± 0.11 b 0.21 ± 0.02 bc 1 [25] 0.1–1 Apples,
pineapples [25]

Isoamyl caprylate 0.55 ± 0.14 a 0.32 ± 0.07 b 0.34 ± 0.06 b 0.52 ± 0.04 a 0.125 [25] 0.1–1 Fruity, cheese [25]
Ethyl benzoate 0.34 ± 0.02 a 0.21 ± 0.01 b 0.21 ± 0.00 b 0.20 ± 0.00 b

Phenethyl hexanoate 0.34 ± 0.03 a 0.23 ± 0.02 b 0.17 ± 0.01 c 0.35 ± 0.06 a

Phenethyl octanoate - 0.03 ± 0.01 a 0.03 ± 0.01 a -

Other esters 1.88 ± 0.27 a 1.03 ± 0.14 c 1.18 ± 0.27 c 1.43 ± 0.15 b

Esters 58.82 ± 5.81 b 44.96 ± 1.68 c 70.95 ± 7.77 a 40.80 ± 4.17 c

Nonanal 0.11 ± 0.01 b 0.08 ± 0.02 c 0.11 ± 0.02 b 0.14 ± 0.02 a 0.015 [27] >1 Green, spicy [27]
Decanal 0.07 ± 0.01 a 0.06 ± 0.00 b 0.03 ± 0.00 c 0.06 ± 0.00 a 0.001 >1 Flowery
Octanal 0.06 ± 0.01 b - 0.06 ± 0.01 a - 0.001 >1 Bitter, lemons
Hexanal - 0.01 ± 0.01 a 0.01 ± 0.01 a -

2,3-Pentanedione 0.16 ± 0.08 b 0.41 ± 0.02 a 0.44 ± 0.07 a 0.40 ± 0.05 a 2 [21] 0.1–1 Pecans [21]
Benzaldehyde 0.40 ± 0.10 a 0.68 ± 0.48 a 0.327 ± 0.024 b 0.40 ± 0.02 a 2 [21] 0.1–1 Toasted almonds [21]

Phenylacetaldehyde 0.12 ± 0.00 a 0.10 ± 0.01 a 0.12 ± 0.04 a 0.12 ± 0.02 a 0.005 [25] >1 Flowers, roses, honey
[25]

Carbonyl compounds 0.92 ± 0.19 b 1.33 ± 0.53 a 1.11 ± 0.16 ab 1.13 ± 0.10 ab

Fermentation aroma 488.45 ± 28.73 a 469.92 ± 31.32 a 476.71 ± 22.85 a 302.48 ± 15.44 b

Note: Subscripts in the same line indicate significant difference (α = 0.05); “-” means the compound is
not detected.

3.3. Varietal Aroma Compounds

Eleven varietal aroma compounds were classified into C6 compounds and terpenes. The
total content of varietal aroma compounds in SLY-4EW (1.98 mg/L), HX-13EW (1.88 mg/L),
and F2-24EW (1.64 mg/L) was significantly higher than that in the control (1.41mg/L).

The content of C6 compounds with unpleasant green flavor presented a significant
decrease in SLY-4EW (0.91 mg/L), F2-24EW (0.84 mg/L), and HX-13EW (0.82 mg/L)
compared with that in the control (0.98 mg/L), and the content of terpenes in SLY-4EW
(1.07 mg/L), HX-13EW (1.04 mg/L), and F2-24 EW (0.82 mg/L) was significantly higher
than that in the control (0.43mg/L). The odor active varietal aroma compounds (OAV > 1)
were linalool, citronellol, 1-octen-3-ol, geraniol, and caryophyllene. These results indicated
that adding SLY-4E, HX-13E, and F2-24E could decrease the content of C6 compounds
and increase the content of terpenes. Qin et al. (2021) [35] and Zhang et al. (2020) [14]
also reported that fermentations by I. terricola, P. kudriavzevii, and M. pulcherrima with
β-glucosidase activity or adding their crude extracts of β-glucosidase could increase the
content of terpenes and decrease the content of C6 compounds. In addition, adding
purified or crude extracts of β-glucosidases from H. uvarum, Rhodotorula mucilaginosa, or
Candida easanensis into must could also increase the content of terpenes and C6 compounds
in wines [12,13,36]. Ma et al. (2017) [37] reported that adding crude extracts of enzymes
(mainly including esterases and β-glucosidases) from Pichia fermentans could increase the
content of terpenols and C6 compounds. These results indicated that β-glucosidases from
different yeasts could increase the content of terpenes but have different effects on C6
compounds. A high content of terpenes would enhance the fruity and floral aspects of
wines [38] and a low content of C6 compounds would decrease the unpleasant green flavor
of wines [39,40]. β-glucosidases from yeasts could successfully hydrolyze non-volatile
odorless precursors to release the volatile odor compounds to increase the content of
terpenes, which would improve the flavor and quality of wines. However, the mechanism
of β-glucosidases from different yeasts that had different effects on C6 compounds is still
unclear. Therefore, in the future, more studies should be carried out to investigate the effects
of β-glucosidase from different non-Saccharomyces yeasts on C6 compounds. Moreover,
more non-Saccharomyces yeasts with β-glucosidase should be selected for lower producing
C6 compounds.
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The PCA was carried out to reveal the correlation and segregation of varietal aroma
compounds from different wines. The results indicated that PC-1 (52%) and PC-2 (36.9%)
accounted for 88.9% of the total variance (Figure 2). SLY-4EW was clustered with nerolidol,
geraniol, citronellol, linalool, and geraniyl acetone at the negative part of PC-1. HX-13EW
was grouped with terpinol, 1-octen-3-ol, and geraniyl acetone at the negative end of
PC-1. F2-24EW was clustered with lavenol, caryophyllene, and E-3-hexene-1-ol at the
forward end of PC-1. The control was clustered with hexanol at the positive end of PC-
1. The results showed that adding SLY-4E, HX-13E, and F2-24E could produce different
profiles of varietal aroma compounds: SLY-4E increased the release of nerolidol, geraniol,
citronellol, linalool, and geraniyl acetone; HX-13E promoted the release of terpinol, 1-octen-
3-ol, and geraniylacetone; while F2-24E promoted the release of lavenol, caryophylene,
and E-3-hexene-1-ol. Swangkeaw et al. (2009) [41] showed that adding crude extracts
of β-glucosidases from Hanseniaspora sp. and Pichia anomala into Traminette grape juice
could increase the content of limonene and linalool oxide. This implied that different
β-glucosidases had diverse substrate specificity to produce various kinds of varietal aroma
compounds which would present different varietal aroma. In the future, the effect of
different non-Saccharomyces yeasts with β-glucosidases on the varietal aroma compounds
should be analyzed.
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3.4. Fermentative Aroma Compounds

The forty-seven fermentative aroma compounds from wines included eleven higher
alcohols, five fatty acids, twelve ethyl fatty acids, six acetic acid esters, six other esters,
and seven carbonyl compounds. Compared with the control (302.48 mg/L), the content of
fermentative aroma compounds in SLY-4EW (488.45 mg/L), HX-13EW (469.92 mg/L), and
F2-24EW (476.71 mg/L) was higher (Table 2).

The content of higher alcohols in SLY-4EW (418.89 mg/L), HX-13EW (420.71 mg/L),
and F2-24EW (401.33 mg/L) was significantly higher than that in the control (256.97 mg/L)
(Figure 3), especially for isoamyl alcohol and benzene ethanol. Previous research also reported
that adding crude extracts of β-glucosidases from P. fermentans, H. uvarum, Trichosporon asahii, and
Candida parapsilosis into must or co-fermentation with S. cerevisiae and Lachancea thermotolerans or
T. delbrueckii increased the content of higher alcohols [11,37,42,43]. The results indicated that
β-glucosidases from non-Saccharomyces yeasts could increase the content of higher alcohols.
A proper content of higher alcohols (<300 mg/L) would bring fruity and floral flavors
to wines; however, it could be counterproductive when it exceeds 400 mg/L. [33,44,45].
Although higher alcohols could improve the flavor complexity, the high concentration of
them in SLY-4EW, HX-13EW, and F2-24EW might have a negative impact on the aroma and
flavor. A high concentration of higher alcohols might be explained by the transformation
of glucose from the hydrolyzation of glycosides by β-glucosidase or amino acids from
β-glucosidase degradation through the Ehrlich pathway [46,47].
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Esters were formed by fatty acids and alcohols, while excessive fatty acids would present
cheesy, fatty, and rancid notes [48]. The content of fatty acids in SLY-4EW (2.81 mg/L), HX-
13EW (2.92 mg/L), and F2-24EW (2.82 mg/L) was lower than that in the control (3.58 mg/L)
(Figure 3). Ma et al. (2017) [37] also reported that adding crude extracts of β-glucosidase
from P. fermentans into must could significantly decrease the content of fatty acids in wines,
but other research has indicated that crude extracts of β-glucosidase from R.mucilaginosa,
H.uvarum, I. terricola, P. kudriavzevii, or M. pulcherrim could increase the content of fatty
acids in fruit wines [11,14,36]. These results indicated that adding β-glucosidases from
different yeasts into must had different effects on the content of fatty acids. However, the
reason why β-glucosidases from different yeasts have different effects on the content of
fatty acids is unclear.

The concentration of esters was significantly higher in SLY-4EW (58.82 mg/L), HX-
13EW (44.96 mg/L), and F2-24EW (70.95 mg/L) than in the control (40.80 mg/L) (Figure 3).
Ma et al. (2017) and Hu et al. (2016a) also reported that adding crude extracts of β-
glucosidase from P. fermentans or H. uvarum into must significantly increased the content
of esters. These results indicated that adding β-glucosidases from yeasts into must could
increase the content of esters, which would present the fruity and floral flavors in wines [13].
The higher content of esters might be explained by the high content of higher alcohols,
which were the precursors of esters.

Compared with that in the control (1.13 mg/L), the content of carbonyl compounds
was lower in SLY-4EW (0.92 mg/L), higher in HX-13EW (1.33 mg/L), and had no significant
difference in F2-24EW (1.11 mg/L) (Figure 3). The detected carbonyl compounds in wines
might have negative effects on the flavor of wines, but the real effects of these compounds
on wines should be further analyzed.
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The odor active fermentative aroma compounds (OAV > 1) were isoamyl alcohol,1-
nonanol, 3-methyl-1-pentanol, benzene ethanol, isovaleric acid, 2-methyl butyric acid,
octanoic acid, ethyl butyrate, ethyl isovalerate, ethyl caproate, ethyl heptanoate, ethyl oc-
tanoate, ethyl caprate, isoamyl acetate, 2-methylbutyl acetate, phenylethyl acetate, nonanal,
decanal, octanal, and phenylacetaldehyde. These results indicated that adding SLY-4E, HX-
13E, and F2-24E into must could increase the content of fermentative aroma compounds,
especially higher alcohols and esters, but decrease the content of fatty acids in wines.

The hierarchical clustering and heat map visualization of fermentative aroma com-
pounds in wines implied that wines were classified into SLY-4EW/control and HX-13EW/F2-
24EW, and the fermentative aroma compounds were clustered into class I, II, III, and IV
(Figure 4). The control was rich in class III and class IV which contained higher alcohols,
fatty acids, other esters, and phenylethyl acetate. SLY-4EW was abundant in class I, class
III, and class IV including higher alcohols, fatty acid ethyl esters, carbonyl compounds, and
acetic esters. These compounds presented fruity, floral, and bitter flavors and improved
the complexity of the aroma in SLY-4EW. HX-13EW had higher contents of compounds
from class I, class II, and class III including higher alcohols, fatty acids, acetic esters, car-
bonyl compounds, ethyl laurate, and diethyl succinate. F2-24EW was abundant in class I,
class II, and class IV including fatty acid ethyl esters, acetic esters, carbonyl compounds,
phenylethyl octanoate, 2-methyl butyric acid, 1-pentanol, and 4-methyl-1-pentanol. In class
I and II, the OVA of isoamyl alcohol, benzene alcohol, ethyl caprate, ethyl heptanoate, ethyl
octanoate, isoamyl acetate, ethyl butyrate, ethyl caproate, and octanal were greater than 1.
These compounds presented fruity, floral, and bitter flavors and improved the complexity
of the aroma in SLY-4EW, F2-24EW, and HX-13EW. These results suggested that adding
SLY-4E, HX-13E, and F2-24E into must produced different profiles of fermentative aroma
compounds which would impart different flavor complexities on wines.

In the future, more non-Saccharomyces yeasts with β-glucosidases should be selected
to produce different profiles of fermentative compounds. Moreover, it is also important to
study the mechanism of adding different β-glucosidases from different non-Saccharomyces
yeasts into must on the contents of fermentative aroma compounds of wines.

3.5. Sensory Evaluation of Wines

The sensory evaluation of wines (Figure 5) showed that the appearance had no sig-
nificant difference. Compared with those in control, the scores of floral, fruity, and taste
in SLY-4EW, HX-13EW, and F2-24EW were higher, while their unpleasant green flavor
were lower. F2-24EW had the highest scores in floral (7.50), fruity (7.83), and taste (7.83),
while HX-13EW had the lowest scores in floral (6.33), fruity (6.67), and taste (6.83). Adding
β-glucosidase from yeasts could improve the fruity and floral aspects, which was also
reported by Ma et al. (2017) [37], Thongekkaew et al. (2019) [12], Hu et al. (2016b) [36], and
Sun et al. (2018) [10]. These results indicated that β-glucosidases from yeasts could enhance
the flavor complexity and typicality of wines. The appearance of SLY-4EW, HX-13EW,
and F2-24EW had no significant difference, while Wang et al. (2013) [49] reported that
adding crude extracts of β-glucosidase from T. asahii into grape juice had a strong effect
on the appearance. Part of the β-glucosidase could break the glycosidic bond, then the
free anthocyanins degraded into colorless compounds, which made the wine pale [50–52].
The difference in the decomposition of anthocyanins by β-glucosidase might be related to
the structural characteristics of substrates and properties of β-glucosidase. The effect of
adding β-glucosidase from non-Saccharomyces yeasts into must on the appearance of wines
during aging and storage should be further investigated, and the substrate specificity of
β-glucosidase from different non-Saccharomyces yeasts should be deeply studied.
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The volatile aroma compound profiles of SLY-4EW, HX-13EW, and F2-24EW were
significantly different from the control. Different volatile aroma compound profiles would
take different flavor characteristics on wines [53,54], while some studies found that the
co-fermentation with S. cerevisiae and T. delbrueckii and P. fermentans could not only enhance
the flavor of the wine, but also bring a vinegar or earthy flavor [37,55]. It means that there
was a complex multivariate correlation between the aroma characteristics and volatile
aroma compounds of wines.
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4. Conclusions

Adding SLY-4E, F2-24E, and HX-13E into must had no negative effect on the fermen-
tation period and the physicochemical characteristics of wines, although the maximum
biomass of S. cerevisiae had increased. The content of terpenes, higher alcohols, and esters
was increased by adding SLY-4E, F2-24E, and HX-13E, which enhanced the fruity and floral
aspects of wines. Additionally, the content of C6 compounds was decreased which reduced
the unpleasant green of wines. The content of fatty acids was decreased, which might
have affected the flavor complexity of wines. Moreover, β-glucosidase from different yeast
species produced different aroma compound profiles, which presented different fruity,
floral, and taste aspects. However, there was no significant difference in the appearance of
wines. F2-24EW had the best improvement in the floral, fruity, and taste aspects, followed
by SLY-4EW and HX-13EW. These results can provide references for using β-glucosidase
from different non-Saccharomyces yeasts to improve the flavor complexity, typicality, and
quality of wines. However, the effect of the SLY-4E, F2-24E, and HX-13E on the appearance
of wines during their aging and storage needs further investigation.
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