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Abstract: Numerous filamentous fungal species are extensively studied due to their role as model
organisms, workhorses in biotechnology, or as pathogens for plants, animals, and humans. Growth
studies are mainly carried out on solid media. However, studies concerning gene expression, bio-
chemistry, or metabolism are carried out usually in liquid shake conditions, which do not correspond
to the growth pattern on solid media. The reason for this practice is the problem of on-line growth
monitoring of filamentous fungal species, which usually form pellets in liquid shake cultures. Here,
we compared the time-consuming and tedious process of dry-weight determination of the mold
Aspergillus fumigatus with online monitoring of biomass in liquid shake culture by the parallelizable
CGQ (“cell growth quantifier”), which implements dynamic biomass determination by backscattered
light measurement. The results revealed a strong correlation of CGQ-mediated growth monitoring
and classical biomass measurement of A. fumigatus grown over a time course. Moreover, CGQ-
mediated growth monitoring displayed the difference in growth of A. fumigatus in response to the
limitation of iron or nitrogen as well as the growth defects of previously reported mutant strains
(∆hapX, ∆srbA). Furthermore, the frequently used wild-type strain Af293 showed largely decreased
and delayed growth in liquid shake cultures compared to other strains (AfS77, A1160p+, AfS35).
Taken together, the CGQ allows for robust, automated biomass monitoring of A. fumigatus dur-
ing liquid shake conditions, which largely facilitates the characterization of the growth pattern of
filamentous fungal species.

Keywords: fungi; molds; Aspergillus fumigatus; liquid shake culture; flask culture; online monitoring;
biomass monitoring; backscatter; bioprocess automation

1. Introduction

Filamentous fungi are ubiquitously found in nature as they are capable of adapting
to diverse environments. Some species such as Aspergillus nidulans and Neurospora crassa
serve as model organisms to study biological processes, others such as Aspergillus niger,
Aspergillus oryzae, Penicillium chrysogenum, and Trichoderma reesei are used extensively as
workhorses in biotechnology, and numerous others are pathogens for plants, animals
and/or humans or employed for biocontrol [1–6]. Growth studies, for example to compare
wild-type and mutant strains or to elucidate the response to different nutrients, are mainly
carried out on solid media. However, corresponding studies concerning gene expression as
well as biochemical or metabolic aspects are carried out usually in liquid shake conditions,
which do not correspond to the growth pattern on solid media. The reason for this practice
is that, in contrast to yeast and bacterial cells, most filamentous fungi form pellets in
liquid shake cultures, which hinders growth determination by classical optical density
measurement such as at 600 nm (OD600). The major solution to this is usually the time-
consuming and tedious process of dry-weight (DW) determination, which is lacking in
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most studies. Rarely, DW determination in liquid shake cultures from a single time point is
performed, which still does not reveal growth phase details.

However, culturing on solid and in liquid media differs in oxygen supply, nutrient
contact, and shear forces, which affect not only metabolism but also morphology, differ-
entiation, and development, e.g., most fungal species such as Aspergillus fumigatus or A.
nidulans lack conidiation in liquid shake conditions (e.g., [7]). In contrast to bacteria and
yeast, culturing of filamentous fungal species usually starts with dormant conidia, which
differ in cell wall morphology from hyphae [8–10]. The outer layer of A. fumigatus conidia,
termed the rodlet layer, is composed of a hydrophobic polymerized hydrophobin and is
underlaid by melanin. Underneath, the cell wall is composed mainly of polysaccharides
such as glucan, chitin, mannan, and galactosaminogalactan. The outermost layer of hyphae
is composed of alpha-glucan, which covers the beta-1,3-glucan and chitin layers. Germina-
tion starts with isotropic growth that involves water uptake and cell wall growth (termed
swelling) followed by polarized growth that results in the formation of a germ tube from
which the new mycelium originates [11,12]. During the hyphal growth stage, filamentous
fungi secrete an extracellular matrix composed mainly of proteins, lipids, and polysac-
charides such as galactosaminogalactan, α-glucan, and galactomannan [13,14]. Surface
exposure of adhesive α-glucan and galactosaminogalactan during germination is believed
to cause hyphal aggregation that is responsible for the pellet formation usually observed
in liquid shake cultures [15,16]. The pellet formation causes the heterogenous growth of
filamentous fungal species, as the surface and the interior of pellets differ significantly
with respect to supply of nutrients and oxygen [17]. Recently, impairment of biosynthesis
of α-glucan and galactosaminogalactan was shown to lead to dispersed hyphal growth
facilitating biomass determination via optical density [16] but these genetic modifications
severely affect the physiology.

Using the facultative pathogenic mold A. fumigatus as an example [18], we here
evaluated the applicability of the CGQ (“cell growth quantifier”) by Scientific Bioprocessing
(SBI), previously Aquilabiolabs, for automated, non-invasive, and parallelizable online-
monitoring of biomass formation of filamentous fungi in liquid shake cultures. Biomass
monitoring by the CGQ is realized by backscattered light measurements. For this, a sensor
plate comprising an LED light source and a photodiode is mounted into the spring clamp
of the shaker. Through a wire, it is connected with a base station that supplies power to
the sensor plates and communicates acquired data to a computer (Figure 1a). This set-up
allows measurement from the bottom of the Erlenmeyer flask positioned on top of the
sensor (Figure 1b). The LED emits light with a central wavelength of 520 nm into the
cultivation broth, of which a certain percentage is scattered back by particles and cells
in the medium (Figure 1b). The higher the cell density in the medium, the more light is
scattered back and detected by the photodiode which converts the photons into a weak
electric current that is subsequently amplified and digitized, yielding a single backscatter
reading. Up to a million of backscatter readings are collected within one measurement
cycle of 1–2 s at a dynamic measurement frequency (>500 kHz), resulting in a high raw data
density and high resolution of one data point. These periodic raw signal series represent
a complete image of the dynamic liquid distribution within several shaking movements,
factoring in, e.g., different liquid heights above the sensor and irregular signals due to
non-homogenous cell suspensions [19]. This high-speed data acquisition therefore allows
to smooth out the heterologous distribution of cells in cultures with filamentously growing
organisms, in contrast to approaches with single static measurements. Furthermore, the
automated set-up combined with real-time data output offers convenient monitoring
even for prolonged fermentation times and enables the immediate detection of relevant
growth events. Visualization, data analysis, and comparison can be carried out using
the provided software. The CGQ allows fully parallelized biomass monitoring of up to
16 flasks, all connected to one base station installable in standard shaking incubators. The
fully automated measurements under continuous shaking are favorable to avoid effects
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such as sedimentation, poor aeration and mixing, anaerobic metabolic stress, and to reduce
the scientist’s manual workload.
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Figure 1. The CGQ-measurement principle. (a) CGQ sensors are mounted underneath the shake
flasks for non-invasive measurements through the glass wall of the vessel. The sensors are connected
to a base station that communicates the data to a computer outside of the incubator. (b) Biomass
measurements are mediated via backscattered light detection. An LED emits light into the medium,
which is scattered by cells/pellets/particles within the culture. A portion of the scattered light is
detected as backscatter by a photodiode that is part of the CGQ sensor. With higher cell densities the
backscattered light intensity is higher compared to lower cell densities.

To evaluate the applicability of CGQ, we compared CGQ-mediated growth monitoring
with that of gravimetric dry-weight determination from certain time points including four
frequently used A. fumigatus wild-type strains (AfS77, A1160p+, AfS35, Af293), mutants
with previously reported growth defects (∆hapX, ∆srbA), and under the limitation of iron
and nitrogen.

2. Materials and Methods
2.1. Fungal Strains and Growth Conditions

The used A. fumigatus strains were AfS77 (a Ku70-lacking derivative of the clinical
isolate ATCC46645 [20]), the AfS77-derived ∆hapX and ∆srbA mutant strains [21,22], AfS35
(a Ku70-lacking derivative of the clinical isolate D141 [23]), A1160p+ (a Ku80-lacking
derivative of the clinical isolate CEA10 [24]), and the clinical isolate Af293 [25]. The strains
were grown at 37 ◦C on solid or in liquid Aspergillus minimal media (AMM) according to
Pontecorvo et al. [26] with 1% glucose as carbon source and, if not stated otherwise, 20 mM
glutamine as the nitrogen source with a pH set to 6.5. Iron replete media contained 0.03 mM
FeSO4 as the iron source; for iron starvation, the addition of iron was omitted. For plate
growth assays, AMM was solidified by the addition of 1.5% agar (Oxoid bacteriological
agar, LP0011), and 1 × 104 conidia were point-inoculated and plates were incubated for
48 h at 37 ◦C. For all liquid shake cultures, 100 mL AMM in 0.5 L Erlenmeyer flasks were
inoculated with 106/mL conidia followed by incubation in an Infors HT Multitron Standard
incubation shaker at 37 ◦C with 200 rpm for the time indicated. For CGQ-mediated growth
measurements, six flasks connected to a single base station were monitored in parallel,
which allowed to include two experiments, each with biological triplicates, in the same run.
At the end of each experiment, mycelia was harvested by filtration and DW determined
after freeze drying. Moreover, the pH of the supernatant was recorded routinely and the
protease activity occasionally.
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2.2. Determination of Protease Activity in Culture Supernatant

For semi-quantitative determination of proteolytic activity, an assay based on clearance
of unprocessed X-ray film material was applied [27,28]. Therefore, 8 µL aliquots of serial
two-fold dilution series (1:1–1:16) of culture supernatants in phosphate buffered saline (PBS,
pH 7.4) were spotted onto sheets of unprocessed X-ray films and incubated for 45 min at
37 ◦C in a humid chamber. Gelatin hydrolysis in the light-sensitive layer causes a clearing
zone, which is indicative for protease activity.

2.3. Determination of Pellet Morphology and Size Distribution

Fungal pellets were removed from liquid shake cultures and 2 mL of culture were
diluted 1:10 in water in a 9.6 cm petri dish. For size determination, pictures were taken with
a Nikon D700 camera and a Tamron SP Macro lens mounted onto a stand at fixed distance
to allow for comparison of different petri dishes. Following the import and black/white
conversion of pictures, fungal pellets were quantified using a modified custom ImageJ
macro with the watershed algorithm [29,30]. For plotting, resulting particle areas were
filtered for a circularity of ≥0.75. Microscopic images of pellets were acquired by bright
field microscopy at 40× magnification.

2.4. Presentation of CGQ-Mediated Growth Monitoring and Statistics

Raw data were exported as MS Excel spreadsheets with 60 s intervals and further pro-
cessed for plotting in R using the packages tidyverse, ggplot2, ggpubr, and openxlsx [31–35].
The background of individual runs was corrected for by subtracting 98% of the mean of
the first 200 data points (i.e., the first 3.3 h of monitoring) from the measured backscatter
(BS) values. The biological triplicates of each experiment were plotted as lines. To better
illustrate growth dynamics of tested conditions, smoothed conditional means of the respec-
tive replicates were included as well. Smoothing occurred by local polynomial regression
fitting using the LOESS algorithm with a span value of a = 0.3. To relate final BS values to
the dry-weight (DW) of a run, the mean of the last 15 BS data points of each run was used.
The statistical significance of pH, DW, and final BS values was calculated in R by one-way
ANOVA and Tukey’s multiple comparison test.

3. Results and Discussion
3.1. CGQ Characterizes the Growth Curve of A. fumigatus during Iron Sufficiency and
Iron Starvation

To evaluate the general validity of CGQ-derived online biomass monitoring of A. fu-
migatus, strain AfS77 was grown in biological triplicates for 14 h, 17 h, 20 h, 24 h, 48 h,
and 72 h at 37 ◦C in iron-replete (+Fe) or iron depleted (−Fe) minimal medium. This
approach was chosen to be able to monitor dry weight (DW) at different time points over
72 h of cultivation. All cultures were CGQ recorded and at the end of the cultivation the
DW and pH was determined (see Tables S1 and S2 for raw data). Media were inoculated
with dormant conidia, which display swelling at about four hours and germination at
about seven hours after inoculation in this liquid medium [36]. In agreement, backscatter
(BS) measurements did not indicate any increase in biomass formation in the first 10 h of
cultivation; subsequently CGQ-mediated measurement indicated a fast increase of biomass
in both +Fe and −Fe conditions (Figure 2). In +Fe conditions, biomass formation peaked at
about 24 h and subsequently decreased. Notably, from a starting pH of 6.5, the +Fe cultures
displayed initial acidification of growth medium to a pH of 3.6 at the 20 h time point with
subsequent alkalinization to a pH of 5.9 at 24 h and 8.6 at 48 h and 72 h (Table 1).

Concomitant with the alkaline pH of the culture supernatant, protease activity was
detected in culture supernatants at 48 h and 72 h (Figure 3). This pattern is consistent
with autolytic processes at 48 h and 72 h time points [37] which is in agreement with the
decrease in biomass in this culture phase. In contrast to the +Fe cultures, BS measurement
indicated a continuous increase in biomass in the −Fe cultures, however, at a significant
lower level compared to the +Fe cultures as expected from this growth-limiting condition.
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In contrast to +Fe cultures, the −Fe cultures displayed continuous acidification and a lack
of detectable protease activity, which is in agreement with a lack of autolysis.
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Figure 2. CGQ-mediated growth monitoring of A. fumigatus AfS77 during 14–72 h liquid shake
culturing under +Fe and −Fe conditions. A. fumigatus AfS77 was cultured for 14 h, 17 h, 20 h, 24 h,
48 h, and 72 h in liquid shake cultures under −Fe and +Fe conditions in biological triplicates and
biomass was monitored with the CGQ. The different colors discriminate the cultivations conducted
for different incubation times. Thin lines display growth dynamics of individual runs and shaded
areas show the variance within the parallels of each experiment. Thick lines represent a smooth curve
fitted by local polynomial regression using the LOESS algorithm with a span value of a = 0.3.

Table 1. Comparison of DW, BS values, BS/DW ratios, and pH values of A. fumigatus AfS77 cultured
for 14–72 h under +Fe and −Fe conditions. Mean ± standard deviation of biological triplicates
is displayed.

14 h 17 h 20 h 24 h 48 h 72 h

+Fe

pH ± SD 5.69 ± 0 3.99 ± 0.04 3.62 ± 0.03 5.9 ± 0.44 8.63 ± 0.01 8.72 ± 0.05
DW ± SD (g) 0.09 ± 0.01 0.3 ± 0.01 0.6 ± 0.02 0.71 ± 0.02 0.49 ± 0.01 0.35 ± 0.05
final BS ± SD 461 ± 36 880 ± 68 2011 ± 294 2752 ± 240 1887 ± 78 1582 ± 227
BS/DW ± SD 5328 ± 369 2932 ± 227 3334 ± 564 3865 ± 379 3826 ± 92 4515 ± 590

−Fe

pH ± SD 5.83 ± 0.02 5.27 ± 0.08 4.79 ± 0.06 4.13 ± 0.06 4.04 ± 0.03 4.04 ± 0.03
DW ± SD (g) 0.05 ± 0 0.09 ± 0 0.11 ± 0.01 0.14 ± 0.01 0.29 ± 0.01 0.27 ± 0.02
final BS ± SD 170 ± 13 348 ± 37 500 ± 49 786 ± 78 1656 ± 44 1645 ± 78
BS/DW ± SD 3234 ± 261 3896 ± 269 4514 ± 286 5763 ± 681 5718 ± 164 5995 ± 231

The online BS measurements largely matched the offline DW determination in +Fe
and −Fe cultures, i.e., it portrayed the growth curves during +Fe and −Fe conditions as
well as the decreased biomass formation in −Fe compared to +Fe conditions (Table 1 and
Figure 4a). However, the observed BS/DW ratios shown in Table 1 varied up to a factor
of about 2 (2932 from 17 h +Fe and 5995 of 72 h −Fe). For example, the BS/DW ratio was
higher at the 14 h and at the 72 h time points compared to the other time points (17 h, 20 h,
24 h, 48 h) in +Fe cultures. Moreover, starting at 20 h, the BS/DW ratio was significantly
higher in −Fe compared to +Fe conditions. Taken together, these data indicate that the
BS measurements are directly proportional to the DW, however, with slopes depending
on the growth condition. To give an example: similar to the 17 h +Fe DW with 0.30 g, the
48 h −Fe DW was 0.29 g, while the BS measurements were 880 ± 55 and 1656 ± 36 in +Fe
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and −Fe conditions, respectively. These results indicate that factors other than the biomass
impacted the measurement. 

2 

 
 
3 
 

Figure 3. Protease activity is detectable in culture supernatants of +Fe cultures at 48 h and to a lesser
extent in 72 h but not in those of younger (24 h) +Fe or in −Fe cultures. Supernatants from cultures
were spotted onto an unprocessed X-ray film to test for the presence of proteolytic activities that
hydrolyze the gelatin-containing light-sensitive layer (visible as bright circles). Two-fold dilution
series (1:1–1:16) in PBS is indicated on top of the picture. The decrease of proteolytic activity in 72 h
+Fe compared to 48 h +Fe cultures is most likely caused by degradation of the proteases.
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Figure 4. Positive correlation of CGQ-mediated growth monitoring and classical biomass measure-
ment of A. fumigatus AfS77 during 14–72 h liquid shake culturing under +Fe and −Fe conditions.
Data were taken from the experiments described in Figure 2 and Table 1. (a) Time course graphs of
mean final backscatter (final BS) and mean dry-weight (DW) ± standard deviation of 3 runs each.
(b) Final BS plotted vs. DW with colored dots representing endpoints of individual cultures grown
for the times indicated. Pearson correlation coefficient and corresponding p-values are displayed
in the upper left side of the panels. Regression lines and corresponding equations based on linear
models fitted to the scatter plots are shown.

To analyze this, A. fumigatus strain AfS77 was cultured to a BS value of about 1000
under both +Fe (17 h) and −Fe (24 h). As shown in Figure 5, the pellet morphologies
were found to significantly differ in +Fe and −Fe conditions, with pellets being smaller
but significantly more lacerated in −Fe compared to +Fe conditions (Figure 5a). These
data indicate that the pellet morphology impacts the BS measurement, which is expected
from an optics-based system. Indeed, as inferred from the Mie theory of scattering, there is
a negative correlation of light scattering and particle volume of spherical objects [38], indi-
cating that the smaller fungal pellets, as observed under −Fe conditions, exhibit relatively
higher backscattering. Nevertheless, BS measurements and DW showed high Pearson
correlation coefficients of 0.95 and 0.99 in +Fe and −Fe conditions, respectively (Figure 4b),
indicating a good overall correlation. However, the correlation factor (regression line and
corresponding equation) depends on the growth conditions, i.e., +Fe or −Fe conditions
(Figure 4b), most likely due to different pellet morphology (Figure 5a).
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Figure 5. Pellet morphology differs in +Fe and −Fe conditions. (a) A. fumigatus AfS77 pellets were
removed for microscopic analysis when base-line-corrected BS reached values of approximately
1000 mAU, after growth times of 17 h and 24 h for +Fe and −Fe conditions, respectively. (b) Violin
plots showing the distribution of pellet cross-sectional area in +Fe and −Fe cultures at BS~1000 mAU.
Box plots showing medians (0.72 mm2 and 0.30 mm2 for +Fe and −Fe, respectively), interquartile
ranges, and spikes extending to the upper- and lower-adjacent values in each group are overlaid.
Outliers are not shown.

3.2. CGQ Provides Reproducible Growth Curves

As shown in Figure 2, the growth curves of the 14 h, 17 h, 20 h, 24 h, 48 h, and 72 h
cultures are highly similar in the overlapping time frames, which indicates high reliability
of individual CGQ-mediated growth measurements. To further investigate robustness of
CGQ, A. fumigatus AfS77 was grown in triplicates in three experiments at different days for
24 h under +Fe and −Fe conditions. As seen in Figure 6 and Table 2, the growth curves
observed in the different experiments were highly similar, underlining that CGQ-mediated
growth monitoring is highly reproducible.
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Figure 6. CGQ-mediated growth monitoring of A. fumigatus AfS77 cultured for 24 h at different days
(experiments 1–3) under +Fe and −Fe conditions. Each experiment included biological triplicates.
Details of the graph are as in the caption of Figure 2.

Table 2. Comparison of DW, BS values, BS/DW ratios, and pH values of A. fumigatus AfS77 cultured
for 24 h at different days under +Fe and −Fe conditions. Mean ± standard deviation of biological
triplicates is displayed. Statistically significant differences (marked by a) of −Fe compared to +Fe
conditions were assessed by one-way ANOVA and Tukey’s multiple comparison test.

Experiment 1 Experiment 2 Experiment 3

+Fe

pH ± SD 5.9 ± 0.44 5.63 ± 0.25 6.24 ± 0.1
DW ± SD (g) 0.71 ± 0.02 0.73 ± 0.01 0.73 ± 0.01
final BS ± SD 2752 ± 240 2727 ± 132 2496 ± 236
BS/DW ± SD 3865 ± 379 3752 ± 189 3415 ± 319

−Fe

pH ± SD 4.13 ± 0.06 a 4 ± 0 a 4.43 ± 0.1 a

DW ± SD (g) 0.14 ± 0.01 a 0.11 ± 0.01 a 0.14 ± 0.01 a

final BS ± SD 786 ± 78 a 662 ± 66 a 815 ± 41 a

BS/DW± SD 5763 ± 681 5848 ± 1079 5837 ± 368
a p < 0.001.

3.3. CGQ Portrays Growth Differences due to Nitrogen Limitation

In a next step, the growth of A. fumigatus AfS77 in media with different nitrogen
availability was compared. Therefore, A. fumigatus was cultured at 37 ◦C in the presence of
20 mM, 10 mM, or 5 mM glutamine for 24 h. BS measurements indicated that 10 mM and
particularly 5 mM glutamine significantly reduced biomass formation (Figure 7), which
was confirmed by DW determination (Table 3). Together with the comparison of growth
during +Fe and −Fe conditions (Figure 2), these data demonstrate that CGQ can be used for
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the characterization of growth media such as the identification of growth-limiting nutrient
concentrations. Similar to iron starvation, nitrogen starvation increased the BS/DW ratio,
indicating that starvation alters pellet morphology. 

5 

 
 
7 
 
 

Figure 7. CGQ-mediated growth monitoring of A. fumigatus AfS77 cultured in biological triplicates
for 22 h with 20 mM, 10 mM, or 5 mM glutamine (Gln). Details of the graph are as in the caption
of Figure 2.

Table 3. Comparison of DW, BS values, BS/DW ratios, and pH values of A. fumigatus AfS77 cultured
in the presence of different glutamine (Gln) concentrations for 24 h. Mean ± standard deviation
of biological triplicates is displayed. Statistically significant differences (marked by a or b) of Gln
limitation (5 mM and 10 mM) compared to the standard concentration (20 mM) were assessed by
one-way ANOVA and Tukey’s multiple comparison test.

Gln Concentration
20 mM 10 mM 5 mM

pH ± SD 5.9 ± 0.44 6.93 ± 0.06 a 6.83 ± 0.06 b

DW ± SD (g) 0.71 ± 0.02 0.35 ± 0.01 b 0.16 ± 0 b

final BS ± SD 2752 ± 240 1477 ± 40 b 1052 ± 252 b

BS/DW ± SD 3865 ± 379 4237 ± 30 6523 ± 1657
a p < 0.01, b p < 0.001.

3.4. CGQ Delineates Growth Defects of A. fumigatus Mutant Strains Lacking Either HapX
or SrbA

To evaluate the applicability of CGQ for detecting growth defects of mutant strains,
the AfS77-derived mutants ∆hapX and ∆srbA were employed [21,22]. ∆hapX lacks the iron-
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regulatory bZIP transcription factor HapX and ∆srbA lacks the sterol regulatory element
binding protein (SREBP) SrbA. As revealed previously [21,22] and confirmed here by single
time point DW measurements after liquid shake cultivation (Table 4), ∆hapX shows wild-
type-like biomass formation in +Fe conditions but a significant growth defect under −Fe
conditions, while ∆srbA displays a mild growth defect under +Fe conditions and a more
severe growth defect than ∆hapX under −Fe conditions. The growth defects of ∆hapX and
∆srbA, as well as the growth differences between ∆hapX and ∆srbA, were clearly detected
by BS measurements (Figure 8). These data demonstrate that CGQ visualizes growth
pattern differences of mutant strains.

For comparison, A. fumigatus AfS77, ∆hapX, and ∆srbA strains were grown on solid
minimal medium; i.e., the same medium of the liquid culture (Figure 8) was used in
solidified form by adding 1.5% agar (Figure 9). Compared to +Fe conditions, the strains on
−Fe conditions showed lower pigmentation, reflecting decreased sporulation. In contrast
to biomass formation in liquid shake conditions (Figure 8 and Table 4), however, the radial
growth of all three strains was largely similar. These data emphasize that growth on solid
media does not reflect behavior in liquid shake conditions. The most likely explanations
are that the significantly higher biomass formation in liquid shake conditions increases
iron limitation by iron consumption and that liquid shake culturing decreases the oxygen
supply, which might play a particular role for the ∆srbA mutant, which shows a hypoxic
growth defect [22].

Table 4. DW, BS values, BS/DW ratios, and pH values of A. fumigatus AfS77 compared the ∆hapX and
∆srbA mutant strains cultured for 24 h under +Fe and −Fe conditions. Mean ± standard deviation of
biological triplicates is displayed. Statistically significant differences (marked by a, b, or c) of mutant
strains compared to AfS77 were assessed by one-way ANOVA and Tukey’s multiple comparison test.

AfS77 ∆hapX ∆srbA

+Fe

pH ± SD 5.9 ± 0.44 5.43 ± 0.59 4.17 ± 0.06 c

DW ± SD (g) 0.71 ± 0.02 0.71 ± 0 0.53 ± 0.03 c

final BS ± SD 2752 ± 240 2769 ± 192 2197 ± 196 a

BS/DW ± SD 3865 ± 379 3898 ± 256 4102 ± 146

−Fe

pH ± SD 4.13 ± 0.06 4.2 ± 0.1 5.9 ± 0
DW ± SD (g) 0.14 ± 0.01 0.06 ± 0.01 c 0.02 ± 0 c

final BS ± SD 786 ± 78 153 ± 6 c 89 ± 14 b

BS/DW ± SD 5763 ± 681 2594 ± 328 3573 ± 523
a p < 0.05, b p < 0.01, c p < 0.001.
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8 
 

Figure 8. CGQ-mediated growth monitoring of A. fumigatus AfS77 (WT) compared to ∆hapX and
∆srbA mutant strains cultured in biological triplicates for 24 h under +Fe and −Fe conditions. Details
of the graph are as in the caption of Figure 2.
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Figure 9. Colony morphology of A. fumigatus AfS77 compared to ∆hapX and ∆srbA cultured for 48 h
at 37 ◦C under +Fe and −Fe conditions. For inoculation of fungal strains, suspensions containing 104

spores were dotted onto minimal media solidified with 1.5% agar.

3.5. CGQ Displays Differences in Growth of Different A. fumigatus Laboratory Type Strains

A. fumigatus is a ubiquitous environmental mold and the leading cause of diverse
human diseases ranging from allergenic bronchopulmonary aspergillosis to invasive pul-
monary aspergillosis [18]. Experimental investigations of the biology and virulence of this
opportunistic pathogen have historically been based on the use of a few type strains [24]
including AfS77 (a Ku70-lacking derivative of the clinical isolate ATCC46645 [20]), AfS35
(a Ku70-lacking derivative of the clinical isolate D141 [23]), A1160p+ (a Ku80-lacking deriva-
tive of the clinical isolate CEA10 [24]), and the clinical isolate Af293 [25]. Notably, Af293
was the first A. fumigatus strain with a resolved and annotated genome [25]. However,
several studies revealed significant differences in physiological responses to abiotic stimuli
and virulence in murine models of invasive pulmonary aspergillosis between A. fumigatus
Af293 and other A. fumigatus isolates including commonly used A. fumigatus CEA10 [39,40].
Due to severely decreased growth of Af293 compared to other strains in a minimal medium
broth, Sugui et al. [41] concluded that Af293 possesses a nutritional deficiency and Kowalski
et al. [42] demonstrated decreased fitness during hypoxic conditions such as in liquid shake
conditions. In a next step, the growth of these four commonly used strains employing
CGQ-mediated growth monitoring was compared.

In agreement with single time point DW measurements after liquid shake cultivation
for 24 h under both +Fe and −Fe conditions (Table 5), BS measurements demonstrated
negligible growth of Af293 compared to the other three strains, which displayed largely
similar growth patterns (Figure 10). Growth monitoring by BS measurement and DW for
48 h revealed that growth of Af293 is not generally poor in this minimal medium but that
the maximal growth is delayed, peaking at about 42 h in +Fe conditions, a time point at
which all three other strains are already in the autolytic phase (Figure 10 and Table 5).
These data emphasize the value of CGQ-mediated growth monitoring, as this liquid shake
growth behavior of Af293 has not been observed previously because it is extremely difficult
to monitor with classical methods. Both BS measurements and DW determination indicated
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that AfS35 displays slightly delayed biomass formation during +Fe conditions (Figure 10).
Taken together, CGQ-mediated growth monitoring elucidated growth pattern differences
of widely used laboratory type strains.

Table 5. Comparison of DW, BS values, BS/DW ratios, and pH values of A. fumigatus AfS77
and A1160p+, AfS35, and Af293 cultured for 24 h and 48 h under +Fe and −Fe conditions.
Mean ± standard deviation of biological triplicates is displayed. Statistically significant differences
(marked by a, b, or c) of strains compared to AfS77 were assessed by one-way ANOVA and Tukey’s
multiple comparison test.

AfS77 A1160p+ AfS35 Af293

24 h

+Fe

pH ± SD 5.9 ± 0.44 4.9 ± 0.26 3.5 ± 0.06 5.65 ± 0.31
DW ± SD (g) 0.71 ± 0.02 0.69 ± 0 c 0.6 ± 0.03 c 0.04 ± 0.01 c

final BS ± SD 2752 ± 240 2845 ± 322 c 2146 ± 47 b 271 ± 116 c

BS/DW ± SD 3865 ± 379 4119 ± 483 3596 ± 229 6088 ± 1507

−Fe

pH ± SD 4.13 ± 0.06 3.5 ± 0 a 3.82 ± 0.08 6.09 ± 0.08 c

DW ± SD (g) 0.14 ± 0.01 0.09 ± 0.01 a 0.11 ± 0 NA d

final BS ± SD 786 ± 78 964 ± 105 631 ± 42 109 ± 35 b

BS/DW ± SD 5763 ± 681 10,990 ± 1862 5696 ± 411 NA d

48 h

+Fe

pH ± SD 8.63 ± 0.01 8.76 ± 0.04 8.68 ± 0.06 6.71 ± 0.11 c

DW ± SD (g) 0.49 ± 0.01 0.39 ± 0.01 c 0.48 ± 0.02 0.62 ± 0.03 c

final BS ± SD 1887 ± 78 2207 ± 116 1962 ± 263 1583 ± 203
BS/DW ± SD 3826 ± 92 5613 ± 342 4130 ± 678 2538 ± 280

−Fe

pH ± SD 4.04 ± 0.03 4.12 ± 0.02 3.45 ± 0.03 c 5.23 ± 0.2 c

DW ± SD (g) 0.29 ± 0.01 0.17 ± 0.01 c 0.18 ± 0.01 c 0.11 ± 0.02 c

final BS ± SD 1656 ± 44 1404 ± 247 1172 ± 62 515 ± 208 c

BS/DW ± SD 5718 ± 164 8330 ± 1954 6644 ± 388 4422 ± 952
a p < 0.05, b p < 0.01, c p < 0.001, d NA: biomass was too low for DW determination.
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Figure 10. CGQ-mediated growth monitoring of A. fumigatus AfS77 compared to A1160p+, AfS35,
and Af293 cultured for 24 h and 48 h under +Fe and −Fe conditions. Details of the graph are as in the
caption of Figure 2.
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For comparison, A. fumigatus AfS77, AfS35, A1160p+, and Af293 were grown on
solid minimal medium; i.e., the very same medium solidified with 1.5% agar was used
(Figure 11). In contrast to biomass formation in liquid shake conditions (Figure 10 and
Table 5), however, Af293 displayed a similar radial growth on solid medium. These data
emphasize again that growth on solid media might not reflect behavior in liquid shake
conditions. The most likely explanation is the previously described decreased fitness of
Af293 during hypoxic conditions [42].

 

8 

 
 
10 

 
Figure 11. Colony morphology of A. fumigatus AfS77 compared to A1160p+, AfS35, and Af293
cultured for 48 h at 37 ◦C under +Fe and −Fe conditions. For inoculation of fungal strains, suspensions
containing 104 spores were dotted onto minimal media solidified with 1.5% agar.

4. Conclusions

CGQ-mediated online growth monitoring allowed the robust characterization of the
growth curve of A. fumigatus including the autolytic phase as shown by comparison of
online BS measurements and offline DW determinations at certain time intervals. BS
measurements and DW showed high Pearson correlation coefficients. However, the ratio
between BS measurements and DW depended on the strain and the growth conditions
such as +Fe or −Fe, most likely due to different pellet morphologies found under these
conditions. CGQ-mediated online growth monitoring revealed growth differences due
to the limitations of nutrients such as iron or nitrogen, growth defects caused by gene
defects such as a lack of SrbA or HapX, and growth defects of a commonly used laboratory
type strain. Taken together, CGQ represents a valuable new tool for the growth curve
characterization of filamentous fungal species, strains, and mutants as well as analyzing
media compositions.
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