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Abstract: Fusarium verticillioides is the most predominant fungal phytopathogen of cereals and it is 
posing great concern from a global perspective. The fungus is mainly associated with maize, rice, 
sorghum, wheat, sugarcane, banana, and asparagus and causes cob, stalk, ear, root, crown, top, and 
foot rot. F. verticillioides produces fumonisins as the major secondary metabolite along with trace 
levels of beauvericin, fusaric acid, fusarin C, gibberiliformin, and moniliformin. Being a potential 
carcinogen, fumonisins continue to receive major attention as they are common contaminants in 
cereals and its processed food products. The importance of elimination of F. verticillioides growth 
and its associated fumonisin from cereals cannot be overemphasized considering the significant 
health hazards associated with its consumption. Physical and chemical approaches have been 
shown to reduce fumonisin B1 concentrations among feeds and food products but have proved to 
be ineffective during the production process. Hence, biological control methods using 
microorganisms, plant extracts, antioxidants, essential oils, phenolic compounds, and other 
advanced technologies such as growing disease-resistant crops by applying genetic engineering, 
have become an effective alternative for managing F. verticillioides and its toxin. The different 
methods, challenges, and concerns regarding the biocontrol of F. verticillioides and production of 
fumonisin B1 have been addressed in the present review. 
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1. Introduction 
Mycotoxigenic contamination of feeds, cereals, and cereal-based food by Fusarium 

verticillioides adversely affects the health of humans and animals leading to a decline in 
the economy and international trade. Developed countries uphold food suppliers’ and 
retailers’ high standards by implementing regulatory controls involving good agricultural 
management practices, hazard analysis and critical control point (HACCP), addressing 
food safety. In addition, the application of selected physical treatments, chemicals, and 
biologically based strategies substantially reduce fumonisin contamination in cereals and 
cereal-based products [1]. In developing countries, governing measures are poorly 
enforced by farming communities. Certain methods such as hand-sorting of contaminated 
cereals has been practiced and seem to be partially effective, remaining as the last line of 
defense in reducing fumonisin and mycotoxin exposure [2]. 

Studies have shown that consumption of mycotoxin-contaminated cereals can affect 
the lungs, liver and kidneys in animals and cause wounds, skin lesions, and even lead to 
cancer in humans [3,4]. In horses, being fed with naturally contaminated corn, corn 
screenings, and corn-based feeds or intravenous injection of fumonisin leads to 
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leukoencephalomalacia (LEM) [5]. Pulmonary edema syndrome (PES) and hydrothorax 
were observed in pigs on consumption of fumonisin-B1-contaminated corn screenings 
and through intravenous injections of fumonisin, respectively [6]. Voss et al. [7] reported 
that hydrolyzed FB1 (HFB1) interferes with sphingolipid metabolism without causing any 
neural tube defects in a mouse model. When the blood–brain barrier was permeated in 
young carp, neurotoxicity due to FB1 was reported [8]. On consumption of the corn 
associated with fumonisins or contaminated with F. verticillioides, reports indicate large 
numbers of cases of esophageal cancer, among humans, in Transkei, South Africa [9], 
Northern Italy [10], Linxhian, China [11], the south-eastern United States, and Golestan, 
Iran [12]. The International Agency for Research on Cancer (IARC) characterized FB1 as a 
possible group 2B carcinogen, which can cause toxicity in humans and several animals 
like rats, horse, mice, and rabbits [13]. 

2. Worldwide Association of F. verticillioides 
Fusarium verticillioides distribution is ubiquitous, mainly associated with maize [1,14], 

rice [15–17], sugarcane [18], wheat [19], banana [20], asparagus [21,22], and sorghum [23]. 
Rocha et al. [24] screened maize grain samples from Brazil and documented nearly 96% 
frequency of F. verticillioides. The highest incidence of F. verticillioides was reported in 
poultry and animal feed made up of wheat bran and maize pellets [25]. Among the 135 
cereal samples collected from southern India, 69 were associated with Fusarium 
contamination, among which 51 samples showed F. verticillioides [26]. In southern Europe, 
Italy, and Iran, F. verticillioides was the predominant species associated with maize grain 
samples [27–29]. Among 103 Fusarium species screened from the cereal samples collected 
from Karnataka, India, 64 isolates were found to be fumonisin-producing F. verticillioides 
[30]. 

A major focus by scientists across the globe is on mycotoxigenic fungi since they are 
global contaminants of cereals and cereal-based food products [3]. Mycotoxins such as 
fumonisin B produced by F. verticillioides in cereals, is categorized into FB1, FB2, FB3, and 
FB4, based on the structure and hydroxyl group [3]. Fumonisin B1, the most predominant 
and toxic mycotoxin accounts for 70% of the total fumonisins and receives worldwide 
attention compared to FB2, FB3, and FB4 [31] (Table 1). FB1 toxicity seems to be complex 
resulting in disruption of de novo biosynthesis of ceramide-deregulating sphingolipid 
complex [32]. Exposure to FB1 toxin among humans and animals leads to the 
accumulation of spingoid bases, increased phosphate adducts, and reduced ceramide 
concentrations, resulting in apoptosis, cytotoxicity, cell proliferation [33], neural tube 
defects, hepatocarcinoma, carcinogenicity, and DNA damage [34]. 

The fumonisin-producing F. verticillioides strains were initially confirmed through 
various PCR methods [35,36], such as multiplex PCR and nested PCR which showed 
direct association of fumonisin with cereals, pure cultures, and plant parts. Both species-
specific and fumonisin-specific genes were detected in a single test run in case of multiplex 
PCR [37]. While nested PCR involved two test runs, in which the first test run with species-
specific primer product, served as DNA for the second test run with different primer for 
fumonisin [38]. Chromatographic techniques, such as high-performance liquid 
chromatography [39] and liquid chromatography mass spectrometry [40] were used to 
quantify FB1 toxin associated with cereal samples. According to the Food and Agriculture 
Organization (FAO) and the World Health Organization (WHO), tolerable maximum 
intake for fumonisins has been set as 2 µg/Kg·bw/day based on lack of any observed 
adverse effects for nephrotoxicity in male rats [41]. 
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Table 1. Diseases and toxins produced by F. verticillioides in different cereal crops. 

Serial 
Number 

Crop Disease Toxins 

1. 
Corn/Maize 
(Zea mays) 

Fusarium ear rot, stalk rot, 
kernel rot, root rot, seed rot, 

seedling blight, seedling root rot 

FB1, FB2, and 
FB3 

2. 
Cultivated wild rice 

(Zizania palustris) 
Scab FB1, FB2 

3. 
Oats 

(Avens sativa) 
Fusarium foot rot, snow mold, 

seedling blight, head blight 
FB1, FB2 

4. 
Pearl millet 

(Pennisetum glauccum) 
Top rot FB2, FB1 

5. 
Rice 

(Oryza sativa) 
Seedling blight, water mold, root 
rot, pecky rice (kernel spotting) 

FB1, FB2, FB3 

6. 
Sorghum 

(Sorghum bicolor) 

Damping off and seed rot, 
Fusarium wilt head blight, root and 

stalk rot, twisted top, seedling 
blight, seed rot 

FB2, FB1 

7. 
Sugarcane 

(Saccharum spp.) 
Fusarium stem rot, pokkah baeng, 

wilt; 
FB1, FB2 

8. 
Wheat 

(Triticum spp.) 

Black point (kernel smudge), 
head blight (scab), 

root, crown, and foot rot, 
pink snow mold; 

FB1, FB2 

Source: www.apsnet.org/online/common/search.asp,2018 accessed on 1 August 2018. 

3. Management of F. verticillioides 
Many studies have been reported on various prevention strategies and pre-harvest 

control methods such as disease-resistant varieties, biocontrol agents such as 
microorganisms, and plant extracts against growth and toxin production by Fusarium 
species [42,43]. Several researchers examined post-harvest removal of fumonisin from 
food commodities by physical, chemical, and modest biological control methods [44,45]. 
Proper agricultural practices need to be maintained during pre-harvest and post-harvest 
to minimize the growth of F. verticillioides and its toxin production in cereals. Fumonisins 
are managed by prevention of F. verticillioides infection, in addition to the monitoring of 
the contaminants, and their detoxification [46]. 

4. Physical Methods for Management of F. verticillioides 
Physical methods comprise of the separation of damaged or contaminated crops 

from healthy ones including methods like sorting, sieve cleaning, density segregation, 
washing, de-hulling, and steeping. Drying of grains to lower the moisture content is one 
of the preliminary and safest method against growth of molds and grain can be safely 
stored for a longer duration [47]. In addition, separation of infected and physically 
damaged grains from the healthy ones is an efficient and feasible method of reducing 
mycotoxin contamination [48]. Heating, another physical factor, which is a procedure 
carried out during various food processing at temperatures > 150 °C, degrades the stability 
of fumonisin, and hence, it is considered as a good method for the removal of mycotoxin 
through leaching [49]. A novel physical method, of recent interest, is use of non-thermal 
techniques such as cold plasma for fungal and mycotoxin removal. Cold plasma is an 
ionized gas containing partially ionized atoms with zero net charge [50]. Another 
emerging non-thermal technique used for removal of mycotoxins, is the photocatalytic 
detoxification of mycotoxins in food. This method comprises of chemical reactions 
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induced by absorption of photons by a solid photocatalyst, resulting in oxidation or 
reduction reactions on the surface of photocatalytic materials that produce free radicals 
which interact with contaminants such as fumonisin, and help to degrade or reduce the 
toxin [51]. 

Furthermore, irradiation such as by X-rays, gamma rays, or accelerated electrons is 
reported as an alternative method to control mycotoxin-producing molds in certain food 
products [52]. Maize and sorghum grain samples with a weight of 250 g were exposed to 
2.5, 5.0, 7.5, and 10.0 kGy of gamma irradiation for evaluation of F. verticillioides incidence 
(%) and fumonisin levels at regular intervals of 0, 30, 60, and 90 days of storage [53]. 
Results revealed that on day 0, the incidence of Fusarium species was 48 and 38%, 
respectively, in maize and sorghum samples and there was a gradual decrease in the 
incidence of Fusarium species at 2.5 and 5.0 kGy doses of gamma irradiation after 30, 60, 
and 90 days storage. Deepthi et al. [54] reported that ionizing radiation at 7.5 kGy was 
lethal for Fusarium species growth and its FB1 production. In addition, they also observed 
that γ-radiation, above 7.5 kGy, effectively prevented Fusarium growth and minimized 
the exposure of animals and humans to fumonisin. The FAO, IAEA, and WHO stated that 
irradiated foods with less than 10 kGy doses are considered to be safe and nutritionally 
adequate when produced under established good manufacturing practices [55]. 

5. Chemical Methods for Management of F. verticillioides 
Chemical methods to decontaminate fumonisin in maize and maize products have 

also been previously reported. Fumonisin is a stable molecule; hence, its destruction is 
challenging [56]. Munkvold et al. [56] reported a significant reduction of FB1 of up to 95% 
by treating contaminated maize seeds with Ca(OH)2. Lu et al. [57] reported fumonisin 
degradation using sodium bicarbonate and hydrogen peroxide. Fructose, in the presence 
of a primary amine and water (pH > 7), removes the preliminary amine group from 
fumonisin through non-enzymatic browning and has been reported to cause a drastic 
reduction of FB1 in maize grains and eventually in rat models. In this study, it was 
reported that removal of the amine group caused structural changes in fumonisin and in 
its ability to cause cancer in rat models [58]. Combination of ammonization and high 
temperature leads to fumonisin detoxification [59]. Use of chemicals methods, seem to 
decrease fumonisin levels significantly, compared to physical methods such as air drying 
of cereals or grains. This observation was reported by Scott [60] who found that treatment 
of cereals or grains with 2% ammonium hydroxide at 50 °C decreases fumonisin 
concentration to89%, compared to four days of air drying which reduced the toxin by only 
32%. 

Consumption of maize and maize-based products, in large amounts, may result in 
high risk of exposure to fumonisin. Previous studies have reported that nixtamalization 
(alkaline cooking) of maize grains results in hydrolyzation of fumonisin and lowers its 
toxicity [61,62]. A study in Central America, reported that the nixtamalization of maize 
grains during the production of tortilla, significantly reduced the fumonisin 
concentration. HFB1 (hydrolyzed fumonisin) was detected in staple food such as 
commercial masa and tortilla chips [63]. Another study documented a 100% reduction of 
fumonisin in contaminated maize by eradication of the mutagenic potential of maize 
extracts, when subjected to a modified nixtamalization procedure [64]. On the contrary, 
Voss et al. [65], suggested that chemical procedures such as nixtamalization, reduced only 
the detectable fumonisin levels but did not result in toxicity reduction. Most importantly, 
detoxification methods should be capable of removing all traces of active toxin, must not 
leave any hazardous chemical residues in the treated samples, and above all, should not 
compromise the nutritional value of the food [66]. 
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6. Limitations of Physical and Chemical Methods 
Many of the physical and chemical methods used to minimize fumonisin B1 

concentrations in cereals or cereal-based foods have proved to be either ineffective or 
difficult to practice in the food production process [67,68]. The detoxification methods of 
fumonisin, must be cost effective, simple, and easily applied by farmers. While physical 
methods were found to have low efficacy and less specificity, chemical methods were 
found to be expensive, and affect the quality of food products by producing toxic 
derivatives and decreasing the nutritional value of the food [48,69]. Certain chemical 
compounds used as antifungal agents were not biodegradable and resulted in 
contaminated water and soil [70,71]. Prolonged use of chemical treatments during 
cultivation of grains and cereals, has enabled the hosts to establish resistance against the 
fungal pathogens. Increased demand for the use of chemicals in agriculture to combat 
pathogens has escalated toxic residues in food crops [72]. Hence, there is a great demand 
for the alternative and safe methods to control F. verticillioides and fumonisin 
contamination in cereals. 

7. Management of F. verticillioides by Natural Clay 
Natural clay adsorbents have been considered as Generally Recognized as Safe 

(GRAS) by the Food and Drug Administration, USA [73]. Natural clay adsorbs 
mycotoxins in food and its products by detoxifying the contaminated food during 
processing stages [74]. Montmorillonite clay is more significant than other clay minerals 
due to its large surface area and molecular structure that increases its adsorbing ability 
when wet. Montmorillonite clay at a low dose of 1.5 g and a high dose of 3 g/per day, 
through adsorption, effectively reduces FB1 in aqueous solution in vitro, and in human 
and animal models in vivo respectively. The adsorption is saturable and occurs largely 
within the interlaminar regions of the clay [75]. In addition, it was reported that a 
combination of clay and modified yeast cell extracts enhances adsorption of multiple 
mycotoxins [76]. Natural clay has also been demonstrated to be suitable for commercial 
use by the Selection Committee on GRAS substances (SCOGS) since they could be applied 
effectively and economically in the food and feed industries [77]. However, application of 
clay minerals often requires high levels to be included into animal feed; interaction of 
natural clays with food and gut-based nutrients remains unclear, and the possibility of 
accumulation of dioxin in animals remains a concern [1]. 

8. Biological Control of F. verticillioides 
Biological control methods can be employed to minimize the contamination of 

fumonisin produced by F. verticillioides. According to Alberts et al. [1], simple pest control 
strategies were found to have a positive impact on food security and safety, especially in 
the rural areas where maize is a staple diet. Simple and effective biological strategies have 
attracted the attention of farmers throughout the world [78]. F. verticillioides being a 
phytopathogen, is mainly associated with cereals such as maize and sorghum and is 
largely responsible for the economic losses worldwide [79]. Currently, minimizing the 
soil-borne pathogens by application of synthetic fungicides or chemical pesticides has 
been challenged by biological approaches that play a major role in sustainable agriculture. 
Such biocontrol methods can be effectively adopted by binding the biocontrol agents 
through plant parts such as roots and seeds, and/or the soil against the target pathogen 
(Figure 1). Probiotics, non-toxigenic strains of fungi, plant-growth-promoting 
rhizobacteria, antioxidants, plant extracts, genetic engineering, and disease-resistant crop 
varieties have been used as biological management strategies against fumonisin-
producing F. verticillioides (Figure 2). 
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Figure 1. Treatment of plant parts, soil and use of resistant varieties, as biocontrol methods against 
F. verticillioides. 

 
Figure 2. Use of biological control agents against F. verticillioides. PGPR, plant-growth-promoting 
rhizobacteria; LOX genes, lysyl oxidase genes; Bt-maize, Bacillus thuringiensis maize. 
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8.1. Microorganisms as Biocontrol Agents 

The application of microorganisms that have the ability to colonize infected plant 
parts under certain appropriate and compatible environmental conditions, has become 
the recent trend in minimizing the growth of pathogens and toxin production [72,80]. 

8.1.1. Bacteria as Biocontrol Agents 
The American Food and Drug Administration considers Bacillus subtilis as Generally 

Regarded as Safe (GRAS), since the organism can be easily cultured and genetically 
manipulated as it appropriately fits into the industrial processes. B. subtilis, an endophytic 
bacterium, and an ecological homologue with F. verticillioides in maize, reduced nearly 
50% of FB1 accumulation during vertical transmission which spreads from plant to cob 
[44]. Another report indicated that B. mojavensis, the fusaric-acid-resistant mutant strain, 
the wild type, showed biocontrol potential against F. verticillioides [81]. Furthermore, F. 
verticillioides in vitro, has also shown its antagonistic properties against B. amyloliquefaciens 
without causing any changes in the rhizospheric region [82]. Microorganisms such as 
Exophiala spinifera (ATCC 74269), Sphingopyxis macrogoltabida (MTA 144), Bacterium so 
(ATCC 55552), and Rhinocladiella atrovirens (ATCC 74270) are capable of minimizing the 
production of FB1 in F. verticillioides [83–88] (Table 2). 

It was reported that in greenhouse conditions, B. amyloliquefaciens and Enterobacter 
hormacchei, at a concentration of 109 CFU mL−1 reduced the infection of maize grains 
against F. verticillioides and fumonisin production in the soil, thereby improving the 
quality of maize grains [82]. In greenhouse trials, root applications of B. subtilis (108 and 
107 CFU/mL), against F. verticillioides has become the potential biocontrol method due to 
the ability of B. subtilis to reduce the endorhizosphere and rhizoplane colonization with 
the pathogen [89]. Root infection of maize seedlings by F. verticillioides was minimized 
followed by B. amyloliquefaciens treatments, and it was reported as an effective preventive 
measure against horizontal transmission (transmission between neighboring plants) of 
pathogens, without affecting the normal plant growth [90] (Table 3). 

Table 2. In vitro effect of biocontrol agents on growth (%) and development of toxigenic F. verticillioides. 

Serial 
Number Test Organism 

Methods Used for 
Screening 

Targeted Feature of F. 
verticillioides 

Percent of  
Reduction Reference 

Microorganisms 
1. Bacillus subtilis Antifungal activity Fungal growth 50% [91] 

2. 
Lactobacillus 
rhamnococcus Antifungal activity Mold growth 78–92% 

[90,92] 
3. Saccharomyces cerevisiae Antifungal activity Mold growth and FB1 77–89% 

4. Pediococcus pentosaceus 
Antifungal activity and 

spectrum Zone of inhibition 89% [93] 

5. Enterococcus 
casseliflavus M4A 

Antifungal activity Fungal growth 100% [94] 

6. Trichoderma viridae Antifungal activity Zone of inhibition 90% 
[70,95,96] 

7. Trichoderma harzianum Antifungal activity Zone of inhibition <70% 

8. Pseudomonas 
solanaceacum 

Antifungal activity Zone of inhibition 70% [81] 

9. 

Mixture of E. cloacae 
and M. oleovorans; 

mixture of P. 
solanaceacum and B. 

subtilis 

Antibiosis Root colonization 50% [87] 

Antioxidants  

10. Butylated 
hydroxyanisole (BHA) Water activity Mycelial growth 

94–98% 
[68] 

11. Propylparabean (PP) 100% 
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12. 
Trihydroxybutyrophe

none (THBP) >85% 
[97] 

13. Butylated 
hydroxytoluene (BHT) 

95% 

14. 
Tetrahydrocurcuminoi

ds (THC) Antifungal activity Fungal conidial growth 100% [98] 

Phenolic Compounds and Plant Extracts  

15. 
Geranial, eugenol, and 

singerone from 
Zingiber officinale 

Poisoned food technique mycelial growth 100% [99] 

16. 

Carvacrol, eugenol, 2-
hexanal from oregano, 

thyme, cinnamon, 
clove, fruits, and 

vegetables 

Antifungal activity Conidial germination and 
mycelial growth 

37–97% [100] 

17. Chitin-binding protein 
from Ginko biloba, 

Antifungal activity Mycelial growth >50% [101] 

18. 
Vanillic acid and 

caffeic acid 
Antifungal activity Fungal growth 

80% 
100% 

[102,103] 

19. 
Chlorophorin, iroko, 

maakianin, and ferulic 
acid 

Agar-well diffusion and 
HPLC 

Fungal growth and FB1 88–94% [103] 

20. 

Flavonoids, phenolic 
acid, and terpine-rich 
ethanol extracts from 
Equisetum arvense and 

Stevia rebaudiana 

Antifungal activity Fungal growth 79% [104] 

21. 

Aqueous extract, 
methanol extract, and 
alkaloid extract from 

Prosopis juliflora 

Poisoned food technique Mycelial growth 100% [105] 

22. 1,8-Cineole from 
Rosnainum officinalis 

Antifungal activity 

Conidial production 53.48% 

[106] 
23. 

Eugenol, methyl 
eugenol, and 

tumerone from 
Syzygium aromaticum, 
Pimenta dioica, and C. 

longa 

Fungal growth 40–80% 

Table 3. In planta effect of bacteria as biocontrol agents against F. verticillioides in maize. 

Serial Number 
Plant Parts Treated 

with Biocontrol 
Agents 

Test Organisms Targeted Feature Percent Inhibition 

1. Maize plant Bacillus subtilis Colonization 28–78% 

2. Maize seedling stalk 
Bacillus 

mojavensis Colonization 24–58% 

3. Seed Bacillus 
amyloliquifaciens 

Fungal growth 

>82% 4. Seed 
Microbacterium 

oleovarans Maize infection 

5. Seed Enterobacter 
hormacchei 

Fungal growth 

6. Maize roots 
Enterobacter 

cloacae 
Colonization in 

roots <50% 
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7. Maize stalk Clonostachys rosae Colonization 50% 

8. Rhizoplane and 
endorhizosphere 

region 

Arthrobacter 
globiformis 

Root colonization 69–80% 

9. 
Azotobacter 
armeniacus Root colonization 56–75% 

8.1.2. Probiotics as Biocontrol Agent 
Furthermore, lactic acid bacteria have been applied as a safe biocontrol agent to 

minimize the growth and production of F. verticillioides and fumonisin production. 
Certain in vitro studies have shown the inhibitory potential of Saccharomyces cerevisiae and 
Lactobacillus rhamnous against F. verticillioides growth [92]. Reports of in vivo studies 
indicated elimination of FB1 content in mature mice administered with the biocontrol 
agent, S. cerevisiae [93]. In another report, S. cerevisiae as a biocontrol agent, was observed 
to control the growth of F. verticillioides and FB1 production in cereals [87]. Pediococcus 
pentosaceus, with a GRAS status, is widely used as a biocontrol organism in food 
fermentation and ensilage quality improvement. Additionally, the supernatant of P. 
pentosaceus exhibited antifungal activity thereby inhibiting growth of both F. proliferatum 
and F. verticillioides [107]. Recently Enterococcus casseliflavus M4A strain was reported to be 
a promising tool for biocontrol of F. verticillioides in storage maize grain silos. Combination 
of volatile organic compounds diacetyl and acetic acid produced by Enterococcus 
casseliflavus M4A strain completely inhibited F. verticillioides growth and acetoin 
significantly (88.75%) reduced FB1 biosynthesis [94] (Tables 2 and 4). 

8.1.3. Fungi as Biocontrol Agents 
Among the fungi, Trichoderma species are considered as an effective biocontrol agent 

against F. verticillioides due to their ability to produce extracellular lytic enzymes [47]. 
Harmosa et al. conducted in vitro and in planta studies in maize and suggested by GRAS 
status that, T. harzianum and T. viridae, effectively reduced the growth of F. verticillioides 
and its fumonisin production by producing extracellular enzymes, volatile compounds, 
and antibiotics [95,108] (Tables 2 and 3). Trichoderma species were also applied as 
postharvest biocontrol agents, which reduced the colonization of F. verticillioides and its 
toxin accumulation in corn during storage [96] (Table 2). 

8.1.4. PGPR as Biocontrol Agents 
Naturally occurring bacterial species Azotobacter and Arthrobacter were found to be 

prevalent and predominant mainly in the rhizoplane and endorhizosphere of maize-
growing areas [91]. Enterobacter cloacae has also been reported as a noteworthy biocontrol 
agent against F. verticillioides during root colonization of maize crop [109]. Biological 
control potentials of bacteria in mixed cultures of E. cloacae, Microbacterium eoleovorans, P. 
solanacearum, and B. subtilis have shown synergistic activities by prevention and reduction 
of vertical transmission and colonization of roots by F. verticillioides in maize seed [87] 
(Table 2). Other bacterial species, such as Pseudomonas solanacearum, Azotobacter 
armeniacus, and Arthrobacter globiformis and rhizobacterial strains of Bacillus species were 
all found to exhibit potent in vitro antifungal activities as seed inoculants against F. 
verticillioides, thereby reducing its growth and FB1 production in the endorhizosphere and 
rhizoplane region of the maize root [68,91] (Table 2). 

8.1.5. Mycoviruses as Biocontrol Agents 
Currently, the application of mycoviruses as biocontrol agents both in vitro and in 

vivo is in great demand. Mycoviruses induce hypovirulence among host fungi as they 
lack extracellular transmission routes [110]. Three different mycoviruses FgV1, FgV2, and 
FgV3 induced hypovirulence and caused latent infections involving the role of RNAi 
among Fusarium species [111]. 
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8.1.6. Non-Toxigenic Strains as Biocontrol Agents 
Other strategies have also been used for biological control against Fusarium species. 

Non-pathogenic Fusarium strains have been moderately applied as biocontrol agents in 
suppressing the growth of toxigenic strains F. proliferatum and F. verticillioides in maize 
[112]. The gene silencing technique has been applied as a biocontrol strategy by deleting 
ZFR1 in F. verticillioides. This method affects fumonisin biosynthesis and regulates the 
sugar transporter genes during the formation of kernel colonization, resulting in 
minimized growth of maize endosperm; development of the endosperm plays a major 
role in biosynthesis of fumonisin in maize grain [113]. 

8.2. Antioxidants as Biocontrol Agents 
Antioxidants, namely propylparaben (PP) and butylated hydroxyanisole (BHA), are 

considered GRAS by the FDA, and they are used as preservatives in certain food and 
cosmetic industries [114]. Under respective in vitro conditions, both BHA and PP were 
observed to suppress the growth of F. verticillioides and F. proliferatum [115], indicating 
their potential as biological control entities. Similarly, in a dose-response study, a 77% 
reduction of F. verticillioides was reported with 10–100-fold doses of BHA/PP (500 µg/g) at 
water activity (0.95) for a period of 28 days [116]. Reynoso et al. [117] reported a higher 
percentage of reduction in fumonisin production during a combinational treatment of 
BHA and PP over other antioxidants, butylated hydroxytoluene (BHT) and 
trihydroxybutyrophenone (THBP) [97]. Another antioxidant, tetrahydrocurcuminoids 
(THC), and its related molecules extracted from non-toxic plant, Curcoma longa, was also 
found to suppress FB1 production in vitro [98]. Biosynthesis of FB1 from F. verticillioides 
was strongly inhibited by 3,6,7-trihydroxy-α-tetralone (TT) extracted from Phoma moricola 
at 200 µg/mL concentration. TT is strongly active against the enzyme polyketide synthase 
as antimycotoxin, which could be explored as an eco-friendly method for managing 
mycotoxin contamination in food and feed stuffs [118] (Tables 2 and 4). 

Table 4. Effect of biocontrol agents on the reduction of fumonisin B1 production by F. verticillioides. 

Serial 
Number  

Biocontrol Agents 
Detection 
Method 

Percent of FB1 
Reduction 

Level of 
Study 

Reference 

Microorganisms 
1. Bacillus subtilis HPLC 50% In vitro [87] 
2. Bacillus amyloliquifaciens HPLC 

>70% 
Field study 

[82,89] 3. Microbacterium oleovarans HPLC Field study 
4. Enterobacter hormacchei HPLC Field study 
5. Lactobacillus rhamnococcus HPLC 78–92% In vitro 

[90,92] 
6. Saccharomyces cerevisiae HPLC 77–89% In vitro 
7. Pseudomonas solanaceacum HPLC 70–100% In vitro [68,81,87] 

8. 
Mixture of E. cloacae/M. 
oleovorans; mixture of P. 
solanaceacum/B. subtilis 

HPLC 100% Field study [91] 

Antioxidants  

9. 
Butylated hydroxyanisole 

(BHA) 

HPLC 

100% 

In vitro 

[68,117] 
10. Propylparabean (PP) 94–98% 

11. 
Trihydroxybutyrophenone 

(THBP) 
94–98% [97] 

12. 
Butylated hydroxytoluene 

(BHT) 
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13. 
3,6,7-trihydroxy-α-tetralone 

(TT) 
HPLC >95% In vitro [118] 

 Phenolic Compounds and Plant Extracts  
14. Ferulic acid HPLC 98–100% In vitro [103] 
15. Vanillic acid, and caffeic acid HPLC 98–100% In vitro [102] 
16. Acetonin HPLC 88.75% In vitro [94] 
17. Acetone extract  HPLC 96% In vitro [119] 

8.3. Plant Extracts as Biocontrol Agents 
Antifungal assays of plant extracts, and phenolic compounds from plants have been 

studied for long time, and these compounds have been identified as inhibiting the growth 
of F. verticillioides and suppressing fumonisin production. Aqueous and methanol extracts 
of the plant Prosopis juliflora inhibited the growth of F. verticillioides by 50% and 65% at 400 
µg mL−1, respectively, whereas alkaloid extract of P. juliflora completely inhibited the 
growth of F. verticillioides at 300 µg mL−1 [105]. Recently, Tagetes erecta methanol extract 
from leaves, flowers, and roots of the plant were found to inhibit F. verticillioides growth 
by more than 65% after 7 days of incubation [108] Combination of Combretum 
erythrophyllum and Quercus acutissima acetone extract exhibited 96% inhibition against F. 
verticillioides growth [119]. In addition, F. verticillioides growth was also inhibited by 34% 
with highly potent betel leaf extract at 1000 ppm concentration [120,121]. In another 
interesting report, incidence of F. verticillioides was lowered from 40% to 25% by storing 
maize in bamboo granaries instead of on cement floors; the bamboo granaries served as a 
biocontrol agent [122]. Phenolic compounds, namely, thymol, carvacrol, and eugenol, 
were identified to be the most active antifumonisin compounds among 10 natural 
phenolic compounds tested [120]. A chitin-binding protein from Ginko biloba and a 
polygalacturonase-inhibiting protein from Arabidopsis thaliana, inhibited growth of 
fumonisin-producing F. verticillioides [101,123]. Similarly, phenolic compounds such as 
caffeic and vanillic acid were observed to decrease the growth F. proliferatum and F. 
verticillioides and FB1 production in maize [124]. The authors, in their in vitro studies, 
observed an increase in concentration of phenolic compounds, such as caffeic acid and 
vanillic acid, which completely inhibited the growth of fungus and FB1 production; 
however, the growth inhibition (%) of vanillic acid was more effective than caffeic acid 
[102]. In addition to vanillic acid and caffeic acid, iroko, chlorophorin, maakianin, and 
ferulic have also been reported to inhibit the growth of F. verticillioides and the 
biosynthesis of fumonisin B1 [103]. Non-toxic plants extract such as flavonoids, phenolic 
acid, and terpene-rich ethanol extracts from Stevia rebaudiana (candy leaf) and Equisetum 
arvense (horsetail) inhibited the conidial growth of F. verticillioides; however, they were 
less effective against the fumonisin production. Extracts of Gynostemma pentaphyllum were 
observed to inhibit only the growth of F. verticillioides [104,125]. Recently, for the first time, 
an experiment has been conducted on stalk rot and reported that synergistic activity of 
betel leaf extract with B. subtilis TM3 formulation resulted in 20% inhibition against stem 
rot disease and 13.37% against cob rot disease in maize plants [126] (Tables 3 and 4). 

8.4. Plant-Based Essential Oils as Biocontrol Agents 
Plant-based essential oils and their active ingredients play an important role in direct 

and indirect plant defenses against pathogens and serve as antimicrobial compounds. 
Essential oils extracted from anise and thyme have been reported to cause complete 
inhibition of F. verticillioides. The growth reduction of F. verticillioides was reported up to 
79% by caraway and 86% by fennel, and more than 60% inhibition was reported by 
spearmint, marigold, hazanbul, onynum, basil, and chamomile essential oils at 
concentration ≤500 ppm [127]. Essential oils with certain constituents were extracted from 
aromatic plants (Aloysia polystachya, Origanum vulgane, Mentha piperita, and Aloysia 
triphylla) and these oils inhibited growth and fumonisin production in F. verticillioides 
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[128]. Essential oils of lemon grass, cinnamon leaf, clove, palmarosa, and oregano have 
also been shown to inhibit mycelial growth of F. verticillioides, F. proliferatum, and F. 
gramineareum under different temperature (20–30 °C) and water activity (0.95–0.995) 
conditions [129]. Furthermore, essential oils from neem, cymbopogon, eucalyptus, clove, 
peppermint, and cedar wood were screened for their efficacy against Fusarium species in 
maize and sorghum, and of all the oils tested, citronella from Cymbopogon nardus, at a 
concentration of 500 ppm, inhibited the growth of nine species of Fusarium [130]. Essential 
oils such as geranial, eugenol, and singerone (oleoresins) extracted from Zingiber officinale 
exhibited antifungal potential and were reported to be effective against the growth of F. 
verticillioides [131]. Carvacrol, eugenol, and 2-hexanal (extracted from oregano, thyme, 
cinnamon, clove, fruits, and vegetables), effectively inhibited the mycelial growth and 
conidial germination of F. verticillioides in maize kernels [99]. Chemical compounds 
extracted from essential oils, namely eugenol from Syzygium aromaticum, methyl eugenol 
from Pimenta dioica, and α-tumerone and β-tumerone from Curcuma longa inhibited F. 
verticillioides growth by 88.70%, 53.09, 44.20%, and 70.67%, respectively, whereas 1,8-
cineole extracted from Rosanium officinalis inhibited conidial production of F. verticillioides 
by 53.48% [94,100,106]. Recently, essential oils extracted from Anacyclus valentinus, Carum 
carvil, cinnamon, Cumin cyminum, Cymbopogon nardus, Foeniculum vulgare, Ocimum 
basilicum, and Thymus capitatus inhibited growth of F. verticillioides from 75 to 92% by 
micro and macro dilution methods [132–138] (Tables 3 and 4). Essential oils and their 
components are important because of their low cost, availability, and wide range of 
biological activities. Antibacterial and antioxidant abilities of essential oils are well 
documented but studies on antifungal and antimycotoxigenic abilities of essential oils are 
still limited [139]. 

8.5. Resistant Crops via Breeding as Biocontrol Methods 
The resistant crops grown through genetic engineering and breeding techniques 

have been designed primarily for avoiding contamination by mycotoxigenic fungi, insect 
invasion, and mycotoxin detoxification in planta by using gene manipulation studies 
[140–142]. Transcriptional changes by inoculating F. verticillioides among susceptible and 
resistant genotypes in maize is done by next-generation RNA sequencing [143]. This 
method provides an important genomic resource in developing disease-resistant maize 
genotypes [143]. Information on biochemical and molecular methods, elucidating 
concepts of natural resistance in crops, has become important for further progress in 
development of resistance to infection by Fusarium and insect infestation in crops [144]. 
Infection of F. verticillioides in maize indicates up-regulation of genes encoding various 
ranges of proteins associated with virulence or susceptibility, resistant maize lines, 
defense, rescue, permatin proteins, pathogenesis proteins, proteins scrambled in 
detoxification response, proteinase inhibitors, and heat shock proteins [145,146]. Maize 
lipoxygenase (ZmLOX) derivative of oxylipins has been identified as contributing to the 
adaptable plant defense against pathogens. Metabolic activity of lipoxygenase 
derivatives, including up-regulation of ZmLOX5, LOX genes, and ZmLOX12, has been 
identified as more specific derivatives during the host–pathogen interactions of maize and 
F. verticillioides [147]. 

8.6. Genetic Engineering as Tools for Biocontrol 
Genetic engineering tools improve commercially acceptable crops by certain 

mechanisms, such as natural, fungal, and insect resistance [142]. Cry proteins from Bacillus 
thuringiensis (Bt), isolated from Bt maize, were genetically modified and considered as safe 
to consumers. These cry proteins were highly effective in reducing the level of fumonisin 
production and insect damage in maize when compared with non-Bt hybrids [148]. Corn 
borers harm the ear tissue and stalk of maize, stimulating the spore germination of F. 
verticillioides, followed by increased fumonisin production. The vital association of insect 
damage and total fumonisin level in maize resulted in ear and kernel rot [149]. Similarly, 
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the results of in planta trials in USA and Europe, reported lower fumonisin levels in Bt 
maize hybrids. Furthermore, such hybrids have been reported to increase the percentage 
of yield and are environmentally friendly and fit for human and animal consumption as 
per the World Health Organization (WHO) and the Environmental Protection Agency 
(EPA) [150]. By lowering fumonisin and aflatoxin contamination in the USA, the annual 
benefit by Bt maize was reported as USD 23 million [150]. The use of hybrids has become 
an important tool in developing countries. Bt plants reduce fumonisin production in 
maize during seasons when the European corn borer (Ostrinia nubilalis Hübner) 
dominates in the field; however, it is not the case when the corn earthworm (Helicoverpa 
zea Boddie) dominates the field [149]. 

8.7. Commercially Available Products as Biocontrol Agents 
Certain commercial products, other than Bt have been used as biological control 

agents against Fusarium species: Fusaclean and Biofox C from atoxigenic F. oxysporum 
strain against F. verticillioides in vegetables; Epic and Kodiak from B. subtilis; Intercept 
from Pseudomonas cepacian; Mycostop from Streptomyces griseoviridis; T-22G, T-22HB, and 
Biofungus from Trichoderma harzianum; Blue Circle and Deny from Burkholderia cepacian; 
Cedom and Cerall from Pseudomonas chlororaphis [1]; Novasil and Nevalite from clay 
material [75]; and Fumzyme from S. macrogoltabida [88]. Although these are biological 
control agents proven to be environmentally safe, contamination of cereals by F. 
verticillioides and production of fumonisin continue to be a global threat. 

9. Conclusions 
Additional research data on F. verticillioides, and exposure and safety evaluations of 

fumonisin are needed to evaluate the potential toxicity of this toxin and its byproducts. 
Further research on the safety of physical, chemical, and biological decontamination are 
needed, and specific strategies that combine an integrated decontamination approach 
must be developed to remove the fumonisin content from cereals and cereal-based foods 
to the greatest possible extent [151]. Research has been effectively carried out across a 
wide area to reduce the growth of Fusarium species and fumonisin production during pre-
harvest and post-harvest stages by practicing natural and biological methods, including 
plant materials, minerals, and microorganisms. 

Usage of physical methods, even though they seem to be acceptable practices and 
cause limited change in the properties of the commodity, still seems to be impractical and 
limiting for large-scale industries as they are time-consuming and expensive. While 
several of the chemical treatments are affordable and effective against mycotoxins, their 
use is still banned by the European Union (EU) in food processing, since they can pose 
certain health risks due to possible toxic byproducts generated. 

From our review, it appears that application of biological methods in lowering the 
fumonisin production by F. verticillioides, supersedes other measures we have listed, 
though with a few disadvantages. Microorganisms such as bacteria, fungi, PGPR, 
probiotics, and atoxigenic strains, even though they are beneficial in minimizing the 
fumonisin content and cost effective, may become harmful at some stage in their growth 
and development. Similarly, plant-based natural products such as essential oils, 
antioxidants, and plant extracts, are derived using certain chemicals, and have been used 
as a biocontrol agent. Certain essential oils extracted from plants, have shown a wide 
range of antifungal activities, including minimizing production of fumonisin content by 
F. verticillioides however, it has been reported that the structure obtained after extracting 
the essential oil appears to be toxic. On the other hand, first-line defense methods, such as 
development of resistant varieties and application of genetic engineering methods to 
minimize the production of mycotoxins by fungi, have recently been used, however, only 
in crops of economic importance. 

Resistance to fungal infection by genetic engineering does not seem to be a long-term 
solution since such varieties are not affordable by most of our farmers. Biological methods, 
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though they are inexpensive and cause no harm to the environment, are time-consuming 
and impractical in some set-ups. In conclusion, perhaps, additional extensive in vitro and 
in vivo studies and much more international collaborative research must be initiated on 
F. verticillioides and production of fumonisin B1 to add data to the existing knowledge on 
control measures for this pathogen in the field, at storage, and in the processing period. 
Such collaboration may lead to a total global control of this fungus and eradication of this 
carcinogenic toxin in our food chain. 
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