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Abstract: The emergence of a multidrug-resistant Candida species, C. auris and C. haemulonii, has been
reported worldwide. In Thailand, information on them is limited. We collected clinical isolates from
Thai patients with invasive candidiasis. Both species were compared with a laboratory C. albicans
strain. In vitro antifungal susceptibility and thermotolerance, and pathogenesis in the zebrafish model
of infection were investigated. Both species demonstrated high minimal inhibitory concentrations
to fluconazole and amphotericin B. Only C. auris tolerated high temperatures, like C. albicans. In a
zebrafish swim-bladder-inoculation model, the C. auris-infected group had the highest mortality rate
and infectivity, suggesting the highest virulence. The case fatality rates of C. auris, C. haemulonii, and
C. albicans were 100%, 83.33%, and 51.52%, respectively. Further immunological studies revealed
that both emerging Candida species stimulated genes involved in the proinflammatory cytokine
group. Interestingly, the genes relating to leukocyte recruitment were downregulated only for C. auris
infections. Almost all immune response genes to C. auris had a peak response at an early infection
time, which contrasted with C. haemulonii. In conclusion, both emerging species were virulent in a
zebrafish model of infection and could activate the inflammatory pathway. This study serves as a
stepping stone for further pathogenesis studies of these important emerging species.
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1. Introduction

The Candida species are important causes of bloodstream infections in hospitalized
patients. This is especially the case in intensive care units, where patients receive broad-
spectrum antimicrobial drugs, indwelling vascular catheters, parenteral nutrition, abdomi-
nal surgery, and immunosuppressive agents [1,2]. High mortality rates among patients
have been associated with a delayed initiation of appropriate antifungal treatment [3,4].
This problem is compounded by the drug-resistant Candida, notably C. glabrata, found in
many hospitals [5,6].

An emerging multidrug-resistant Candida, C. auris, was first reported in 2009 as an
isolate from the external ear at a hospital in Japan [7]. In 2011, it was found in a bloodstream
infection in Korea [8]. During the last decade, approximately 39 countries in East Asia,
the Middle East, Africa, North America, South America, and Europe reported cases of
C. auris infection [9]. C. auris might be resistant to multiple classes of antifungal agents,
such as echinocandins and azoles. Moreover, it has the potential for person-to-person
transmission [10]. Conventional microbiological methods often misidentify C. auris as
C. haemulonii, a phylogenetically related drug-resistant Candida species that is also being
increasingly reported in hospitals worldwide [11]. The first clinical isolation of C. haemulonii
was collected from the hemoculture of a patient with renal failure which was reported by
Lavarde et al. in 1984 [12]. A few years ago, treatment failures for C. haemulonii infections
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were associated with unresponsiveness to amphotericin B; reduced susceptibility to azoles
and echinocandins has also been reported [13–15].

Considering the importance of these emerging human pathogens, it is imperative
to understand the host defense mechanisms. However, the mechanisms regarding C. au-
ris and C. haemulonii responses after infection are largely unknown [16]. Host defense
against Candida species relies on an interaction between the innate and adaptive immune
responses. Firstly, there is a physical barrier, consisting of the skin and mucosa. The second
barrier is recognition of the Candida species by innate immune cells, such as neutrophils,
monocytes, and macrophages. The recognition is driven by fungal pathogen-associated
molecular patterns, which are mainly associated with fungal cell walls such as β-glucan or
phospholipomannan (PLM) [17,18]. The subsequent release of proinflammatory cytokines,
combined with the antigen-presentation activity of myeloid cells, is crucial for shaping
the adaptive immunity, which represents a long-term barrier against fungal infection [19].
Recent studies showed that C. auris infection led to reduced neutrophil activities and
macrophage lysis capacity [20,21]. In comparison to Candida albicans, a stronger cytokine
response was also observed in C. auris which mediated through the recognition of C-type
lectin receptors. Collectively, C. auris was less virulent than C. albicans in in vivo experimen-
tal models of disseminated candidiasis [21]. However, studies of host immune response to
C. haemulonii was still lacking.

Some studies on bacteria have reported finding an association between the antibiotic
resistance and host pathogenesis [22,23]. In our study, we investigated the interaction
between emerging Candida strains, C. auris and C. haemulonii, exhibiting high MICs to
antifungal agents and host immune response by using zebrafish as a model for an im-
munopathogenesis study. Upon finishing this work, we found that C. auris and C. haemulonii
were both highly virulent and several proinflammatory cytokine genes were involved in
their pathogenesis. This highlights the advantage of using the zebrafish model to de-
termine the virulence of Candida species, and potentially to investigate these emerging
drug-resistant Candida species in the future.

2. Materials and Methods
2.1. Clinical Isolates

C. auris and C. haemulonii isolates were collected from the yeast culture collection held
by the Mycology Unit, Department of Microbiology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Thailand. The isolates had been obtained from invasive candidiasis
patients at the hospital, firstly in 2018 (from blood tested for the C. auris strain SI-18-
CAU-HEM) and later in 2021 (from pleural effusion tested for the C. haemulonii strain
SI-21-CH-PLF).

Species identification was confirmed by ITS sequencing (ATCG Company Ltd., Thai-
land). The ITS sequences were compared to reference sequences deposited in the GenBank
Databases (https://blast.ncbi.nlm.nih.gov accessed on 28 May 2021). Accurate species
identification targets included an E-value of ≤ 10 5 and identity and coverage of ≥98% [24].

The nucleotide sequences of C. auris and C. haemulonii were assigned NCBI database
accession numbers MZ312603 and MZ312604, respectively, and the ITS phylogenetic tree
was represented in Figure S1. Before commencement of this research, its protocol was
approved by the ethics committee of the Siriraj Institutional Review Board (Si. 091/2016;
9 February 2021).

2.2. Thermotolerance and Antifungal Susceptibility Testing

Assessment of thermotolerance was performed by spotting serial dilutions of C. auris
and C. haemulonii, plus the control strain, C. albicans ATCC24433, on Sabouraud dextrose
agar (SDA) plates and assessing growth after 48 h incubation at 30 ◦C, 37 ◦C, and 42 ◦C.

The susceptibility of the yeast strains to antifungal drugs was determined by using
Sensititre YeastOne YO10 (SYO; Thermo Fisher Scientific, Waltham, MA, USA), a colori-
metric microdilution method, as per the manufacturer’s instructions. Nine drugs were

https://blast.ncbi.nlm.nih.gov
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used: fluconazole, voriconazole, itraconazole, posaconazole, 5-flucytosine, anidulafungin,
micafungin, caspofungin, and amphotericin B.

2.3. Zebrafish Maintenance and Infection Experiment

Adult wild-type zebrafish (Danio rerio, Tuebingen/AB strain) were kept in recirculated
water aquarium under an alternated light/dark cycle of 14 h and 10 h, respectively. Larval
zebrafish were incubated at 28.5 ◦C in E3 buffer (60× stock solution: 34.8 g NaCl, 1.6 g KCl,
5.8 g CaCl2·2H2O, 9.78 g MgCl2·6H2O with 100 µL of 1% methylene blue [MB] in working
solution). For the infection experiments, the larvae were manually dechorionated between
24- and 30-hour post-fertilization. Prior to microinjection, the larvae were anesthetized in
E3-MB containing 0.2 mg/mL tricaine (ethyl-3-aminobenzoate; Sigma-Aldrich) [25].

The yeast strains were cultured in yeast-peptone-dextrose agar (YPD; Becton Dickin-
son, Franklin Lakes, NJ, USA). The plated cultures were inoculated to 5 mL liquid YPD
and grown for 18 h at 30 ◦C in a shaking incubator at 250 rpm. Yeast cells were centrifuged
at 8000× g, washed twice with phosphate buffer saline (PBS), and resuspended in 2 mL
PBS. The concentration of the yeast suspension was adjusted by counting under a light
microscope with a hemacytometer (INCYTO C-CHIP, Korea). This diluted suspension was
pelleted at 8000× g for 15 min and resuspended in autoclaved 10% polyvinylpyrrolidone
40 (PVP40) with 0.5% phenol red in PBS [26].

The yeast cells were inoculated to zebrafish larvae 5 days post-fertilization (dpf) using
a microinjector. Three nanoliters of the yeast suspension (adjusted to 150 and 250 yeast cells)
were injected into the swim bladders of the zebrafish larvae [27]. Mock injected control
and infected zebrafish larvae were kept in E3 buffer at 30 ◦C. This study was approved by
the Siriraj Animal Care and Use Committee (SiACUC) (020/2562; 27 January 2021).

2.4. Survival Rate

The survival study was performed using 26 larvae per group. Survival of infected
zebrafish larvae was recorded daily up to day nine.

2.5. Infectivity Assessment

Infectivity was determined by colony forming unit (CFU) quantification in biological
triplications, based on minor adaptation of a previous study [28]. Five representative
infected larvae were pooled and homogenized at 8 hpi (hour-post-infection), 24 hpi, and 96
hpi in 50 µL of 1X PBS. For plating, 20 µL of homogenate from each group were plated on
YPD agar supplemented with antibiotics (penicillin/streptomycin). To achieve a countable
number of colonies, homogenate (undiluted sample), 1:10, 1:100, 1:1000, and 1:10000
dilutions were plated for sample at each time point. Plates were incubated overnight at 30
◦C, and colonies were counted the following day. Biological triplication was undertaken to
ensure consistency of the experimental results.

2.6. RNA Extraction and Expression Analysis

RNA was isolated from 8 and 96 hpi larvae by using RNeasy Mini Kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. To synthesize cDNA, total of 50 ng of
RNA were used in a reverse transcription reaction by using iScript Reverse Transcriptase
(Bio-Rad, USA).

Each 20 µL reaction mixture of real time PCR contained 5 µL of 40 ng cDNA, 50
nM concentrations of each gene-specific primer (Table S1), and 10 µL of LightCycler 480
SYBR Green I Master Mix (Roche Life Science, Penzberg, Germany). Real-time PCR was
performed on a Roche LightCycler 480 machine. cDNA quantitation was performed in trip-
licates, and reactions were normalized against the β-actin gene as an internal control [22].
cDNA was amplified with an initial denaturation at 95 ◦C for 10 min before 40 cycles of
denaturation (95 ◦C for 10 s), annealing (52–58 ◦C for 20 s), and extension (72 ◦C for 20 s).
This was then followed by a melting curve and cooling step. Determination of expression
was calculated by normalized expression ratio (2−∆∆CT) compared with the β-actin gene.
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2.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8. In vivo in zebrafish data
were assessed with the Mantel–Cox test to determine survival analysis. CFU quantifications
and normalized gene expressions at different timepoints were compared by ordinary one-
way ANOVA with Tukey’s multiple comparison test. In all cases, p < 0.05 was deemed
significant.

3. Results
3.1. Antifungal Susceptibility and Thermotolerant Testing

The MICs of the C. auris and C. haemulonii strains investigated in this study are
presented in Table 1. Compared with C. albicans ATCC24433, these emerging Candida
strains showed high MICs for fluconazole: the MIC of C. auris was 512 times higher, while
that of C. haemulonii was 64 times greater than the C. albicans strain. Moreover, the C. auris
strain had high MICs for other azoles and amphotericin B.

Table 1. Antifungal susceptibility test results of the C. albicans (control strain), C. auris, and C. haemulonii strains.

Strain
Minimum Inhibitory Concentration (MIC, ug/mL)

AND MF CAS AB 5FC PZ VOR IZ FZ

C. albicans
ATCC24433 ≤0.015 ≤0.008 0.015 0.12 ≤0.06 0.03 0.015 ≤0.015 0.5

C. auris
SI-18-CAU-HEM 0.12 0.12 0.25 4 0.25 ≥8 ≥8 ≥16 ≥256

C. haemulonii
SI-21-CH-PLF 0.12 0.25 0.12 2 0.5 0.25 0.25 0.5 32

Abbreviations: 5FC, 5-flucytosine; AB, amphotericin B; AND, anidulafungin; CAS, caspofungin; MF, micafungin; IZ, itraconazole; FZ,
fluconazole; PZ, posaconazole; VOR, voriconazole.

Growth at a physiological temperature is a prerequisite for microbial invasion and
pathogenicity. The C. haemulonii isolates grew well at 30 ◦C, but their growth was poor
or absent at 37 ◦C, and no growth occurred at 42 ◦C. In contrast, while the C. auris and
C. albicans isolates were able to grow in temperatures ranging from 30 ◦C to 42 ◦C, C. auris
demonstrated better growth than C. albicans (Figure 1).
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Figure 1. Differing thermotolerances of Candida albicans, C. auris, and C. haemulonii. Sabouraud dextrose agar plates
showing growth of representative Candida strains after 48 h incubation at 30–42 ◦C with serial dilution spots. Top row:
C. albicans ATCC24433 as the control strain; middle row: C. auris strain SI-18-CAU-HEM; and bottom row: C. haemulonii
strain SI-21-CH-PLF.
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3.2. Survival in a Zebrafish Model of a Mucosal Candida Infection at the Swim Bladder

To evaluate the virulences of the C. albicans, C. auris, and C. haemulonii strains in a
zebrafish model of a mucosal Candida infection at the swim bladder, their survival was
monitored over the course of nine days after infection (Figure 2). Although inoculation
with the C. albicans strain resulted in 50% zebrafish death but the difference was not
significant compared to the control group with 10% zebrafish death (p = 0.251). Interestingly,
inoculation with C. auris produced 100% zebrafish death (p < 0.0001), whereas C. haemulonii
produced 80% zebrafish death (p = 0.004) when comparted to the death in the control group.
This result indicates that the C. auris and C. haemulonii strains had more virulence than the
C. albicans strain.
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Figure 2. Emerging Candida virulence in a zebrafish model. Each experimental group of 26 zebrafish
was injected with 107 CFU cells of one of the C. albicans ATCC24433 (control) strain, C. auris strain
SI-18-CAU-HEM, or C. haemulonii strain SI-21-CH-PLF. Each experiment was performed in duplicate.

3.3. Fungal Burden in Candidiasis Zebrafish Model

The ability to colonize within a host is essential for Candida infections. For this reason,
a CFU was used to examine Candida within the zebrafish. As illustrated in Figure 3, the
fungal burden in all groups of fish was counted at different timepoints. The number of
Candida cells significantly increased from 24 to 96 hpi in all groups (p > 0.0001), which
indicated that there was cell proliferation. In particular, at 96 hpi, the number of cells in
fish injected with C. auris was the highest, followed by C. haemulonii and C. albicans. This
correlated with the survival analysis results.
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Figure 3. Fungal burden in zebrafish model. Each experimental group of five zebrafish was injected
with 107 cells of one of the C. albicans ATCC24433 (control) strain, C. auris strain SI-18-CAU-HEM,
and C. haemulonii strain SI-21-CH-PLF. Each experiment was performed in triplicate. Abbreviations
and symbols: CFU/mL, colony forming unit per milliliter; ****, p < 0.0001.
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3.4. Dynamics of Immune Response Genes to Emerging Candida in Zebrafish Model

During an infection with Candida, the host immune system recognizes the pathogen-
associated molecular patterns and induces the expression of cytokines [29]. To examine
the pathogen-zebrafish interactions, the expression profiles of the host immune response
genes that played an important role to activate immune cells and secrete cytokines or
other components during Candida infection were monitored by real-time quantitative PCR
(qPCR) at 8 hpi (as the early timepoint) and 96 hpi (as the late timepoint). The raw data of
normalized gene expression was shown in Table S2 and Figure S2. The fold changes of the
gene expression levels in zebrafish infected with C. auris and C. haemulonii were compared
with the expression in zebrafish infected with the C. albicans control strain (Table 2).

Table 2. Fold changes of gene expression levels of zebrafish infected with C. auris and C. haemulonii
at different timepoints, compared with C. albicans infection.

Genes
Early Timepoint (8 hpi) Late Timepoint (96 hpi)

C. auris C. haemulonii C. auris C. haemulonii

Proinflammatory and Inflammatory Cytokines

tnfa 3.74 **** 2.60 * 2.13 * 2.06 *

ifng 1.22 NS 1.27 NS 0.92 NS 1.76 NS

il1b 2.43 *** 1.22 NS 1.12 NS 1.96 **

il6 0.97 NS 1.25 NS 0.63 ** 1.05 NS

il8 4.72 **** 2.37 *** 2.05 NS 2.51 **

il10 2.47 ** 1.35 NS 1.33 NS 2.00 **

il17a 1.18 NS 2.31 *** 1.25 NS 0.78 NS

Leukocyte Activities

inos 1.07 NS 0.93 NS 0.96 NS 0.85 NS

mpx 0.98 NS 0.83 NS 0.42**** 1.04 NS

Matrix Metalloproteinases

mmp9 0.76 NS 3.82 **** 2.09 **** 2.41 ****

mmp13 1.62 * 1.72 * 1.74 * 1.88 **

Inflammatory Regulators

myd88 1.54 NS 1.06 NS 0.92 NS 1.05 NS

nfkb 1.02 NS 1.56 ** 1.17 NS 2.11 ****

jak2 3.04 **** 0.46 * 0.93 NS 0.52 NS

stat3 0.87 NS 1.17 NS 1.23 NS 1.53 *

Regulatory T-Cells

foxp3a 3.16 **** 1.12 NS 0.33 **** 0.92 NS

foxp3b 1.49 ** 0.96 NS 0.56 **** 0.97 NS

Note: The expression folds were analyzed with the Livak method (2−∆∆CT): <1, downregulation; 1, basal; >1,
upregulation. Abbreviations and symbols: hpi, hour post infection; NS, not significant; *, p < 0.5; **, p < 0.01;
***, p < 0.001; ****, p < 0.0001.

Most of the proinflammatory and inflammatory cytokine expression genes were
upregulated in the C. auris and C. haemulonii infection. Compared with the C. albians group,
the normalized ratios of expression were at significantly higher levels for both the C. auris
and C. haemulonii groups (for example, tnfa, il1b, il8, il10, and il17a). There was a high fold
change of expression in C. auris group during the early timepoint, but the C. haemulonii
group peaked at the late timepoint. Moreover, we found significant downregulation in il6
in the C. auris infection at the late phase (Table 2 and Table S3, Figure 4). The expressions of
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tnfa, il8, and il10 in the C. auris and C. haemulonii groups were at a higher level than in the
C. albicans group at both the early and late timepoints (Figure S3).
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Figure 4. The expression levels of il1b, il10, il17a, mmp9, foxp3a, and foxp3b in zebrafish infected with emerging Candida
strains, by timepoint. Each experimental group of 20 zebrafish was injected with 107 CFU cells of one of the C. auris
strain SI-18-CAU-HEM or the C. haemulonii strain SI-21-CH-PLF. The normalized ratios of expression were calculated by
comparison with the level of expression of the β-actin gene in each group at 8 hpi. Each experiment was performed in
triplicate. Abbreviations and symbols: hpi, hour-post-infection; *, p < 0.5; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

To further understand the role of leukocytes and their activities to defend Candida,
we determined the expression of inos (nitric oxide synthase in macrophage) and mpx
(myeloperoxidase in leukocytes). No significant differences in the expression levels of either
inos and mpx were detected among the three groups at the early timepoint. Interestingly,
the mpx expression in the C. auris infection was significantly downregulated at the late
timepoint. The results are illustrated in Table 2.

Next, the matrix metalloproteinase expressions as the leukocyte recruitment media-
tor [30] revealed that the matrix metalloproteinases genes were significantly upregulated in
C. auris and C. haemulonii in both phases. Focusing on mmp9, the C. auris infected group had
a significantly high expression at the late phase, whereas the C. haemulonii group surged at
the early phase (Figure 4). As to the inflammatory regulatory gene expression, most genes
were activated at a similar level to that of the C. albicans infection, with the jak2 expression at
a significantly increased level in C. auris at the early timepoint (Table 2). Interestingly, nfkb
demonstrated higher fold change expressions after the C. auris and C. haemulonii infections
than the C. albicans group (Figure S3).

Moreover, we detected the gene expressions of foxp3a and foxp3b, given their impor-
tance in the development and function of regulatory T-cells [31]. The results revealed that
the C. haemulonii infection had expressions that were at a similar level to those of the C. albi-
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cans infection, while the C. auris infection showed a significantly high expression for both
genes (Table 2). Additionally, we found a different timepoint of gene expression among the
strains. The C. auris infection was significantly upregulated at the early timepoint, but the
C. haemulonii infection increased at the late timepoint (Figure 4).

4. Discussion

The global emergence and spread of C. auris as a causative agent of invasive nosoco-
mial infection has arisen from resistance to multiple antifungal drugs and possibly to all
major classes of systemic antifungal drugs [5,32]. In addition, there has been horizontal
transmission among hospitalized patients [32,33]. C. auris and C. haemulonii are phylogenet-
ically related species in the Metschnikowiaceae family, and they have multidrug-resistance
properties [34]. We studied the characteristics of the first-isolated C. auris and C. haemulonii
at our hospital, and we highlighted experimental evidence to identify differences in their
drug susceptibility patterns, pathogenicity, and host responses in zebrafish. C. albicans was
used as the reference strain.

In our study, C. auris and C. haemulonii demonstrated high MICs for fluconazole and
amphotericin B, while echinocandin MICs were within the susceptible range, according to
the tentative MIC breakpoint value that had been previously established [13,35]. This result
was in concordance with the findings of other studies, namely, that high MICs for triazoles
and amphotericin B among emerging C. auris and C. haemulonii strains were increasingly
apparent in clinical settings [11,35–40]. Thermotolerant testing revealed that C. albicans
and C. auris—but not C. haemulonii—could grow at 30–42 ◦C, and that C. auris had the
highest thermotolerance. This corresponds with the findings of recent publications [41,42].
Our survival analysis showed that C. auris exhibited the highest mortality rate of infection,
followed by C. haemulonii and C. albicans. As to the fungal burden in the experimental
model of zebrafish, the C. auris with the highest thermotolerance had the highest infectivity.

Based on our findings, C. auris was more virulent and caused earlier mortality of
infected larvae. This is consistent with other work, which reported that this species
demonstrated more severity than C. haemulonii in animal studies [43,44]. One United
Kingdom study reported that C. auris did not form cellular aggregates, thereby causing a
significant virulence in terms of the mortality rate [45]. Additionally, the genomes of C. auris
and C. haemulonii, which are closely related species, contain C. albicans gene orthologs,
such as proteinases and mannosyl transferases, which might play roles in pathogenesis.
However, the genes of C. albicans have not been characterized [46]. However, previous
studues reported that C. auris and C. haemulonii were less virulent than other Candida
species (such as C. albicans and C. tropicalis) [41,47,48]. This might be explained by the
fact that C. auris and C. haemulonii lacked the ability to produce hyphae, which is an
important virulence factor for disseminated infections. Therefore, a comparison between
swim bladder, performed in this study, and intravenous route of infections would be
required and warranted in the next study. An interesting factor in our study was the high
MICs for antifungals of the emerging Candida isolates. This factor might cause increasing
severity or virulence from pathogens, as presented by other studies on Staphylococcus
aureus [49], Escherichai coli, Pseudomonas aeruginosa [23], and Vibrio alginolyticus [50].

To understand the pathogenesis of emerging Candida strains, we performed gene
expression analysis to observe the host immune response to pathogens in systemic infec-
tions. Firstly, proinflammatory cytokines play a role in stimulating immune cells (especially
macrophages) to destroy pathogens [51]. The expression of most proinflammatory cytokine
genes was upregulated at the early phase with C. auris. Although a similar pattern was
observed with C. haemulonii, some genes (such as il1b and il10) peaked at the late phase. On
the other hand, Il10, an inflammatory cytokine, was induced in an early phase of C. auris
infection. This inflammatory cytokine could potentially be released by Toll like receptor 2
(TLR2) dependent pathway in macrophage and hampered proinflammatory cytokines that
is critical for neutrophil recruitment [52,53]. Interestingly, il17α activation as a key to the
cytokine gene that links to neutrophil recruitment [54] showed a slow response after C. auris
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infection and il8 and mpx, surrogate markers for neutrophil function, were significantly
reduced in later phase of C. auris infection. This finding contrasted with C. albicans and
C. haemulonii infection in that their responses occurred at the early timepoint. This result
suggests that the neutrophil function in a host infected with C. auris is less capable than
that of neutrophils in larvae infected with C. haemulonii and C. albicans and may partly be
an explanation for virulence of C. auris.

Matrix metalloproteinase (MMPs) are members of the proteolytic enzyme family
and play multiple roles in the normal immune response to infection, including leucocyte
recruitment, cytokine, and chemokine processing, and defensin activation [55]. We found
that the expression of mmp9 had an opposing pattern to proinflammatory cytokine genes
such as tnfa and il1b, which supports the role of MMPs in controlling the production of
proinflammatory cytokines [56]. The key to proinflammatory cytokine production is the
activation of the transcription factor, NFkB, after the toll-like receptors (TLRs)–pathogen
interaction in innate immunity. Almost all TLRs signal via MyD88 as an adaptor protein
for NFkB activation, with subsequent inflammatory cytokine production and control
of adaptative immunity [57,58]. The data correlated to the previous description as the
myd88/nfkb gene expressions were stimulated by pathogen. The levels of expression
fluctuated due to different modes of activation, demonstrating that NF-kB activation is
an important requirement for the expression of many Candida-regulated genes [59]. As
to other transductors, JAK/STAT is the signal transduction pathway of many essential
cytokines involved in sepsis [60].

Lastly, regulatory T (Treg) cells play a major role in the suppression of excessive
immune responses. The functions of these cells were controlled by the expression of
regulatory gene encoding the forkhead box P3 (FOXP3) protein [61,62]. Our results showed
that Candida infection (other than C. auris) activated foxp3a and foxp3b at the late timepoint
suggesting that C. auris strain might reduce the number of regulatory T cells at the late
time point and allow to increase yeast population compared to other Candida species.
This data agreed with a previous study [63] that demonstrated the roles of foxp3a and
foxp3b in suppressing inflammatory cytokine secretion and T cell maintenance in zebrafish.
Moreover, that earlier research identified that foxp3a and foxp3b could stimulate the IL-
17-secreted cell response to Candida infection; this corresponded with the findings of the
current study [64].

As mentioned earlier, the effects of drug resistant isolate might be influenced by
the host immune response. Jiang JH et al. [49] recorded that the daptomycin-resistant
Staphylococcus aureus strain had impaired neutrophil recruitment in vivo and promoted
bacterial survival. Moreover, gene expression of proinflammatory cytokines and molecules
of innate immunity (such as lysozyme and C3b in zebrafish larvae infected with ceftazidime-
resistant [50] and levofloxacin-resistant [65] Vibrio alginolyticus strains) showed higher
upregulation than susceptible strains.

In summary, the strains of emerging Candida species, C. auris, and C. haemulonii, with
high MICs for antifungal agents, showed significantly higher virulences than the C. albicans
control strain used in the zebrafish model. In terms of the immune response, differences in
the patterns of gene expression were noted, especially for C. auris. The benefits of using
a zebrafish model to study the pathogenesis of fungal infections were considered. Our
results highlight the potential of using zebrafish as an effective model for the investigation
of the mechanisms controlling infections as well as for therapeutic efficiency studies. As
the number of strains in this study was limited due to very few cases at our hospital, we
need to collect more strains for future research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7090725/s1. Table S1: Primers used for qPCR experiments in this study [22,28,63,66–69];
Table S2: Average of gene expression levels of zebrafish infected with C. auris and C. haemulonii
at different timepoints, compared with the expression level of β-actin in each group; Figure S1:
Phylogenic tree using ITS sequences of emerging strains in this study [70]; Figure S2: qPCR analysis
of the gene expression levels in zebrafish infected with Candida albicans ATCC24433 as a control strain
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in this study; Figure S3: qPCR analysis indicating the high alterations of the expression levels of tnfa,
il8, il10, and nfkb in zebrafish infected with emerging Candida strains.
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