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I wish to thank all of the authors who contributed papers to this Special Issue on
the Formation and Function of Ascospores. While the process of ascospore formation is
most extensively studied in Saccharomyces cerevisiae, it is highly conserved throughout the
ascomycetes. The work described here touches on many aspects of the process including
control of entry, formation and dissolution of the limiting membrane, and construction and
function of the spore wall in a variety of ascomycetes.

Ascospore formation is usually linked to meiosis. However, it is not clear if this is the
case in Ashbya gossypii. Wendland provides a timely review of spore formation in A. gossypii,
highlighting similarities and the differences with S. cerevisiae [1]. The environmental
conditions that induce this developmental program vary between fungi. Wasserstrom and
Wendland and Jun et al. report on factors controlling entry into the sporulation program in
A. gossypii and Aspergillus flavus, respectively [2,3].

Earlier work has shown that Schizosaccharomyces pombe cells undergo ‘virtual nuclear
envelope breakdown’ (vNEBD) in Meiosis II, in which nuclear proteins equilibrate into
the cytoplasm [4]. Yang et al. show that release of the proteasome subunit Rpn11 via
vNEBD is required for proper closure of the forespore membrane (the S. pombe name for
the prospore membrane) and spore formation [5]. In S. cerevisiae, Durant et al. demonstrate
that the transient localization of the MAP kinase Smk1 to the lip of the prospore membrane
is required for proper membrane closure and spore morphogenesis [6]. Capture of the
nucleus by a prospore (or forespore) membrane results in cells that are surrounded by two
membranes; the spore plasma membrane closest to the nucleus, and an outer membrane
which disappears during the process of spore wall assembly [7]. Zhang et al. identify the
first mutants defective in outer membrane lysis and characterize the consequences of this
defect in S. pombe [8].

The spore wall is the defining feature of the ascospore, and four studies added to our
understanding of the organization of this remarkable extracellular matrix. Tahara et al.
have used a quick-freeze deep etch electron microscopy technique to reveal the architecture
of the surface layers of the S. pombe spore wall [9]. The spore wall of S. cerevisiae contains
an outer layer consisting of a polymer of the di-amino acid dityrosine. Basiony et al.
characterize the product of the Dit1 enzyme, responsible for the first step in dityrosine
synthesis [10]. In addition to dityrosine, the outer spore wall of S. cerevisiae is composed of
chitosan and a third, uncharacterized component [11]. Chrissian et al. demonstrate that this
third component is a tryglyceride, and that a similar set of constituents—chitosan, neutral
lipid, and a polyphenol polymer—are a conserved feature of the melanized cell wall of the
basidiomycete Cryptococcus neoformans [12]. The ascospores of Talaromyces macrosporus are
highly stress resistant and will not germinate unless first exposed to extremes of heat or
pressure. Dijksterhuis et al. identify a small protein that is released from the spore wall
under germination conditions and characterize the phenotype of spores lacking this key
spore wall component [13].

The papers of this Special Issue highlight the fascinating cell biology of this highly
conserved developmental process. My thanks again to all of the contributors.
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