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Abstract: Ethers can be found in the environment as structural, active or even pollutant molecules,
although their degradation is not efficient under environmental conditions. Fungal unspecific
heme-peroxygenases (UPO were reported to degrade low-molecular-weight ethers through an H2O2-
dependent oxidative cleavage mechanism. Here, we report the oxidation of a series of structurally
related aromatic ethers, catalyzed by a laboratory-evolved UPO (PaDa-I) aimed at elucidating the
factors influencing this unusual biochemical reaction. Although some of the studied ethers were
substrates of the enzyme, they were not efficiently transformed and, as a consequence, secondary
reactions (such as the dismutation of H2O2 through catalase-like activity and suicide enzyme inacti-
vation) became significant, affecting the oxidation efficiency. The set of reactions that compete during
UPO-catalyzed ether oxidation were identified and quantified, in order to find favorable conditions
that promote ether oxidation over the secondary reactions.

Keywords: fungal peroxygenase; biodegradation; suicide inactivation; ether oxidation; xenobi-
otic transformation

1. Introduction

The ether functional group is commonly found in nature as metabolites, structural
polymers, oil-derivatives or bioplastics, among others. They also can be found as active
molecules in many man-made products, such as agrochemicals, cosmetics, detergents or
drugs [1,2]. Several of these molecules have been reported to be present in water and soil
as a consequence of inappropriate handling during their life cycle [3,4]. Some of them can
be identified as pollutants due to their characteristic capability to remain chemically intact
and still active in environmental conditions [5] (EPA, 2009). Their recalcitrant character is
mainly due to the high stability of the ether bond. For instance, the energy needed for C–O
bond dissociation in ethyl propyl ether (84.8–85.3 kcal/mol) is similar to that required for a
C–C cleavage in the same molecule (85.3 kcal/mol) [6].

Although ethers are widely found in the environment, their degradation is not a
very common reaction in nature. In recent years, the description of a fungal heme-
thiolate peroxidase (termed unspecific peroxygenase, UPO: E.C. 1.11.2.1) has uncovered a
whole family of enzymes that is known for catalyzing the mono(per)oxygenation of over
350 organic molecules, with particular preference for hydrophobic, aromatic substrates [7,8].
It is noteworthy that these enzymes appear to be present solely in fungi. Although the bio-
logical role of these enzymes has not been elucidated, several works highlight their ability
to catalyze the oxidation of hundreds of organic compounds. Interestingly, UPO catalyzes
the degradation of ether molecules via the oxidative cleavage of the ether bond. In this
H2O2-dependent mechanism, an oxygen atom is inserted to the carbon adjacent to the oxy-
gen atom in the ether functional group; the product (a hemiacetal) is chemically unstable
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and leads to spontaneous ether bond breakage to generate an alcohol and an aldehyde [9].
In contrast, cytochrome P450 is able to catalyze aromatic O-demethylation [10,11].

Evidence regarding hydrophobic aliphatic (both linear and cyclic) ether oxidation has
been reported previously [9,12,13]. In this work, a series of aromatic ethers was selected in
order to analyze if substituents with different polarity affect ether oxidation catalyzed by a
laboratory-evolved version (PaDa-I mutant) of UPO from Agrocybe aegerita. We found that
aromatic ethers are not efficiently transformed by PaDa-I; thus, the magnitude of secondary,
unproductive reactions occurring simultaneously during aromatic ether oxidation was
quantified, in order to adjust reaction conditions so that ether oxidation was favored.

2. Experimental Procedure
2.1. Chemicals and Reagents

Benzyl ethers, 5-nitro-1,3-benzodioxole (NBD), 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid (ABTS), and H2O2 were purchased from Sigma. Acetonitrile for HPLC
analysis and salts for buffer solutions were obtained from JT Baker. PaDa-I was het-
erologously expressed and purified [14] to >95% of electrophoretic homogeneity and a
Reinheitszahl value (Rz = A407 nm/A280 nm) of 2.1. Culture media reagents were purchased
from Difco.

2.2. Enzyme Reactions

Ether oxidation was monitored by liquid chromatography, using a reverse phase
Phenomenex® Luna C18 column (150 mm × 3 mm, 5 µm particle size) in an Agilent
1220 Infinity HPLC (Santa Clara, CA, USA) coupled to a UV-Vis detector, set to 210 nm.
Analysis was performed using the following acetonitrile-water (ACN/H2O) gradient in
% v/v: ACN:H2O 10:90 for 5 min, a 9 min gradient to reach ACN:H2O 100:0, maintaining
4 min at 100:0. The retention times (tR) were 12.8 min for 2-(benzyloxy)ethanol, 17.4 min
for allylbenzylether, 18.2 min for benzyloxyacetaldehyde and 18.5 min for dibenzylether.
Mobile phase for benzyloxyacetate was a 10 min ACN/PA gradient set from 20:80 to 80:20.
Column flow was 0.4 mL/min and the temperature was set to 30 ◦C.

The ether oxidation reaction mixture was typically composed of 0.2 (Figure 1) or
0.7 mM (Figure 2) substrate and 50 nM PaDa-I in a 50 mM potassium phosphate buffer
solution pH 7.0 containing 20% v/v acetonitrile, in a total volume of 1 mL. Total turnover
number (TTN) was calculated as the mol of substrate converted per mol of enzyme, until
the enzyme is completely inactive. Reactions were initiated by adding 0.1–1.0 mM H2O2.
H2O2 was added when the reaction (according to substrate consumption) halted. Aliquots
(10–50 µL) were taken after every H2O2 addition in order to measure residual enzyme
activity. Thus, enzyme inactivation was estimated as the residual peroxidase activity in
a reaction mixture containing 0.4 mM ABTS in 100 mM sodium phosphate/citrate buffer
pH 4.4 and 2.0 mM H2O2. Residual activity was assayed in a 1.0 mL quartz cuvette.
ABTS oxidation was followed spectrophotometrically (ε418 = 36,000 M−1cm−1) [15] in an
Agilent 8453 UV-Visible Spectroscopy System (Santa Clara, CA, USA). For determining the
influence of substrate concentration on TTN, the concentration of 2-(benzyloxy)ethanol
was varied from 0.2 to 40 mM, using 0.2 mM H2O2 doses.

Product identification was carried out using an HP 6890 gas chromatographer (Hewlet-
Packard, Co., Palo Alto, CA, USA) coupled to a 5973 inert mass selective detector (Agilent
Technologies, Inc., Palo Alto, CA, USA) using a fused silica HP-5MS capillary column
(30 m × 0.25 mm internal diameter; 0.25 µm film thickness). The oven was set to 70 ◦C
(2 min) and then a linear gradient (5 min) was programmed up to 230 ◦C, where temperature
was kept constant for 3 more min.
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Figure 2. (A) Residual activity for PaDa-I in the presence of selected ethers. (B) TTN for selected ether compounds. These 

assays were performed at the maximum substrate solubility (0.7 mM) with 0.2 mM H2O2 additions. 
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Figure 1. (A) 2-(benzyloxy)ethanol consumption. (B) Enzyme inactivation in the presence of
0.2 mM substrate and different additions of H2O2. Arrows indicate H2O2 additions to the reac-
tion mixture. (C) Total turnover number (TTN) for the oxidation of 2-(benzyloxy)ethanol, at different
H2O2 dosages (initial concentration of substrate, 0.2 mM).
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2.3. Enzyme Kinetics

Catalase activity, determined as oxygen production in the reaction, was measured with
a Clark-type electrode calibrated with nitrogen/air and coupled to an oxygraph (Hansatech
Instruments Ltd., Pentney, UK). Reactions (500 µL) were started with the addition of H2O2
to a 50 mM potassium phosphate buffer solution pH 7.0 containing 24–98 nM PaDa-I
and ether substrate when indicated. This instrument was previously calibrated with de-
oxygenated MiliQ water, to which N2 was bubbled for 10 min. Assay solutions were also
bubbled with N2.

NBD oxidation rate was estimated using a colorimetric assay that follows the produc-
tion of 4-nitrocatechol (ε425 = 9700 M−1cm−1) [16] in an Agilent 8453 UV-Visible spectrom-
eter (Santa Clara, CA, USA). Reactions (1 mL) were initiated by the addition of 1.0 mM
H2O2 to a 50 mM potassium phosphate buffer solution pH 7.0 containing 5–50 nM PaDa-I,
acetonitrile (20% v/v) and the ether substrate/inhibitor, as indicated.

Kinetic data were fitted to the Michaelis–Menten equation, or the corresponding
kinetic model [17,18] when inhibition was present (Equation (1)). Kinetic constants were
calculated from a non-linear regression using PRISM 8.2.1 (GraphPad Software, San Diego,
CA, USA).

vO2 =
kcat [E0] [H2O2]

Km

(
1 + [(benzyloxy)ethanol]

Kic

)
+

(
1 + [(benzyloxy)ethanol]

Kiu

)
[H2O2]

(1)

Equation (1). Kinetic approach to H2O2 dismutation inhibition by 2-(benzyloxy)ethanol.
vO2—O2 production rate. kcat—turnover number. [E0]—total enzyme concentration. Km—
Michaelis–Menten constant. Kic—competitive inhibition constant. Kiu—uncompetitive
inhibition constant.

All experimental determinations in this work are the result of at least three indepen-
dent experiments carried out at room temperature.

2.4. Molecular Docking

The PaDa-I crystallographic structure model (PDB ID: 5OXU) was used to run a 50
ns molecular dynamics simulation as previously described [14] (Ramirez-Ramirez et al.,
2020). A total of 243 frames were extracted from the last 20 ns of the simulation, to obtain
different conformations of the enzyme for the molecular docking with the substrates. The
structures of the substrates were built in GaussView 6.0.16, optimized in Gaussian 16
(Gaussian, Inc., Wallingford, CT, USA) through a quantum mechanics algorithm (level
of theory DFT B3LYP/6-311++G**) and prepared in Autodock Tools 1.5.6 enabling bond
rotation. Enzyme-substrate flexible docking was performed using Autodock Vina 1.1.2
software [19] and the search was performed through the complete heme-access channel
(x = 45.318, y = −33.470, z = −17.149; grid: 12 × 30 × 14). The number of binding modes
was set to 10 and graphics results were obtained in PyMol 2.3 (Schrödinger, Inc., New York,
NY, USA).

3. Results and Discussion

In order to study if the chemical nature of substituents in aromatic ethers influenced
its oxidation by PaDa-I, a series of five compounds with increasing polarity was selected, as
shown in Scheme 1A. Four of the five studied compounds were substrates for the enzyme;
no reaction could be detected with benzyloxyacetate. Benzaldehyde and/or benzyl alcohol
were identified as products of the enzyme-catalyzed reaction by GC-MS, confirming ether
bond cleavage and that the hydroxylation occurred at either of the carbons adjacent to the
oxygen atom in the ether functional group (see Scheme 1B).
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Scheme 1. Selected benzyl ethers for this study (A), bearing substituents with different polarities.
Benzaldehyde or benzyl alcohol is produced after hemiacetal decomposition, depending on which
carbon is hydroxylated in the presence of the enzyme (B).

With the aim to elucidate the effect of different substituents in the aromatic ethers, we
attempted to measure kinetic constant kcat and Km. However, these measurements could
not be carried out, as the initial reaction rate could not be accurately measured because
the reaction halted a few seconds after it started. Although the enzyme concentration was
varied, it was not possible to obtain several points in order to accurately measure the initial
rate of oxidation. This behavior has been observed by others [9], and we hypothesized it is
related to side events occurring in the reaction mixture, mainly the peroxide dismutation
and suicide inactivation of PaDa-I (Scheme 2). In order to dissect these events, oxygen
production (catalase activity) and residual activity (enzyme inactivation) were monitored,
concomitantly with ether oxidation.
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Using 2-(benzyloxy)ethanol as a model, we observed that enzyme inactivation oc-
curred along the reaction of ether oxidation. Moreover, both reactions halted and were only
reinitiated if H2O2 was added (Figure 1A,B). Following the assumption that the enzyme
was quickly inactivated due to an excess of hydrogen peroxide, we evaluated the effect of
dosing the H2O2 in the reaction, and also the H2O2 concentration of the doses, on enzyme
inactivation and substrate conversion. As expected, as the concentration of H2O2 doses de-
creased, the ether consumption increased and enzyme inactivation was slowed. However,
eventually the enzyme became completely inactivated. Thus, the efficiency of ether oxi-
dation was measured as the total turnover number (TTN), the mol of substrate converted
per mol of enzyme, until the enzyme is completely inactive. TTN for 2-(benzyloxy)ethanol
oxidation could be increased by adding H2O2 in small doses (0.1–0.2 mM) (Figure 1C). The
benefits of controlling H2O2 concentration in terms of increasing the half-life time of the
enzyme in the reaction mixture are being studied actively, applying different strategies
that combined UPOs with electro-, photo and chemical-catalysis, as well as using enzyme
cascade reactions or even fusion enzymes [20].

Moreover, suicide inactivation in other heme-proteins is known to occur, combining
one or more molecular events, such as heme degradation, the oxidation of amino acid
residues, crosslinking, etc. [21]. Although the information for enzymes belonging to the
UPO family is still scarce, it has been reported that for chloroperoxidase from L. fumago
and UPO the main inactivating event is heme bleaching [22,23].

On the other hand, it is known that some heme-peroxidases, such as the bifunctional
enzyme KatG, show catalase activity in the presence of hydrogen peroxide. Consistent with
other UPO family members, PaDa-I showed a marginal catalase activity with a turnover
ratio of 388 ± 12 s−1 and Km value of 0.757 ± 0.084 mM, which is consistent with the
values reported for wtAaeUPO [23]. In order to quantify the competition between the H2O2
dismutation and ether oxidation reactions, the apparent kinetic constants for the catalase
activity were determined in the presence of 2-(benzyloxy)ethanol, as shown in Table 1.

Table 1. Apparent kinetic constants estimated for the catalase activity of PaDa-I in the presence of
2-(benzyloxy)ethanol, determined by measuring oxygen production in the reaction.

2-(benzyloxy)ethanol Concentration (mM)

0 2 4
kcat (s−1) 388 ± 12 252 ± 10 231 ± 13
Km (µM) 757 ± 84 1111 ± 341 2498 ± 331

kcat/Km (M−1s−1) 5.1 × 105 2.3 × 105 9.2 × 104

In the presence of the selected ether, the H2O2 dismutation rate decreases, reflecting
the competition for enzyme intermediates. In fact, upon analysis of the apparent kinetic
constants, our data suggest that 2-(benzyloxy)ethanol acts as a linear mixed inhibitor of
H2O2 dismutation, with a Kic and Kiu of 0.39 and 8.16 mM, respectively (Equation (1)). Thus,
it is very likely that catalase activity competes with organic substrate oxidation, particularly
if the substrate is not efficiently oxidized by the enzyme (i.e., displays high Km).

The influence of the substrate concentration was also analyzed. Residual enzyme
activity was monitored for all of the studied ethers (Figure 2A). We observed that enzyme
inactivation was reduced in the presence of more hydrophobic substrates, which could re-
flect the affinity of the enzyme for non-polar compounds [14]. TTN was determined for the
ethers, and it could be observed that, accordingly with the observations for the inactivation
profile, the more hydrophobic substrate (dibenzylether) was the most efficiently converted
(Figure 2B).

For 2-(benzyloxy)ethanol and dosing the H2O2 at 0.2 mM, the TTN was increased
from 3000 at 0.2 mM to 129,000 at 30 mM (Figure 3), probably reflecting the low affinity for
this substrate and highlighting the importance of increasing substrate concentration for
maximizing the catalyst efficiency.
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Figure 3. Influence of substrate concentration on total turnover number (TTN), for 2-
(benzyloxy)ethanol, determined at various substrate concentrations (0.2–40 mM) and dosing H2O2 at
0.2 mM.

For two of the ether compounds, an unexpected behavior was observed. In the case
of allylbenzylether, the enzyme rapidly inactivated after the first H2O2 addition, leading
to low substrate consumption and therefore a low TTN value. Apart from benzaldehyde
and benzyl alcohol, MS analysis of the reaction mixture with allylbenzylether revealed the
presence of an epoxide, which confirms that olefin oxygenation occurs in addition to ether
oxidation [24]. A possible explanation may be related to a previous study with CPO, in
which it was shown that terminal olefins form a heme-adduct when carbon atoms in the
terminal double bond are oxidized [25]; thus, the heme group became unable to engage in
further productive catalytic cycles.

In the case of benzyloxyacetate, no reaction could be detected. In the crystallographic
structure of PaDa-I, an acetate molecule binds near the iron atom of the heme group [26]. In
order to test if the acetate moiety in the organic ether could be an inhibitor of the enzyme,
NBD peroxygenation reactions were performed in the absence and presence of benzy-
loxyacetate. According to data, benzyloxyacetate behaves as a reversible inhibitor, with
Ki = 3.45 mM (Figure 4A). When analyzing the effect of benzyloxyacetate on ABTS perox-
idation, an uncompetitive inhibitor behavior was observed, confirming that benzyloxy-
acetate binds in the heme vicinity, but does not compete with ABTS as the binding site
for peroxidative substrates has been proposed to be on the surface of the enzyme [27]
(Figure 4B).

Molecular docking studies indicate that 15% of the poses (384 out of 2430) fulfill two
conditions: one of the carbons adjacent to the ether oxygen group is at less than 6 Å from
the iron heme group; and the score energy is less than −6.5 kcal/mol. In 66% of these
384 poses, it is observed that the aromatic moiety of benzyloxyacetate points towards
the heme group, surrounded by the phenylalanine triad (F69, F121 and F199), while
the acetate moiety points towards the guanidine group in R189, probably establishing
electrostatic interactions (as an example of these poses, see Figure 5). Residue R189 is
known to be an auxiliary residue during Compound I formation [26]. However, enzyme
inactivation data in the absence and presence of benzyloxyacetate are very similar, thus
suggesting that Compound I formation is not hampered in the presence of benzyloxyacetate
(Figure 2A). The reason why benzyloxyacetate is not a substrate for the enzyme still needs to
be elucidated, as the compound is able to introduce itself in the catalytic cavity (as inferred
from its competitive inhibitor behavior) and the aromatic moiety could be oxidized, given
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that the molecule could approach the activated heme group in Compound I, as suggested
by molecular docking.
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Figure 5. Benzyloxyacetate (cyan) positioned above heme group (red), showing the acetate moiety
pointing towards R189 (pink). Surrounding phenylalanine residues (blue) and the catalytic glutamate
residue (orange) are also depicted.

4. Conclusions

Catalytic events and molecular factors during ether oxidation by a recombinant fungal
peroxygenase member were studied. Aromatic ethers with more hydrophobic substituents
tend to be oxidized more efficiently, strengthening the idea that the wtAaeUPO and its
variant PaDa-I are specialized on the hydroxylation of aromatic compounds. On the other
hand, ethers with more polar substituents such as alcohol (in 2-(benzyloxy)ethanol) are less
efficiently transformed (1.8-fold less, as measured by TTN). This study demonstrates the
feasibility of using a fungal enzyme to degrade such recalcitrant compounds, given that
reaction conditions are modified to favor ether oxidation. Regarding secondary, undesirable
reactions, we showed that reaction conditions, specifically the dosage of H2O2 at low
concentration, can be controlled in order to enhance the ether transformation efficiency
and reduce the rate of side reactions. Synergetic inactivation and low substrate oxidation
suggest a suicidal substrate behavior for allylbenzylether, as was previously reported for
a related enzyme. The only compound that was not substrate for the enzyme carried the
most polar substituent (an acetate group), and according to kinetic and molecular docking,
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benzyloxyacetate is able to interact with key residues in the active site cavity and behaves
as a reversible inhibitor for peroxygenation reactions.
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