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Abstract: Humans have developed complex immune systems that defend against invading microbes,
including fungal pathogens. Many highly specialized cells of the immune system share the ability to
store antimicrobial compounds in membrane bound organelles that can be immediately deployed to
eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of
secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma
membrane to release their contents in the process of degranulation. Lymphocytes, macrophages,
neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While
anti-microbial secretory vesicles are shared among different immune cell types, information about
each cell type has emerged independently leading to an uncoordinated and confusing classification of
granules and incomplete description of the mechanism by which they are deployed. While there are
important differences, there are many similarities in granule morphology, granule content, stimulus
for degranulation, granule trafficking, and release of granules against fungal pathogens. In this
review, we describe the similarities and differences in an attempt to translate knowledge from one
immune cell to another that may facilitate further studies in the context of fungal host defence.
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1. Introduction

Fungal diseases are a tremendous medical problem. The frequency of fungal infections
continues to climb, predominantly because of an increased number of immunocompro-
mised and critically ill patients [1,2]. The mortality from invasive fungal infections is often
greater than 50%, and it is estimated that more than 2.3 million people die from fungal infec-
tions each year [3]. Lack of effective therapy is largely responsible for the high mortality [4].
The therapeutic options for fungal infections are limited and associated with toxicities,
which has led to an interest in immune therapeutic approaches [5]. One such therapeutic
target is granule-dependent release of antifungal molecules used in host defence.

Immunity is a sophisticated, coordinated system consisting of highly specialized in-
nate and adaptive immune cells that play vital roles against fungi. Both innate and adaptive
immune cells are involved in fungal host defence, such as against organisms among the
Ascomycota (Aspergillus fumigatus, Candida albicans), Basidiomycota (Cryptococcus neofor-
mans), and Zygomycota (Rhizopus oryzae). NK cells, eosinophils, mast cells, neutrophils,
and T cells boast intracellular membrane bound vesicles, which store compounds that can
be immediately deployed for host defence. These intracellular compartments have been
called “secretory vesicles”, “secretory lysosomes”, or “granules”. These organelles form
when products of the trans-Golgi network are packaged into transport vesicles. Transport
vesicles move the cargo to an endosome that undergoes acidification and processing of the
cargo leading to formation of the secretory vesicles. Secretory vesicles contain molecules
that induce fungal cell death or stasis when immune cells engage an invading pathogen.

Immune cells not only act independently, but also work in a complex manner by
releasing factors and cytokines that signal and/or prime each other to effectively clear
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infections. Depending on the immune cells, granules are deployed in different ways. The
immune cell can bind to the pathogen and antimicrobial compounds are released directly
onto the pathogen. Alternately, immune cells can bind to another host cell that contains the
pathogen. In this case, the antimicrobial compounds are released in a directed way through
an immunological synapse (IS) between the immune cell and the host cell containing the
pathogen, leading to death of the microbe. Immune cells may not bind directly to the
pathogen, but receive signals from the pathogen or surrounding cells, causing release of
antimicrobial compounds in a non-directional way in the vicinity of the pathogen. Finally,
granules are released onto the pathogen surface when it is trapped in an extracellular
matrix made up of DNA. Granules are also recruited to phagosomes that contains the
engulfed pathogen, but this intracellular pathway will not be the subject of this review.

The mechanisms and machinery by which granules are trafficked within immune cells
and released on to the pathogen vary depending on the immune cells and target pathogens.
However, the immune cell subtypes share similarities in activation, signaling, and granule
trafficking towards the plasma membrane. This review describes our current understanding
of the granules in immune cells. We highlight the similarities in different characteristics
and processes in granule development, content, storage, signaling, trafficking, release,
and function in various immune cell types during host defence against fungal infections.
Understanding these characteristics may allow for knowledge transfer between scientists
working with different cells and may lead to insights into the development of immune-
based therapeutics for different cells employing similar granule-mediated mechanisms.

2. Granule Characteristics in Different Immune Cell Subsets

Despite common features, secretory vesicles are described and classified differently
for each immune cell. Granules are usually classified by size, morphology, and density
using electron microscopy. If the buoyant densities of granules differ, they can be separated
by centrifugation, which allows proteomic approaches to identify constituents. NK cells
have three types of granules: type 1, type 2, and intermediate [6], which are grouped
by their morphology (Table 1 and Figure 1, panel Aa, Ab, and Ac). Type 1 granules are
50–700 nm in diameter and filled with a dense core surrounded by a thin layer of vesicles [7].
Type 2 granules are 200–1000 nm in diameter and characterized by multiple vesicles and
membrane whorls [6]. Intermediate granules have dense cores and multiple vesicles and
are less abundant than type 2 granules [8]. Type 1 granules are fully mature while other
types represent different stages of granule development [6]. Different components of
the granules contain different constituents. The dense core contains cytolytic proteins,
while the multivesicular domains contain lysosomal proteins (Table 2) [7]. By contrast, the
granules of CD8+ T cells have not been separated by morphology. Rather, granules are
characterized in one group with variable granule morphology that resembles the spectrum
of granules in NK cells ranging from 100 to 1300 nm [9]. Granules in cytotoxic T cells can be
separated by sucrose gradients (Table 1), which allows for separation of different proteins
in granules of different buoyant density [10].

Granulocytes (neutrophils, eosinophils, and mast cells) have more than one type of
granule and may contain different cytolytic contents (Figure 1, panel B, C, and D). Mast
cell granules are distinguished by their membrane proteins and serotonin rather than their
microscopic appearance (Table 1). Type I and II mast cell granules all contain proteins of the
major histocompatibility complex (MHC) class II, β-hexosaminidase, lysosome-associated
membrane protein (LAMP)-1 and 2, and mannose 6-phosphate receptor (M6PR), while
type III granules lack MHC class II, LAMP-1, LAMP-2, and M6PR. Type I granules, in
contrast to type II and III have serotonin [14].
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Table 1. Granule types and contents in various immune cells.

NK Cells CD8+ T Cells Mast Cells Eosinophil Neutrophil

Types

Type 1 Granule (fully Formed)
50–700 nm

Contains a dense core
surrounded by thin layer

of vesicles
Type 2 Granule

200–1000 nm
Contains multiple vesicles and

membrane whorls
Intermediate Granule

Contains dense cores and
multiple vesicles, less abundant

than type 2 granules

Cytotoxic Granule
100–1300 nm

Exists in tiny droplets, dark-core
bodies surrounded by a thin
membrane, or large granules

containing small internal vesicles

Type 1 Granule
MHC class II, β-hexosaminidase,

lysosomal membrane protein
(LAMP)-1/2, Mannose-

6-phosphatereceptors (M6PR)
Type 2 Granule

MHC class II, β- hexosaminidase,
LAMP-1/2, M6PR, Serotonin

Type 3 Granule
β-hexosaminidase,

serotonin

Primary Granule:
500–1000 nm

Lack crystalline core
Secondary (Specific) Granule:

500–1000 nm
Contain distinctive dense

crystalline core that is
surrounded by a less dense
matrix and enclosed by a

trilaminar membrane

Primary Azurophilic Granule
electron dense
500–1000 nm

Secondary Specific Granule
200–500 nm

Tertiary (gelatinase) Granule
Mean size of 187 nm

Content

In all granule types:
Perforin

Granzymes
Defensins 1–3

LL-37
Granulysin

FasL and TRAIL

In all granule types:
Perforin

Granzymes
Defensins 1–3

LL-37
Granulysin

FasL and TRAIL
May be separated by granule

density

No distinct difference in content
between granule types but are:

chymase, tryptase, mast cell
carboxypeptidase A3

(CPA3), β-hexosaminidase,
histamine, granzyme

Primary Granule:
Charcot–Leyden crystal protein

(galactin-10)
Secondary Granule:

eosinophil peroxidase (EPO)
major basic protein (MBP)

eosinophil cationic protein (ECP)
eosinophil-derived neurotoxin

(EDN)

Primary Granule:
neutrophil elastase,

myeloperoxidase (MPO),
defensins, cathepsin G,

proteinase 3
Secondary Granule:

lactoferrins, defensins, BPI, MPO,
lysozyme, LL-37
Tertiary Granule:

matrix metalloproteinases,
azurocidin, lysozyme

Contents listed are an up-to-date comprehensive list of molecules necessary for cell death.
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Figure 1. Panel A: Electron micrographs showing the heterogeneity of RNK-16 (NK cell) granules. 
(Aa) Type I granules. (Ab) A type II granule. (Ac) An intermediate granule with small cores (fig-
ure from [7] with permission). Panel B: rat mast cells with dark electron-dense granules (figure 
from [11] with permission). Panel C: cytoplasmic granules of eosinophils include many mem-
brane-bound, large, dense, spherical, crystalloid-containing granules; less numerous, large, dense, 
spherical, crystalloid-free granules (figure from [12] with permission). Panel D: neutrophil mor-
phology visualized by electron microscopy. (Top left, top right) The cytosol of a resting cell is 
filled with vesicles, with primary granules (P) staining intensely dark with diaminobenzidine, 
while secondary (S) and tertiary (T) granules show more translucent staining. Secretory vesicles 
(SV) are near the Golgi complex (G). Few mitochondria (M) are observed. (Bottom left, bottom 
right) (figure from [13] under Creative Commons Attribution License (CC BY)). 
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trilaminar membrane [17]. The primary granules are smaller than the secondary specific 
granules and lack a crystalline core [12]. Granules in all immune cell types appear as dis-
tinct, electron dense membrane bound intracytoplasmic organelles that can also be seen 
on light microscopy. Granules are of similar size (50–1300 nm), with most in the range of 
200–500 nm. 
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and tertiary gelatinase granules (Table 1). These granules are classified by their sizes and 
intensity on electron microscopy as well as their granule content. Primary granules are 

Figure 1. Panel A: Electron micrographs showing the heterogeneity of RNK-16 (NK cell) granules. (Aa) Type I granules.
(Ab) A type II granule. (Ac) An intermediate granule with small cores (figure from [7] with permission). Panel B: rat mast
cells with dark electron-dense granules (figure from [11] with permission). Panel C: cytoplasmic granules of eosinophils
include many membrane-bound, large, dense, spherical, crystalloid-containing granules; less numerous, large, dense,
spherical, crystalloid-free granules (figure from [12] with permission). Panel D: neutrophil morphology visualized by
electron microscopy. (Top left, top right) The cytosol of a resting cell is filled with vesicles, with primary granules (P) staining
intensely dark with diaminobenzidine, while secondary (S) and tertiary (T) granules show more translucent staining.
Secretory vesicles (SV) are near the Golgi complex (G). Few mitochondria (M) are observed. (Bottom left, bottom right)
(figure from [13] under Creative Commons Attribution License (CC BY)).

Table 2. Pathways and modes of degranulation in various immune cells.

NK Cells CD8+ T Cells Mast Cells Eosinophil Neutrophil

Pathway

ERK2 :JNK1 :MTOC,
granule polarization

and cytotoxicity
ITAM dependent and
independent signaling
:MAPK cascade :NK
cell effector functions

TCR :LCK/ZAP70
:LAT/PLCγ/ITK
:PIP2 :IP3 :Ca2+

influx :degranulation

Surface receptors
(CCR1, TLR4, KIT, or

FcεRI). G-protein,
MyD88, Jak/STAT,

:Lck-phos :LAT-phos
:PLCγ :degranulation

CCR3 :G-protein/Lyn,
Fgr, Hck :

PI3K :Akt :BAD
:MAPK :Ras :RAF
:MEK1 :ERK :BAD

Microtubule assembly:
selectins/integrins :
Pyk2 :Vav :paxillin
granule mobilization:

surface receptors
(GPCR,

Fc-R, PPRs)
:PI3K/PLC/SLP-

76/Vav complex :Rac
and PIP3

Mode

Cytotoxic
degranulation through

direct contact of
target cells

Cytotoxic
degranulation through

direct contact of
target cells

Anaphylactic/cytotoxic
degranulation

Phagosomal granule
fusion and

degranulation

Piecemeal
degranulation
Intact granule

exocytosis and EETosis
Phagosomal granule

fusion and
degranulation

Cytotoxic
degranulation

Phagosomal granule
fusion

NET formation
and degranulation

onto NETs
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Eosinophils have two types of granules: primary and secondary specific (Table 1) [15].
Sizes range from 500 to 1000 nm [16]. The secondary specific granules have a distinctive
dense crystalline core that is surrounded by a less dense matrix and enclosed by a trilaminar
membrane [17]. The primary granules are smaller than the secondary specific granules
and lack a crystalline core [12]. Granules in all immune cell types appear as distinct,
electron dense membrane bound intracytoplasmic organelles that can also be seen on
light microscopy. Granules are of similar size (50–1300 nm), with most in the range of
200–500 nm.

Neutrophils have three types of granules: primary azurophilic, secondary specific,
and tertiary gelatinase granules (Table 1). These granules are classified by their sizes and
intensity on electron microscopy as well as their granule content. Primary granules are
electron dense and range from 500 to 1000 nm [18]. Secondary granules range from 200 nm
to 500 nm and tertiary granules have a mean diameter of 187 nm [18,19].

3. Cytolytic Contents of the Granules in Each Immune Cell Subtypes

The contents of granules in cytotoxic lymphocytes including NK cells and CD8+ T
lymphocytes consists of cytolytic and pro-apoptotic proteins including perforin (cytolysin),
granulysin, granzymes, the cationic protein LL 37, FasL, and lysosomal membrane glyco-
protein LGP120 (Table 1) [7]. In T cells, different proteins have been isolated from different
granule fractions. For example, perforin is isolated from one fraction separated by gradient
centrifugation, while granzyme B and granulysin are in another (Table 1) [10].

Likewise, different granules in neutrophils and eosinophils contain different cytolytic
molecules. Primary azurophilic granules in neutrophils contain proteases (neutrophil elas-
tase, cathepsin G, proteinase 3), peroxidases (myeloperoxidase), and membrane cytolytic
molecules (defensins and bactericidal/permeability-increasing protein (BPI) (Table 1) [20].
Secondary specific granules contain iron binding proteins (lactoferrins), membrane cy-
tolytic molecules (defensins, BPI) and peroxidases (MPO). Tertiary gelatinase granules
contain matrix metalloproteinases, sialidase, azurocidin, and lysozyme (Table 1) [20].

Primary granules of eosinophils contain galactin-10, which forms Charcot-Leyden
crystals and secondary specific granules that contain eosinophil peroxidase (EPO), major
basic protein (MBP), eosinophil cationic protein (ECP), and eosinophil-derived neurotoxin
(EDN) (Table 1) [15,21].

While mast cells contain three types of granules, based on membrane proteins, they
do not have differences in cytolytic content. These granules contain cytolytic molecules
such as chymase, tryptase, mast cell carboxypeptidase A3 (CPA3), and granzymes [14].
Of note, CPA3 functions together with chymases and tryptases to degrade proteins and
peptides [22]. There is evidence that secreted factors from mast cell granules mediate
antifungal activity against C. albicans, although it is not known which factors are key to the
process [23].

4. Mechanisms of Fungal Recognition, Activation, and Cytotoxicity

Granule trafficking is activated when immune cells recognize the fungal pathogen
through pathogen associated molecular patterns through their pattern-recognition recep-
tors (PRRs), NK cell activating receptors, or the T-cell receptor (TCR). Ligands for PRRs
are usually the components (e.g., carbohydrates) of the fungal cell wall, or fungal-derived
RNA or DNA, which are not found in mammals. The PRRs include C-type lectin receptors
(CLRs), toll-like receptors (TLRs), nucleotide binding and oligomerization domain (NOD)-
like receptors (NLRs), and retinoic acid inducible gene (RIG)-like receptors (RLRs). NK
cells have activating receptors that function as PPRs, such as NKp30 [24], NKp46 (natural
cytotoxicity receptor-1), and CD56 for fungal recognitions [25,26]. These receptors are
required for activation by Cryptococcus, Candida, and Aspergillus [27].

Fungal carbohydrates, such as β-glucan, α -glucan, and chitin are well-known ligands
of the fungal cell wall that are recognized by innate immune cells, such as NK cells,
neutrophils, mast cells, eosinophils, and macrophages [27]. CD8+ T cells recognize fungi
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via the TCR by cross-presentation where fungal antigens are presented on the major
histocompatibility complex-1 (MHC-1) on antigen presenting cells, such as dendritic cells
after phagocytosing the fungal target cell [28]. A signaling cascade is activated, and
granules are trafficked to the target cells upon their recognition.

5. Signal Transduction Leading to Degranulation

The signaling pathway leading to degranulation involves a complex network of
pathways that orchestrate many responses that ultimately lead to degranulation. The
main signaling mechanisms include immunoreceptor tyrosine-based activation motifs
(ITAMs)/Syk :integrins, G-proteins and MyD88 (Table 2 and Figure 2). The signaling
pathway of NK cells operate downstream of ITAM-dependent and ITAM-independent
motifs activated by redundant Src family kinases [29,30]. Syk-1 then initiates activation
of two signal pathways: the phosphoinositide-3 kinase (PI3K) :extracellular receptor ki-
nase (ERK)2 and the phospholipase Cγ (PLCγ) :JNK1 pathways [31,32], through which
polarization of the microtubule organizing center (MTOC) and cytolytic granules occur
before subsequent degranulation of the cytotoxic granules into the target cell [6,33–35].
Additionally, Cryptococcus concurrently activates the β1-integrin pathway leading to ac-
tivation of integrin linked kinase (ILK) :Ras-related C3 botulinum toxin substrate (Rac)
:PI3K :Erk [36]. Here, activation of both Src family kinases and Rac are required dur-
ing fungal mediated degranulation [36]. For CD8+ T cells, this process is mediated by
engagement of the TCR/CD3 complex, which lead to a signaling cascade utilizing Src
family kinases, such as LymphoCyte-specific protein tyrosine Kinase (LCK), which phos-
phorylate ITAMs :Zeta-chain-Associated Protein kinase 70(ZAP70) :Linker for Activation
of T cells (LAT)/PLCγ/interleukin-2-inducible T-cell kinase (ITK) :Phosphatidylinositol
4,5-bisphosphate (PIP2) :Inositol triphosphate (IP3) :Ca2+ influx :degranulation [37].
Another series of signaling cascades is required during granule trafficking for MTOC
polarization. MTOC polarization signaling starts after PIP2 is hydrolyzed leading to the
formation of lipid second messenger’s diacylglycerol (DAG). This in turn leads to synaptic
recruitment of protein kinase C (PKC) isoforms, which leads to MTOC and granule polar-
ization to the plasma membrane [37]. Mast cell degranulation is achieved when their PPRs
(TLR4), cytokine receptors (CCR1), c-KIT, or FcεRI are engaged. The corresponding ligands
for these PRRs respectively are HSP70, CCL3, stem cell factor (SCF), and IgE. The receptors
signal via a variety of pathways that lead to phosphorylation of LAT [38]. Phosphorylated-
LAT triggers PLCγ and PI3K phosphorylation followed by a chain of downstream signaling
protein phosphorylation, resulting in degranulation [38]. Interestingly, the central role of
PLCγ bears similarities to that of NK and CD8+ T cells in mediating degranulation and
trafficking, although there are differences.

Granule trafficking and degranulation in eosinophils is initiated following the en-
gagement of chemokine receptor 3 (CCR3), leading to the association of G-protein leading
to the MAPK pathway and then the subsequent activation of PI3K. This precedes AKT
and ERK activation, which modulates the activation of downstream effectors that leads
to microtubule reorganization and subsequent granule degranulation [39]. Additionally,
β2-integrin has been implicated in eosinophil degranulation [40].

In neutrophils, the signaling mechanism starts with the activation of neutrophils
through surface receptors (PRRs, GPCRs, FcRs, selectins, and integrins) that triggers the
activation of a kinase cascade (Src family kinases and protein signaling kinase 2 (Pyk2) [13].
Central downstream effectors of these kinases target cytoskeletal remodeling. These central
effectors include Vav, PLC, and PI3K, which activates Rac and paxillin. This facilitates
microtubule polarization, and the generation of PIP3, which facilitates polarization and
actin remodeling at the degranulation site [13].
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6. Granule Trafficking Leading to Degranulation

Granule mobilization and trafficking varies in different immune cells, however, there
are general schemes that are common among all cells (Table 3). Initially, granules begin
to be recruited along the microtubule when activated. Kinesins and dyneins are key
microtubule transport proteins that function as motor proteins in the positive and negative
direction, respectively, to traffic the granules either by moving the microtubules with an
attached granule or by moving the granule on the microtubule. Some kinesins organize the
microtubule network, while others are responsible for cargo transport. Examples of these
kinesins, respectively, are Eg5-kinesin and kinesin-1. Eg5 kinesin has an extensive role in
microtubule stabilization and cross-linking, where it mediates microtubule movement [41].
By contrast, kinesin-1 (Table 3) is a cargo binding motor protein that is responsible for
terminal transport of the granules to the cell membrane and has been characterized in CD8+
T cells [42], NK cells [43], and mast cells [44]. The initial phase of granule mobilization is
mediated by dyneins where it directs the granules to the minus-end of the microtubules
and towards the MTOC. The MTOC is then polarized by the action of dynein, with which
the granules are polarized mediated by kinesin-1 towards the synapse before degranulation.
The degranulation step of the granules at the terminal where they dock and fuse with the
plasma membrane is regulated by a family of soluble N-ethylmaleimide sensitive factor
(NSF) attachment protein REceptors (SNAREs) [45]. Here, the MTOC docks at the terminal
where granules can move to the synapse and degranulate. The degranulation process is
mediated by SNAREs, which are primary mediators of membrane docking and fusion.
The vSNARE on the vesicle binds to the tSNARE on the target membrane allowing Rab
to hydrolyze GTP, locking the tSNARE and vSNARE together, allowing for fusion of the
vesicle and plasma membrane and release of granule contents.
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Table 3. The roles of microtubules, dyneins, kinesins, and SNAPs/SNAREs in granule trafficking in various immune cells.

NK Cells CD8+ T Cells Mast Cells Eosinophil Neutrophil

Microtubules

Microtubules facilitate
the delivery of lytic

granules to the
synaptic cleft between

NK cells and target
cells through
microtubule

associated motor
proteins

Microtubules facilitate
secretory granule

dynamics and
degranulation by

microtubule
protrusion formation
and reorganization

Microtubules serve as
scaffold for Kinesin

and Dynein

Microtubule
Reorganization

facilitates granule
release

Granules are recruited
and mobilized

by microtubules

Dynein/Kinesin

Dynein mediates
minus directed

movement of granules
to converge to MTOC

Kinesin-1 mediates
terminal granule
movement and

degranulation to IS
Eg5 Kinesin is

involved in NK cell
granule trafficking
during antifungal

activity

Terminal transport of
lytic granules is
mediated by the

kinesin-
1/Slp3/Rab27a

complex
Kinesin-4 KIF21B
limits microtubule

growth to allow rapid
centrosome

polarization in T cells.
Lytic granules have
kinesin-dependent

motility on
microtubules in vitro

Kinesin-1 controls
mast cell

degranulation through
PI3K-dependent
recruitment to
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7. Function of Granule Proteins
7.1. Perforin

Perforin is a pore-forming cytolytic protein that is expressed by NK, CD8+ T cells
and in one report by neutrophils (Table 1) [46,47]. When released, perforin inserts into
the target cell membrane and oligomerizes in a Ca2+ dependent manner to form pores
or damage the cell membranes (Table 4) [48]. The resultant pores allow for entrance of
other granule proteins to enter the target cells. As such, perforin plays a key role in the
cytolytic process in targets, such as tumors and fungi. In fungal studies, evidence showed
that perforin is required in NK cell antifungal activity against C. neoformans [34]. While in
CD8+ T cells, granulysin rather than perforin is required during antifungal activity against
C. neoformans [49].

Table 4. Classification of proteins found in granules.

Classification of Granule Proteins Proteins

Cytolytic, Cell wall and Membrane disrupting/pore forming
Perforin, granulysin, defensins, LL-37, eosinophil cationic

protein, major basic protein,
bactericidal/permeability-increasing protein, azurocidin

Peptidoglycanases lysozyme
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Table 4. Cont.

Classification of Granule Proteins Proteins

Protease Inhibitors Secretory leukocyte protease inhibitor (SLPI)

Immune modifying/cytokines
IFN-γ, TNF-α, GM-CSF, VEGF IL-1a, IL-10, IL-2, IL-3, IL-4, IL-5,

IL-6, IL-10, IL-12, IL-13, IL-16, IL-17A, IL-17F, IL-21, IL-22,
IL-25, IL-27

Oxidative agents MPO, EPO

Pro-apoptotic agents (serine proteases including tryptases
and chymases)

Mast cell tryptase and chymases, CPA3, granzymes A, B, H,
K, M,

Chymotrypsin-like serine proteases Neutrophil elastase, cathepsin G

Iron binding proteins Lactoferrin

Extracellular matrix degrading Matrix
Metalloproteinases/Gelatinases MMP-8, MMP-9

Ribonucleases including Cationic proteins ECP

7.2. Granzymes

In humans, immune cells can express five types of granzymes: granzymes A, B, H, K,
and M [50]. These are serine proteases that cleave proteins inducing cell death [50–52]. In
mammalian cells, granzymes activate a cascade of enzymatic cleavages leading to apoptosis
or cleavage of proteins that are critical for viability (Table 4) [50]. In bacteria, granzymes
disrupt electron transport leading to superoxide anion and thwarting bacterial oxidative
defences [53]. Granzymes often work in conjunction with perforin. Perforin causes pores
or damages the target cell membrane, which enables granzymes to enter and exert their
cytotoxic effect on tumor cells. While the functions of granzymes are well known in tumor
target killing, little is known about their role in killing of fungal cells. Other immune
cell subtypes also contain granzymes including neutrophils [54], eosinophils [55], mast
cells [56], which play a role in inflammation, antitumor activity, and antibacterial activity.
Interestingly, since most granule-containing immune cell subtypes express granzymes, it is
a common cytolytic molecule utilized for a wide variety of responses including fungi.

7.3. Other Proteins Causing Membrane Permeability

Defensins have long been characterized as antimicrobial compounds against fungal
pathogens such as Candida albicans [57]. These cationic molecules are predominantly
expressed by neutrophils but can be found in NK cells and CD8+ T cells [58]. The function
of defensins is to permeabilize the pathogen membrane and inhibit cell wall synthesis that
leads to cytolysis of target cell [59,60]. Their ability to permeabilize membranes is similar
to that of granulysin and perforin. The pores formed by defensins are approximately
25 nm [60], which is large enough to permit cytolytic molecules such as granzymes which
are 2.5 nm in stokes radius to cross the plasma membrane [61].

LL-37 is an antimicrobial molecule of the cathelicidin family that is found in neu-
trophils, NK cells, and CD8+ T cells (Tables 1 and 4). LL-37 acts on the lipoprotein
membranes of pathogens leading to membrane damage, and therefore works similarly
to perforin, granulysin, and defensins by affecting the cell membrane and the cell wall of
C. albicans [62].

Bacterial Permeability Inducing protein (BPI) is a 50 kDa protein that binds to
lipopolysaccharides found on the cell membrane of gram-negative bacteria leading to
permeability of the membrane and cell death [63]. Its antibacterial action is due to its
displacing outer membrane calcium and magnesium ions, leading to membrane permeabil-
ity [63]. BPI also displaces divalent cations, which perturbs arrangement of LPS molecules
and results in membrane rupture [63]. BPI is present in neutrophils and eosinophils [63],
but its function in fungal killing is unknown.
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7.4. Proteases—Neutrophil Elastase (NE), Cathepsins, Proteinase 3, Matrix Metalloproteinases

NE is a key effector molecule in neutrophils during fungal infections (Table 1). NE
deficiency can result in impaired killing of Candida and Aspergillus [64]. This molecule is
closely related to the family of serine proteases, and cleaves proteins in the extracellular
matrix and, thereby, facilitate fungal killing by regulating extracellular trap formation
(Table 4) [65]. Further details of this mechanism are discussed in later sections. Cathepsin
G is a serine protease that is known to be able to degrade extracellular matrix components
and may have antimicrobial specific function (Table 4) [66]. The role of NE and cathepsin
G is made evident by mice lacking NE or cathepsin G, which are more susceptible to
fungal infections [64]. Proteinase 3 is an enzyme that processes LL-37 to its active form
after neutrophil activation [67]. Proteinase 3 also has antimicrobial properties that are
independent of its protease activity against C. albicans, but the mechanism of action is
unknown [65]. Matrix metalloproteinases (MMPs) are involved in cleavage or extracellular
matrix components such as gelatin and collagen [68]. They also play a role in leukocyte
migration [68].

Secretory leukocyte protease inhibitor (SLPI) is an antiprotease that is highly enriched
in the secondary granules of neutrophils (Table 4). It has been reported that SLPI has
antifungal activity to Aspergillus fumigatus and Candida albicans [69].

7.5. Oxidative Agents: Myeloperoxidase (MPO) and Eosinophil Peroxidase (EPO)

MPO is a key effector molecule in neutrophils during fungal infections. MPO acts
by converting H2O2 and halide ions to reactive oxygen species, which are highly toxic to
microbes (Table 4) [70]. EPO is the major oxidative enzyme of eosinophils and functions
like MPO by catalyzing the formation of oxidizing agents, which converts H2O2 + halide
(Cl-) into hypochlorous acid (HOCl), which is toxic to microbes, such as the bacteria
Mycobacterium tuberculosis (Table 4) [71]. The evidence that EPO has a cytolytic role against
fungi is limited [72].

7.6. Iron Scavengers

Lactoferrin is a constituent of granules that is an iron-binding protein that is known
for its iron-sequestering function that prevents iron uptake in Candida and Cryptococcus,
leading to cell death [73,74], and inhibition of A. fumigatus conidia germination [75].

7.7. Alarmins: Azurocidin and Eosinophil-Derived Neurotoxin (EDN)

Azurocidin is a protein in azurophilic granules that is known for its antimicrobial
functions by binding to the cell surfaces of the target cell as well as acting as a chemotactic
agent for monocytes and macrophages (Table 4) [76]. EDN is released in response to
Alternaria and Penicillium [77] and is known to be cytotoxic against helminth parasites and
have antiviral activity due to its ribonuclease activity but its functions against fungi is
unknown (Table 4) [78,79].

7.8. Iron scavengers

Lysozyme exerts it antimicrobial activity through damaging the cell wall of fungi by hy-
drolyzing theβ1–4 glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine,
which are structural components of fungal chitin (Table 4) [80].

7.9. Major Basic Protein (MBP) and Eosinophil-Cationic Protein (ECP)

MBP and ECP are effector molecules known to have antifungal roles against Alternaria
alternata [77]. MBP functions by disrupting the lipid bilayer membrane, resulting in cell
damage [81]. ECP is a ribonuclease that binds to the cell wall and cell membrane. Although
the mechanism is unknown in fungi bacterial ECP binds and destabilizes membranes
which would result in cell death (Table 4) [82].
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8. The Cells That Degranulate
8.1. NK Cells

NK cells are cytotoxic lymphocytes that degranulate to induce cell death. In addition
to being cytotoxic for tumor cells, NK cells can also kill fungi. NK cell cytotoxicity is
activated through ligation of the activating receptor with the respective ligand expressed
by Cryptococcus, Candida, and Aspergillus leading to phosphorylation of signaling molecules
downstream of the receptor [83]. NK cells mobilize perforin-containing granules along
the microtubules in a stepwise manner in response to Cryptococcus prior to degranula-
tion (Figure 3) [35]. Initial trafficking is characterized by granule movement away from
the MTOC and immune synapse (counter-convergence and counter-polarization, respec-
tively). This is followed by movement of the granules toward one another (congregation),
movement toward the MTOC (convergence) and polarization of the MTOC and gran-
ules to the synapse (Figure 3) [35]. The events leading to polarization and position of
granules at the synapse are unique to NK cell killing of fungi. These various traffick-
ing events are orchestrated by the microtubules and the MTOC as well as kinesins and
dynein [35,84]. Eg5 kinesin is a motor protein involved in mitosis. In NK cell response to
Cryptococcus, Eg5 kinesin is responsible for initial granule counter-convergence and MTOC
counter-polarization [35], which along with dynein are required for granule congregation,
convergence, and polarization [35]. Once polarized to the IS, granules are released into
the IS where perforin and other cytolytic molecules such as granzymes enter the target
fungal cell. Perforin is a key effector molecule that NK cells use against Cryptococcus and
Candida [24,85]. Perforin is presumed to make pores on the membrane through which
granzymes and other cytolytic molecules enter into the target as it does in tumor cells [46].
Whether granzymes or other cytolytic molecules contained within the granules play a role
in fungal killing is unknown. Kinesin-1, a cargo transport motor protein, is involved in the
terminal granule transport to the IS in tumor targets [43], but its role in anti-fungal granule
trafficking remains unknown. At the IS, granule exocytosis is mediated by syntaxin-11
which is an atypical Q-SNARE [45]. Syntaxin-11 is transported to the IS before granules
fuse where it helps granules dock, prime, and fuse at the cell membrane. This is crucial for
NK cell degranulation and without which NK cells failed to kill tumor cells [86]. While the
function of syntaxin-11 is essential during NK cell antitumor cytotoxicity, its role in NK
cell antifungal activity has not yet been demonstrated.
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8.2. CD8+ T Cells

CD8+ T-cells play a major role in controlling fungal infections [87], however, direct
killing is still not well understood. Currently, it has been shown that CD8+ T cells use
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granulysin, a pore-forming antimicrobial molecule, to kill C. neoformans [49]. In addition,
yeast specific CD8+ T cells show a non-classical expression of granulysin and granzyme
K instead of the classical perforin and granzyme B cytotoxic granule profile [88]. The
mechanics of the granule-mediated cytotoxic activity by CD8+ T cells against fungal
targets has not been explored. However, there may be similarities to the CD8+ T cell
granule-mediated anti-tumor mechanism. The granule-mediated cytotoxicity is activated
through two main receptors, T-cell receptor (TCR), and toll-like receptor (TLR)/scavenger
receptor [89]. While TCR is the main receptor involved in the whole activation and
degranulation signaling cascade, TLRs augment the activation through dendritic cell cross-
presenting fungal antigens. While TCR is important for CD8+ T cells in antigen recognition
of fungal pathogens, TLRs are used by CD8+ T cells in augmenting its activation during
antigen cross-presentation [89]. Sensing of RNA via TLR3 promotes cross presentation by
dendritic cells to class I-restricted CD8+ T cells. This is made evident by TLR3-/- mice,
which are more susceptible to Aspergillus infection compared to control mice [89,90]. The
significance of TLRs in CD8+ T cell recognition and activation is further exemplified when
patients with deleterious mutations in TLR3 and TLR4 were more susceptible to various
fungal infections [89,91–93]. Like NK cells, CD8+ T cells deliver their cytotoxic granule
contents into the tumor IS after trafficking to the synapse with the help of microtubules and
various motor proteins. Here, kinesins and dyneins are responsible for plus- (away from
the MTOC) and minus- (toward the MTOC) end directed movement along microtubule
tracks and aids in the MTOC polarization [94]. Dynein is responsible for minus end
directed movement that pulls the MTOC toward the IS for successful degranulation at the
IS [94]. Kinesins play an important role in plus-end directed movement of granules on
the microtubules [95]. Specifically, terminal transport of lytic granules to the tumor IS is
mediated by the kinesin-1/Slp3/Rab27a complex where kinesin-1 is essential for the final
terminal movement of granules toward the IS [42]. Kinesin-4 was found to be important
in regulating microtubule growth to allow for rapid remodeling and polarization of the
microtubules when CD8+ T cells are in contact with antigen presenting cells [96]. However,
the role of kinesin-4 is unclear in CD8+ T cell cytotoxic mechanisms. As for granule
exocytosis at the IS, syntaxin-11 plays the same role as in NK cells during cytotoxic events.

8.3. Mast Cells

Mast cells are granulocytes that are well known for their role in allergic responses, but
they also play a role in host defence against pathogens, including fungi. These cells localize
at mucosal sites and are found in close contact with epithelial cells and venules and, as such,
are considered tissue-resident sentinel cells [97]. Activation of mast cells during allergic
responses occurs through IgE receptor-ligand interaction; however, against fungi, activation
is achieved through other receptors such as TLR4 and CCR1. In contrast to cytotoxic
lymphocyte degranulation, mast cell degranulation occurs at multiple degranulation sites
along the plasma membrane and can engage multiple targets at once [98,99]. Mast cells also
have directed degranulation via an IS when in contact with IgE and IgG targeted microbial
pathogens [99]. A similar observation was made with C. albicans [97]. Although the study
did not demonstrate direct degranulation, it did show that mast cells rearranged the α-
tubulin cytoskeleton at the synapse and recruited LAMP1+ vesicles at the synapse with
the fungus. The authors speculated that degranulation occurs at the IS where the contents
are released on to the surface of the fungal cell that is exposed to the IS [97]. Further, the
authors observed that mast cells tightly interact with the fungal cell such that it looks like it
is engulfing the fungal cell [97]. This interaction is a broad-based invagination reminiscent
of a phagocytic cup, in contrast to cytotoxic lymphocytes [97]. The tight phagocytotic-like
interaction occurred with the hyphal, but not the yeast form of C. albicans [97], and this
interaction was not a result of pathogen invasion of the mast cells but rather actin dynamics
of mast cells [97].

The differences between the IS of cytotoxic lymphocytes (NK and CD8+ T cells) and
mast cells may provide important insights in mechanisms of degranulation. While mast
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cell granule trafficking requires microtubules, the polarization of granules does not require
MTOC or Golgi apparatus. Instead, polarization requires cytoskeletal rearrangement where
extension of microtubules is sufficient to guide granules to the plasma membrane [99,100].
However, these observations were made in studies with Toxoplasma gondii and it remains
unknown if this is recapitulated with fungal pathogens [99]. Dyneins are motor proteins
involved in granule trafficking, while kinesin-1 moves granules in the positive direction
to the membrane and facilitates degranulation. Dynein, complexed with Rab-interacting
lysosomal protein (RILP) mediate the retrograde transport of granules along the micro-
tubule network [101]. Like CD8+ T cells and NK cells, degranulation is controlled by
kinesin-1 in mast cells [44]. It is not known, however, if kinesin-1 participates in the mast
cell response to fungi. Granule exocytosis is enabled by a complex of proteins consisting of
synaptosome-associated protein (SNAP)-23, syntaxin-4 (a target(t)-SNARE), and vesicle-
associated membrane protein 8 (VAMP-8) [102]. Similar to syntaxin-11 in CD8+ T cells and
NK cells, these proteins form complexes and modulate granule exocytosis at the IS [102].

8.4. Eosinophils

Like mast cells, eosinophils are well known in allergic responses, but also have a
role against fungal infections. Indeed, eosinophilia is often seen in fungal infections [103].
Eosinophils are known to interact with fungal pathogens, such as A. alternata, A. fumigatus,
and C. albicans [77]. The role of kinesins and dyneins in eosinophil microtubule reorganiza-
tion and granule trafficking is unknown but kinesins and dyneins play a common role in
microtubule and cytoskeleton reorganization. Whether they are key to successful granule
trafficking and degranulation in eosinophil antifungal activity is unknown. Syntaxin-17 is
a SNARE that was found on the granules of eosinophils and is suggested to be involved
in membrane trafficking although further characterization of syntaxin-17 is needed [104].
Whether other membrane fusion machinery is involved remains known.

Unlike NK cells and CD8+ T cells that mainly kill targets by direct degranulation,
eosinophils kill target cells by utilizing the granule in various ways: classical exocytosis
(as in mast cells) or compound exocytosis, cytolysis, or piecemeal degranulation [103].
Compound exocytosis constitutes the fusion of specific granules with each other and with
the plasma membrane for granule content release. Cytolysis constitutes the release of
intact granules into extracellular milieu. Piecemeal degranulation is a secretory process in
which small packets of granules are selectively mobilized to the plasma membrane, fuse,
and the granule contents are sequentially released [105]. Piecemeal degranulation is also
seen in mast cells and cytotoxic lymphocytes. Eosinophils have been shown to respond
to A. alternata by releasing granule contents via compound exocytosis in which vesicles
fuse with one another, and by releasing extracellular DNA traps along with release of
granules in response to A. fumigatus. There is much to be done to understand the role of
degranulation in the role of eosinophils in response to fungi.

8.5. Neutrophils

Neutrophils play a critical role in host defence against fungi, such as Aspergillus spp.,
Candida spp., and Blastomyces spp. [106–108]. They are one of the largest immune cell
populations and one of the first responders to pathogenic invasion. These cells employ
three different mechanisms to kill: (1) phagocytosis, (2) degranulation, and (3) NETosis.
In the case of direct killing by degranulation, granules are transported through actin
and microtubule reorganization from cytosol to the plasma membrane [109,110]. The
degranulation process at the cell membrane is mediated by two SNARE complexes, made
up of syntaxin 4/SNAP-23/VAMP-1 and syntaxin 4/SNAP-23/VAMP-2, during exocytosis
of specific and tertiary granules [111]. Degranulation of primary azurophilic granules
is mediated by a complex of syntaxin 4 and VAMP-1/VAMP-7 [111]. Granules are also
transported in the same way to the phagosomes by actin cytoskeleton remodeling and
microtubule assembly during phagocytosis [112]. While movement of granules along
microtubule tracks is believed to be mediated by dynein and kinesin motor proteins, there
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is limited evidence [113,114]. Further, it remains unclear of how granules are trafficked in
neutrophils against fungal pathogens. NETosis is a process where neutrophils undergo
lysis where a matrix made of DNA or neutrophil extracellular traps (NET), traps the
pathogen followed by release granule contents containing “azurosomes”, consisting of
eight azurophilic cytolytic granule proteins [110]. The azurosomes form on the granule’s
inner membrane in response to NET-inducing stimuli [115]. Secretion of the cytolytic
molecules into the extracellular milieu where the fungal pathogen is trapped within the
NET would result in death [115].

9. Conclusions

While immune cells deploy secretory vesicles for direct cytotoxic activity against
fungal pathogens, they also employ the contents of secretory vesicles to signal a vast array
of other responses that lead to the ultimate clearance of the fungal invasion. In this review,
we discussed the diversity in granule-mediated mechanisms by the NK cells, CD8+ T cells,
mast cells, eosinophils, and neutrophils. Further studies are needed to fully understand
granule contents and detailed mechanisms used in response to fungal invasion in different
immune cells.
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