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Abstract: Aspergillus sydowii is a moderate halophile fungus extensively studied for its biotechno-
logical potential and halophile responses, which has also been reported as a coral reef pathogen.
In a recent publication, the transcriptomic analysis of this fungus, when growing on wheat straw,
showed that genes related to cell wall modification and cation transporters were upregulated under
hypersaline conditions but not under 0.5 M NaCl, the optimal salinity for growth in this strain.
This led us to study osmolyte accumulation as a mechanism to withstand moderate salinity. In this
work, we show that A. sydowii accumulates trehalose, arabitol, mannitol, and glycerol with different
temporal dynamics, which depend on whether the fungus is exposed to hypo- or hyperosmotic
stress. The transcripts coding for enzymes responsible for polyalcohol synthesis were regulated in a
stress-dependent manner. Interestingly, A. sydowii contains three homologs (Hog1, Hog2 and MpkC)
of the Hog1 MAPK, the master regulator of hyperosmotic stress response in S. cerevisiae and other
fungi. We show a differential regulation of these MAPKs under different salinity conditions, includ-
ing sustained basal Hog1/Hog2 phosphorylation levels in the absence of NaCl or in the presence of
2.0 M NaCl, in contrast to what is observed in S. cerevisiae. These findings indicate that halophilic
fungi such as A. sydowii utilize different osmoadaptation mechanisms to hypersaline conditions.

Keywords: halophile; osmolyte; osmotic shock; HOG; Aspergillus; extremophile

1. Introduction

Halophilic and halotolerant microorganisms, which thrive in saline environments,
adapt strategies to cope with high concentrations of sodium chloride. The high ionic force
in these environments provokes the inactivation of proteins and the osmotic pressure causes
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water loss from non-adapted cells, while the activation of stress-response pathways in-
creases the levels of reactive oxygen species (ROS) [1,2]. Salt-adapted cells actively extrude
metal cations to avoid toxicity and prevent water efflux by the accumulation of osmolytes,
some of which also possesses ROS scavenging activity, among other mechanisms [1–3].

Osmolytes or compatible solutes are low molecular weight molecules that cells accu-
mulate in high concentration to maintain osmotic balance [4–7]. Halophilic bacteria use
glycine, betaine, and glutamate as the main osmolytes [8] whereas fungi preferably accu-
mulate trehalose and poly-alcohols such as mannitol, glycerol, arabitol, and sorbitol [9–11].

The main pathway that regulates the production of osmolytes and other salinity re-
sponses in yeasts and filamentous fungi is the High Osmolarity Glycerol (HOG) signaling
pathway [12–14]. This is a MAPK signal transduction cascade that leads to differen-
tial gene expression driven by Hog due to the phosphorylation of target transcription
factors [12,13,15]. For example, the synthesis of osmolytes such as glycerol, arabitol, and
mannitol is controlled by transcriptional regulation of the genes gpd, ardh, mpdh, and post-
translational regulation of the activity of the proteins through phosphorylation [14,16–18].

Cellular responses in hyperosmotic media are well known in the halotolerant as-
comycetous yeasts S. cerevisiae [19–22] and Debaryomyces hansenii [23–26] and in the halo-
tolerant ascomycetous filamentous fungus Aspergillus nidulans [27]. In all these cases, the
presence of salt entails stress responses that are superimposed with adaptation mechanisms
to tolerate high salinity.

Hortaea werneckii, an extreme halotolerant black yeast, and Wallemia ichthyophaga, an
obligate halophile, have recently emerged as models to study hyper-salinity adaptations
in Basidiomycetes [10,23]. Osmolytes signatures, signaling pathways activation, cell wall
adaptations, ionic balance, and membrane transporters have been studied in these models.
However, previous studies in these and other halophilic fungi have been generally con-
ducted in the minimum and maximum tolerated salinities [9,10,28]. Under these conditions,
as in the studies of halotolerant fungi, the independent contribution of stress and salinity
to physiological responses are difficult to discriminate.

We have recently shown that in the case of the halophilic ascomycetous model A.
sydowii, the physiological responses to salinity vary if the fungus is under additional salinity
stress [29]. In this strain, hyperosmotic conditions (2.0 M NaCl) induce the transcriptional
regulation of cell wall reorganization, membrane cation transporters, hydrophobin produc-
tion, and glycerol synthesis. However, such regulatory mechanisms were not observed at
a salt concentration (0.5 M NaCl) that is optimal for the growth of this fungus [29]. Thus,
we hypothesize that, at the optimal salinity, the fungus accumulates osmolytes other than
glycerol, regulates ionic balance, and maintains low oxidative stress levels by mechanisms
that do not require a steady transcriptional change. The aim of the present work was to
analyze the osmolyte signatures in salt-adapted A. sydowii cells and their dynamic changes
after hypoosmotic and hyperosmotic shocks.

In this report we examined osmolyte accumulation, transcriptional regulation of key
enzymes involved in their synthesis, the activation of HOG signaling pathway, and the
sodium and potassium ion balance in A. sydowii under hyperosmotic, hypoosmotic and
optimal salinity conditions. Oxidative stress markers and antioxidant responses were also
investigated to assert the level of stress in the evaluated conditions. This information
will be useful for defining culture conditions in future biotechnological applications of A.
sydowii. This fungus can grow with lignocellulosic substrates and hydrocarbons as the only
carbon sources [29–32], and produces biotechnologically relevant enzymes [33–37] and
secondary metabolites [38–40], which attest to its potential use as a tool in biorefineries and
in bioremediation approaches.

2. Materials and Methods
2.1. Fungal Strain and Culture Conditions

Isolation of the moderate halophilic fungus A. sydowii strain BMH0004 has been
previously described [29,30]. The strain was maintained in PDA petri dishes grown at 28 ◦C



J. Fungi 2021, 7, 414 3 of 28

and stored at 4 ◦C or as spores suspension in 20% glycerol supplemented with 0.5% NaCl
at −80 ◦C in the Fungal Culture Collection of the Center for Research on Biotechnology
(CEIB, UAEM, Morelos, Mexico) with reference number BMH0004, in the Technological
University Collection of Industrially Relevant Microorganisms (TUCIM, Vienna, Austria)
with reference number 6524 and the Ex Culture Collection of the Infrastructural Centre
Mycosmo (MRIC, UL, Ljubljana, Slovenia) with reference number EXF-12860.

For all experimental determinations, A. sydowii was grown in liquid mineral medium
with glucose (MMG medium) and incubated at 28 ◦C and 150 rpm. The MMG medium
(containing: 7.8 mg/L CuSO4·5H2O, 18 mg/L FeSO4·7H2O, 500 mg/L MgSO4·7H2O,
10 mg/L ZnSO4, 50 mg/L KCl, 1 g/L K2HPO4 and 2 g/L NH4NO3) was adjusted to pH 6
with H3PO4 or KOH, then sterilized by autoclaving and supplemented with 0.5 M or 2.0 M
NaCl and 2% filter-sterilized glucose.

2.2. Growth Rate Determination

To determine the growth rate of A. sydowii at different salinities, 106 spores were
inoculated into 250 mL flasks with 50 mL of MMG with different concentrations of NaCl
(without NaCl, with 0.5 M, 1.0 M, or 2.0 M NaCl). The cultures were incubated at 28 ◦C
with constant shaking at 150 rpm. All the mycelium in a culture flask was harvested
every 2 days until no changes in biomass were recorded. The mycelium was collected by
filtration with a 40 µm pore size cell strainer, dried at 60 ◦C in an oven and weighted. All
experimental determinations were made in triplicate.

2.3. Identification and Quantification of Compatible Solutes

Intracellular glycerol, erythritol, ribitol, xylitol, arabitol, galactitol, sorbitol, mannitol,
maltitol, and trehalose (Standards kit, Cat. 47266, Sigma-Aldrich, St. Louis, MO, USA) were
measured by HPLC (Supplementary Figures S1 and S2). The extraction of the metabolites
was carried out by a modification of the Bligh and Dyer method [9,41]. Briefly, 100 mg of
mycelium were suspended in 3680 µL of Bligh and Dyer solution (chloroform–methanol–
water (10:5:3.4)) and stirred vigorously for approximately 30 min. 433 µL of chloroform and
433 µL of demineralized water were added, and the suspension was incubated for 30 min
with stirring. The samples were centrifuged at 5500× g for 10 min for phase separation.
The upper methanol-water phase was collected and stored at −20 ◦C until analysis.

The HPLC analysis was performed in an isocratic system with an AMINEX-HPX87H
column (300 mm × 7.8 mm, Bio-Rad, Munich, Germany) at 50 ◦C. Injection volume was
50 µL for all samples. Calibration curves of standards were obtained using 50, 200, 400,
600, and 800 µg/mL of each compound. The separation was carried out by elution with
5 mM sulfuric acid, at a flow rate of 0.8 mL/min. Chromatogram analysis was performed
using ChromQuest software v2.51 (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Compatible Solutes in Salt-Adapted Mycelium

To determine the compatible solutes in cells adapted to salt, 106 spores were inoculated
into 250 mL flasks with 100 mL of MMG with different concentrations of NaCl (0 M, 0.5 M,
or 2.0 M NaCl). The mycelium was collected at different time points of the growth curve
(5, 7, and 11 days) and dried until constant weight, in an oven at 60 ◦C, before extraction
of compatible solutes as previously described. All the experiments were performed with
three culture replicates.

2.5. Compatible Solutes after Osmotic Shock

Compatible solutes were determined in cells after osmotic shock exerted by transfer-
ring the mycelium in all possible conditions between 0 M, 0.5 M, and 2.0 M NaCl. The
fungus was cultured in 500 mL flasks with 200 mL of MMG with or without NaCl and
incubated for 7 days at 28 ◦C, 150 rpm. The obtained pre-inoculum was harvested using a
40 µm pore size cell strainer and 1 g of wet biomass was transferred to 250 mL flasks with
50 mL of MMG with or without NaCl and incubated at 28 ◦C, 150 rpm. The mycelia were
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collected after 10 min, 30 min, 2 h, 8 h, 24 h, and 48 h post-inoculation, dried in an oven at
60 ◦C and compatible solutes were extracted as described above. All the experiments were
performed with three culture replicates.

2.6. RNA Extraction and qPCR Analysis

The fungus was cultured for 7 days as previously described (t0) and was subjected to
osmotic shock following the same procedure as for the determination of compatible solutes.
The mycelium was harvested by centrifugation, frozen with liquid nitrogen, grinded using
a mortar and pestle, and 100 mg were used to isolate total RNA using the TRI-reagent
method (Sigma-Aldrich). cDNA was synthesized from 2 µg of DNase-treated total RNA,
using the RevertAid™ H Minus First Strand cDNA synthesis kit with a dT18 primer
(Thermo Fisher Scientific).

Primers for qPCR analysis were designed using Primer3Plus [42] and their physico-
chemical properties and amplicon structures were evaluated using DINAMelt [43] and
Mfold [44], respectively. All primers used are listed in Supplementary Table S1.

Two-step qPCR reaction conditions (temperature, primer concentration and efficiency)
were optimized for each primer pair (see Supplementary Table S1 for reaction conditions).
qPCR reactions contained 5 µL of QuantiNOVA SYBR GREEN Master Mix (QIAgen, Hilden,
Germany) and 1 µL of a 1:8 dilution of cDNA in a final volume of 10 µL. All reactions
were quantified in duplicate using a Rotorgene apparatus (QIAgen, Hilden, Germany). A
melting curve and a polyacrylamide gel electrophoresis were used to verify the specificity
of the amplified product.

Relative expression levels were calculated with the Pfaffl method using the REST
software [45,46]. In cases where the randomization test performed by REST confirmed
statistical significance of the fold change, a binary logarithm (logFC) over 2 was considered
as biologically significant up- or down-regulation. The genes sarA and cox5 were used as
reference genes for normalization [47].

2.7. Phylogenetic Analysis of MAPK Orthologs

Protein sequences corresponding to mitogen-activated protein kinase (MAPK) or-
thologs (KOG0660) were retrieved from the genomes of Aspergilli in the Mycocosm
database by KOG annotation search. These sequences were aligned using the MUSCLE
algorithm with default parameters [48] as implemented in the MEGA suite [49]. The
resulting multiple sequence alignment (MSA) was edited in AliView [50] to remove non
parsimonious-informative sequence blocks, resulting in a MSA with 253 sites. For phyloge-
netic reconstruction, the best substitution model was selected in MEGA based on the lowest
BIC scores (Bayesian Information Criterion). Phylogenetic distances were inferred by using
the Maximum Likelihood (ML) method and Le_Gascuel_2008 model [51] assuming gamma
distributed evolutionary rates among sites. The ML Tree confidence was evaluated with the
Bootstrap method using 1000 iterations [52]. The bootstrap consensus tree was modified
for visualization using FigTree (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 15
May 2021).

2.8. Western Blot of Phosphorylated Hog

Cultures of A. sydowii were subjected to osmotic shock as previously described. The
mycelium was harvested with a cell strainer after 5, 15, 30, 60, 120, and 180 min post-
inoculation, and treated with 85% trichloroacetic acid for 10 min [53]. The fixed cells were
washed three times with distilled water, frozen and macerated with liquid nitrogen, and
vortexed with lysis buffer (500 mM Tris pH 6.8, 100 mM DTT, 2% SDS, 4% glycerol and
0.01% bromophenol blue) and 0.5 mm diameter glass beads [53,54]. A constant volume of
protein extract was used for Western blot. PVDF membranes were blocked with 7% skim
milk (BD Bioscience, Franklin Lakes, NJ, USA) in Phosphate Buffer Saline (PBS), followed
by incubation with an anti-p38 phosphorylated MAP kinase antibody (Cat. 4511, Cell
Signaling, Danvers, MA, USA) at a 1:1000 dilution. Anti-Hog antibody (Cat. SC-9079,
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Santa Cruz, Dallas, TX, USA) was used at a 1:1000 dilution to detect total protein and
served as loading control. An anti-rabbit IgG coupled to HRP (Invitrogen, Waltham, MA,
USA) was used at a 1:10,000 dilution and incubated at room temperature for 1 h. The
molecular weight marker used in this assay was Page Ruler pre-stained TM (10–180 kDa,
ThermoScientific, Waltham, MA, USA). A protein extract from S. cerevisiae strain BY7472
was used as a positive control. In this case, S. cerevisiae cells were grown overnight in
YPD broth, subjected to 1.0 M NaCl osmotic shock for 10 min, and treated as previously
described for fungal mycelium [53,54].

2.9. Na+/K+ Quantification

For the quantification of intracellular sodium and potassium, 300 mg of wet mycelium
(5, 7, and 11 days of culture, as previously described) was washed two times with deionized
water and vacuum dried using Whatman filters with a pore size of 0.45 µm in a Millipore
Multifilter equipment. The biomass was resuspended in 5 mL of deionized water and
homogenized with a Teflon pestle in a tissue homogenizer for approximately 2 min. The
homogenate was collected by rinsing the tissue homogenizer with 5 mL of deionized water
to obtain a final volume of 10 mL. From this volume, 5 mL were heated in a water bath at
the boiling point for 20 min and then centrifuged for 5 min at 1625× g. The supernatant
was collected and Na+ and K+ were quantified on a Flame Photometer (Carls Zeiss PF5
371777) [55]. For the quantification, 1 mM NaCl and 1 mM KCl were used as standards,
corresponding to 100 AU. All measurements were made in triplicate.

2.10. Quantification of Oxidative Stress Markers and Antioxidant Responses in A. sydowii

The mycelium was collected in a cell strainer and macerated with liquid nitrogen
using a mortar and pestle. Cell lysis was achieved by adding 200 µL of lysis buffer (0.3 M
Tris pH 6.8, SDS 2% and glycerol 4%) to 100 mg of frozen macerated mycelium, with 0.3 g
of 0.5 mm diameter glass beads. Samples were vortexed four times on lapses of 1 min and
allowed to rest for another minute on ice. The supernatant was recovered by centrifugation
and stored at −80 ◦C until analysis.

Hydrogen peroxide was quantified as total peroxides in cell extracts using the
BIOXYTECH® H2O2-560™ Assay kit (Cat. 21024, OXIS International Inc., Portland, OR,
USA). Briefly, this colorimetric assay is based on the oxidation of ferrous ions, which then
bind to the xylenol orange dye to yield a colored complex. Sorbitol in the reaction enhances
the oxidation of ferrous ions, which increases the assay sensitivity. The indicator dye
production was evaluated by absorbance at 560 nm.

Protein Advanced Oxidation Product (PAOP) level was determined by a modified
Witko’s method [56] using chloramine-T (N-chloro-p-toluene-sulfonamide) as standard.
Chloramines were determined by production of triiodide ion from the oxidation of potas-
sium iodide in solution at 340 nm.

Lipid peroxidation was evaluated by the quantification of malondialdehyde (MDA)
and 4-hydroxyalkenals (4-HDA), two common degradation products of lipid peroxidation.
MDA and 4-HDA were determined by reaction with N-methyl-2-phenylindole to form
a chromophoric cyanine that can be quantified spectrophotometrically at 586 nm [57].
MDA concentration was calculated using a standard curve. To further determine cell
susceptibility to lipid peroxidation, cell extracts were incubated with 2 mM copper sulphate
at 37 ◦C for 24 h [58]. At the end of the incubation period, MDA and diene conjugate levels
were also measured.

Superoxide dismutase (SOD) activity was determined according to the Marklund
method [59] based on the ability of the enzyme to inhibit the autoxidation of pyrogallol.
The rate of autoxidation is obtained from the increase in absorbance at 420 nm, in the
absence of superoxide dismutase. The levels of reduced glutathione (GSH) present in the
sample were determined as described previously by [60]. Briefly, the GSH reacts with
5,5′-Dithiobis-(2-nitrobenzoic acid) dye (DTNB dye) to yield a colored compound that
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absorbs light at 412 nm. Concentration of GSH was determined by comparing the samples
with a standard curve.

2.11. Statistical Analysis

Results are expressed as means ± SD. Statistical analysis of solute concentration
was performed using one-way ANOVA considering a fixed-effect model with salinity as
predictor variable. The ANOVA premises were assessed according to the Kolmogorov-
Smirnov normality test [61] and the Levene or Brown-Forsythe variance homogeneity
test [62]. The means of multiple comparison tests were performed by Duncan test [63].
Where the normality and homoscedasticity requirements were not verified, a Kruskal-
Wallis test was performed, and the multiple mean comparisons were performed using the
Dunn’s test. The level of significance was set at α = 0.05 using the STATISTICA software,
v. 7.0, (StatSoft, Inc., Tulsa, OK, USA).

3. Results and Discussion
3.1. Compatible Solutes in Salt-Adapted A. sydowii Cells

To avoid the stress induced by nutritional deprivation, we cultured the fungus with
glucose as carbon source [30,32]. In a shaken flask cultivation, most microorganisms
will grow exponentially until the stationary phase, where active growth ceases due to
nutrient scarcity and other biologically imposed limits. The metabolic response of the
cells is expected to be different in each growth phase, and therefore the growth rate of A.
sydowii in different salinities was determined to establish the time needed to analyze the
osmolyte content (Figure 1A). The duration of the growth phases was different between the
tested conditions, reinforcing the notion that there are three different biological scenarios:
the fungus growing under optimal salinity condition, or under either hyperosmotic or
hypoosmotic conditions. An initial adaptation (or lag) phase was evident in the condition
without NaCl, while this phase was nearly inexistent in the other three conditions. The
exponential growth phase lasted until day 9 of culture under the optimal conditions and
without NaCl, but only lasted until day 2 at 2.0 M NaCl. The doubling time of A. sydowii
on 0.5 M and 1.0 M NaCl were 10 and 11 h, respectively, while in the absence of salt and
2.0 M NaCl were 13.5 and 14.6 h, respectively. In further experiments we used 0.5 M NaCl
as the optimal salinity condition.

These results confirm that A. sydowii is a moderate halophile with optimal growth in
the salinity range 0.5 to 1.0 M NaCl (Figure 1A and Supplementary Table S2). Previous
reports of marine A. sydowii strains isolated from corals reinforce the notion that this fungus
thrives in salinities near the seawater NaCl concentration (0.6 M NaCl) [64,65]. In this
environment the fungus infects corals causing tissue purpling and galling. Although A.
sydowii has a terrestrial origin, marine isolates have caused a pandemic that has reduced
the coral reef population [64,65]. Nevertheless, terrestrial isolates, as is the case of the strain
BMH-0004 analyzed in this study, are not pathogenic to corals [64,65].

Osmolyte accumulation in A. sydowii was evaluated at three time points: 5-, 7-, and
11-days post-inoculation, which cover different states of growth under all conditions.
Given the unique profiles of the growth curves, it was difficult to determine equivalent
physiological states for the cultures. At days 5 and 7, the fungus is in exponential growth
phase in the cultures without NaCl or with 0.5 M NaCl. At day 11, all the cultures had
reached the stationary phase. In the cultures with 2.0 M NaCl, the exponential growth
phase was not sampled because the mycelium grows in a small window of time until
a stationary state where the fungus remains viable but ceases to grow (Figure 1A). This
pattern is similar to the growth of fungi such as Rhizopus microsporus and A. fumigatus on
nutritionally poor media [66].
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Figure 1. Growth rate of A. sydowii (A) and osmolyte accumulation (B) in optimal, hypo- and hyper
osmotic conditions. Data are means ± SD calculated from three independent experiments (n = 3).
Statistical analyses are detailed in Supplementary Table S3.

It has been proposed that under osmotic stress, cells respond with an increased
synthesis of compatible solutes, regardless of the solute, causing the lowering of water
activity [67]. In A. sydowii the largest accumulation of compatible solutes (mannitol, erythri-
tol and arabitol) was observed under optimal conditions of growth (Figure 1B). This result
contradicts the general notion that osmolytes are mainly accumulated under hyperosmotic
conditions and cellular stress [11,67–71]. However, it has been documented that other
fungi exhibit higher polyol concentration when growing on their optimal NaCl and KCl
concentration [72].

Our results also showed that A. sydowii increased the concentration of erythritol and
glycerol only when the cells were exposed to hyper-salinity (Figure 1B). In the media with-
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out salt, mannitol was the most abundant metabolite followed by trehalose and erythritol.
In the optimal condition there is an apparent shift in the physiological accumulation of
osmolytes after 5 days of culture, as mannitol and erythritol were present at day 5, while
arabitol replaces erythritol at days 7 and 11. Interestingly, glycerol was detected only
in the hypersaline condition, followed by erythritol and trace amounts of trehalose and
mannitol (Figure 1B). Under a hyperosmotic stimulus, W. ichthyophaga also synthetizes
glycerol and arabitol [11], while Trichosporonoides megachiliensis and H. werneckii synthetize
glycerol and erythritol [73], and A. tamari, A. montevidensis, and A. wentii synthetize mainly
glycerol [72,74,75].

3.2. Transcriptional Profiling of Genes Coding for Osmolyte Synthesis Enzymes

The metabolic pathways of osmolyte synthesis have been described in several fungi
including model Aspergilli such as A. niger, A. nidulans, and A. fumigatus [76–80]. However,
the genetic regulation of these pathways is diverse, and hence, a characterization of the
transcriptional regulation of genes coding for osmolyte synthesis enzymes should be
conducted in distinct species and under different conditions. The metabolic pathways
leading to the synthesis of the identified osmolytes are depicted in Figure 2, highlighting
the enzymes for which transcriptional regulation was evaluated (Figure 3).

Trehalose, a glucose disaccharide, is synthesized from glucose-6-phosphate by two
consecutive reactions catalyzed by the trehalose-6-phosphate synthase (TPS) and trehalose-
6-P phosphatase (TPP) enzyme complex. In S. cerevisiae the genes tps1 and tps2 encode
the TPS and TPP subunits, respectively, while the genes tps3 and tsl1 encode regulatory
subunits. In A. nidulans the orthologues of the tps1-3 genes are named tpsA, orlA, and
tps3. All three genes contain a glycosyl transferase domain from family 20 (GT 20 domain,
pfam: PF00982), while orlA and tps3 additionally contain a TPP domain (pfam: PF02358).
A. nidulans has also a heat shock trehalose synthase gene (stps) that has been found in
Aspergilli, a homolog of the Neurospora crassa ccg-9 gene which encodes a trehalose syn-
thase with a glycosyl transferase family 1 domain, and a trehalose-6-P phosphatase gene
containing only the TPP domain, which is putatively involved in the synthesis of trehalose
from trehalose-6-P. The A. sydowii homologs of these genes are listed in Supplementary
Table S4.

Among the tested metabolites in A. sydowii, we found that trehalose was accumulated
to a lesser extent (Figure 1B). The highest intracellular concentration of trehalose occurred
without NaCl at day 7 (38 µmol/g) ant it was also produced in the condition with 2.0 M
NaCl (at days 5 and 11). As shown in Figure 3, this is consistent with the expression of
the stps trehalose synthase gene, which was upregulated in both extreme conditions, but
downregulated in optimal salinity. The ccg-9 gene has the same expression pattern but
with lesser differential expression among the conditions (Figure 3A).

Trehalose is suggested to function as a reserve carbohydrate, as an osmo-protectant,
or for protection against protein denaturation by dehydration [81,82]. For example, spores
that have a high content of trehalose are more resistant to temperature stress, dehydration,
freezing, oxidizing agents, or starvation [81,83–86]. A. nidulans and S. cerevisiae mutants
lacking the tps1 gene are also less thermo- and halotolerant [69,86,87]. Nevertheless,
tps genes are also involved in the regulation of cell wall structure by modulating chitin
synthase activity [88–91], hence the effect of these genes might intertwine both physiological
responses. In A. sydowii, the low amount of accumulated trehalose and the high differential
expression of the stps and ccg-9 genes suggest that they are involved in stress responses
other than trehalose synthesis.
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P dehydrogenase), GPP (Glycerol-3-P phosphatase), GUT1 (Glycerol-kinase), HAD1(Halo-acid dehalogenase), DAK1
(Dihydroxyacetone kinase) GLD1 (Glycerol dehydrogenase). TKT (Transketolase), TAD (Trans-aldolase), LAR (L-arabinose),
ARDH (L-arabinitol dehydrogenase), D-XK (D-Xylose Kinase), ER (Erythrose reductase).
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The most common pathway of mannitol biosynthesis in filamentous fungi is the
conversion from fructose-6-P to mannitol-1-P by the mannitol-1-P dehydrogenase and sub-
sequently the dephosphorylation to obtain mannitol [92]. An alternative pathway converts
fructose to mannitol by the mannitol dehydrogenase. In A. nidulans the genes encoding
these enzymes are named mtld and m2dh, respectively. The patterns of expression of mtld
gene and trehalose synthase genes were similar, showing higher expression in extreme
conditions when compared to optimal salinity (Figure 3B). However, mtld expression did
not correlate with mannitol accumulation particularly without NaCl or 0.5 M NaCl. The
m2dh gene, on the other hand, is highly expressed in the condition without NaCl, but it is
downregulated in 0.5 M NaCl (Figure 3B). The expression pattern of these genes does not
account for the accumulation of mannitol in 0.5 M NaCl.

Although mannitol has been found in high abundance in several fungal species,
accumulating evidence suggests that it is not required in all fungi for osmotic stress
protection, oxidative stress prevention, or sporulation [92]. Therefore, while its role in
fungal physiology is not completely clear, mannitol is not an essential polyol in fungi [93].
In A. sydowii, mannitol accumulation might result from active growth metabolism, as it
does not seem to be regulated by salt stress response mechanisms.

As mentioned before, glycerol is the canonical osmolyte produced under hyperosmotic
stress by many microorganisms. Glycerol is produced by two routes from the dihydrox-
yacetone phosphate (DHAP) obtained during glycolysis. The first pathway involves the
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conversion of DHAP to glycerol-3-P by the glycerol-3-P dehydrogenase (GPD) enzyme,
which is the main regulatory point in the glycerol pathway. Glycerol-3-P is then converted
to glycerol by the glycerol-3-P phosphatase (GPP), while the opposite reaction is catalyzed
by the glycerol-kinase (GUT1). The alternative pathway involves the conversion of DHAP
to dihydroxyacetone (DHA) by a halo-acid dehalogenase (HAD1) and the subsequent
conversion to glycerol by the glycerol dehydrogenase (GLD1).

In A. sydowii the gpd gene was highly expressed under hyperosmotic conditions, but
not under the optimal salinity (Figure 3D). This coincides with the glycerol accumulation
in 2.0 M NaCl. In fact, the gpd gene was downregulated in the optimal condition when
compared to the condition without salt. This reinforces our hypothesis that osmotic stress
responses are not taking place when A. sydowii is grown under optimal salinity but occur
only under the hyperosmotic stress induced by 2.0 M NaCl.

While trehalose, mannitol, and glycerol are directly under the influence of the regu-
latory frame of glycolysis, erythritol and arabitol are produced from pentose phosphate
pathway intermediates and are therefore produced preferentially in conditions where the
energy and redox balance in the cell favors anabolic reactions. Arabitol is produced from
L-arabinose by the L-arabinose reductase (LAR) or from L-xylulose by a reversible reaction
catalyzed by the L-arabitol dehydrogenase (ARDH). A key enzyme controlling the flux
to xylulose is the transketolase which is encoded by the gene tkt. In A. sydowii we found
two homologs of this gene, named tktA and tktB. The former was downregulated in 2.0 M
NaCl, while the latter had an expression that increases with increasing salinity (Figure 3C).
Neither of these expression patterns correlated with erythritol or arabitol accumulation.

On the other hand, erythritol is produced from erythrose by the erythrose reductase
(ER), which in A. niger was identified as an aldehyde reductase with a broader specificity for
other five-carbon aldehydes [94]. The first step in the shunt from glycolytic intermediates
to erytrose-4-P is carried out by the enzyme trans-aldolase (TAD) and it is, therefore, a
possible point of regulation of this pathway. The tad gene in A. sydowii did not show
a high differential expression in the salinity conditions tested, and therefore was not
analyzed further.

Compared to glycerol, erythritol has lower hygroscopicity and antioxidant proper-
ties [73]. Both low-molecular-weight polyols are more effective in osmotic protection than
mannitol or arabitol, which have higher molecular size. Some studies have reported that
osmolytes with higher-molecular-weight can even inhibit enzymatic activity as compared
with the same concentration of glycerol [67,95,96]. Besides, there is an added “carbon cost”
in the synthesis of larger osmolytes, which the cell may not afford if it is under stress.

Consistent with our results, Hortaea werneckii, Penicillium chrysogenum, and some As-
pergilli also accumulate mannitol, arabitol, and erythritol at the optimal growth condition.
However, a contrasting observation with our results was obtained for A. oryzae, A. fis-
cheri, and A. niger, where trehalose was the most abundant osmolyte [3,97]. As indicated,
mannitol was the most abundant polyol in A. sydowii BMH004, found in different days
of growth, both in absence of salt and under optimal salinity (Figure 1B). Consistently,
in P. chysogenum and A. niger in the absence of salt, mannitol is accumulated in greater
proportion, and arabitol is only detected in minimal quantities [97]. It is known that this
polyol can protect against the inactivation of enzymes by heat [98], but due to its limited
solubility and tendency to crystallize, mannitol provides little protection against osmotic
stress and freezing [99–101].

In contrast, at higher salinity H. werneckii (4.28 M NaCl) and W. ichthyophaga (4.25 M
NaCl) accumulate mainly glycerol and lower amounts of erythritol [9,11]. Our results show
that A. sydowii accumulated both polyols in similar concentrations (82.9 and 105.27 µmol/g
at day 7) when the fungus is growing at 2.0 M of NaCl (Figure 1). In several reports
of different yeasts and fungi, glycerol was the main solute accumulated in response to
hyperosmotic stress [102,103]. For instance, Yarrowia lypolitica also accumulates erythritol
in higher concentrations than mannitol when exposed to high osmotic pressure [104].
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3.3. Dynamics of Compatible Solutes Accumulation after Hypoosmotic or Hyperosmotic Shock

In model fungi, the accumulation of compatible solutes has been analyzed during hy-
perosmotic or hypoosmotic shock but there are few studies analyzing halophile fungi grow-
ing under optimal salinity conditions and changed to osmo-stressful conditions [105,106].
Here we have termed these as stress-inducing shocks to highlight the difference from hyper-
osmotic and hypoosmotic shocks between non-optimal growth conditions. We evaluated
the accumulation of polyols and trehalose when A. sydowii was growing with 0.5 M NaCl
and then exposed to a medium without salt or with 2.0 M NaCl.

After a hyperosmotic shock, S. cerevisiae, H. werneckii, and W. ichthyophaga prevalently
accumulate glycerol. However, in A. sydowii cells under stable salinity conditions, we
observed that the accumulation of glycerol occurred only at 2.0 M NaCl. This leads to
questions as to whether glycerol or other osmolytes will be produced if mycelium is
shifted from hypoosmotic conditions (without NaCl) to optimal salt conditions (0.5 M
NaCl), which presumably do not represent a stressful condition for this fungus. Therefore,
we determined the accumulation of compatible solutes of A. sydowii when exposed to
hypoosmotic, hyperosmotic, and stress-inducing osmotic shocks.

When cultures without NaCl were transferred to 0.5 M NaCl (Figure 4), the fungus
responded after 2 h with a spike in the concentration of erythritol and arabitol, which
diminished after 8 h to the levels encountered in mycelia cultured at 0.5 M NaCl. Trehalose
and mannitol levels did not change, and glycerol was not produced, even though similar
salinities induce its accumulation in other non-halophile Aspergilli such as A. nidulans and
A. niger [4,107]. In contrast, the shifting of cultures without NaCl to 2.0 M NaCl induced a
small glycerol accumulation after 8 h and a progressive decrease of mannitol concentration.
This osmotic shock induced the expression of both stps and ccg-9 genes (Figure 5), which
did not correlate with trehalose accumulation. The gene m2dh did not change its expression,
while the mtld gene was downregulated after the shock, coinciding with the decrease of
mannitol concentration. The gpd transcripts were detected transiently between 2 and 8 h,
which also coincides with the increase in glycerol after 8 h. These observations are different
than in studies performed in S. cerevisiae and D. hansenii, and others, where the intracellular
concentration of glycerol increased after 30 min when the cells were exposed to a moderate
osmotic shock (without salt to 0.5 M of NaCl) [54,108–110].

After a hypoosmotic shock from 2.0 M NaCl to a medium without salt, trehalose
was detected as early as 10 min, while glycerol rapidly disappeared, but there were not
dramatic changes in total osmolyte concentration (Figure 4). Under this shock, the ccg-9
gene was upregulated soon after, while the stps gene was downregulated after 8 h and the
gpd transcript levels decreased progressively (Figure 5). These changes alone do not explain
the dynamics of trehalose and glycerol but are consistent with the physiological response
of the mycelium in this scenario. When the hypoosmotic shock was from 2 M NaCl to a
medium with 0.5 M NaCl, fluctuations were more evident, as erythritol concentrations
spiked after 2 h and glycerol initially disappeared and later spiked also after 2 h from
the shock. There was a spike of trehalose 48 h after this treatment for which we have no
plausible explanation.

Our results indicated that, when changed to a condition without salt, the concentra-
tions of mannitol and arabitol spiked transiently at 2 h and returned to approximately
the initial level after 24 h (Figure 4), which coincided with an initial upregulation of m2dh
and to a lesser extent tktB (Figure 5), but these might not be responsible for the observed
osmolyte dynamics. The concentration of glycerol spiked at 8 h (263 µmol/g dry mass)
and was still detected 48 h after this hypoosmotic shock, coinciding with the transient
upregulation of gpd (Figure 5). The activation of gpd gene and the subsequent production
of glycerol is not generally regarded as a response to hypoosmotic shock, but in this case, it
highlights the notion that this mechanism is associated with osmotic stress regardless of
the direction of the stimulus.
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When changed from the optimal salinity to the hypersaline condition, instead of the
expected increase in the concentration of compatible solutes, there was a reduction in
trehalose, mannitol, erythritol, and arabitol and only a slight increase in glycerol (Figure 4).
The mtld and m2dh genes were highly upregulated shortly after the shock, and remained so
even after 24 h, which does not explain mannitol dynamics. The tktB gene was significantly
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downregulated shortly after the hypoosmotic shock, which might account for the reduction
of erythritol and arabitol. The gpd gene was transiently upregulated between 30 min and
8 h after the shock, preceding the small surge of glycerol in this condition (Figure 5). The
physiological responses of A. sydowii to hyperosmotic changes in the medium are similar
in terms of accumulated osmolytes and enzyme gene regulation but are counterintuitively
more pronounced in the change from 0.5 M NaCl than from the medium without salt.

Altogether, these observations show that the response of this fungus is different
from other halotolerant and halophile model fungi. Moreover, we observed that the
accumulation of glycerol in A. sydowii is a response to hypersaline stress more than a
response to salinity, as we have previously proposed [29].

3.4. Hog Phosphorylation Response to Osmotic Shock

Using several model organisms, it has been established that the HOG pathway coor-
dinates responses to cellular osmotic stress. In S. cerevisiae and D. hansenii, the activation
of this pathway leads to the transient phosphorylation of Hog upon a hyperosmotic
shock [111]. In H. werneckii, the hog gene is duplicated while the protein phosphorylation
dynamics is similar to Hog1p from S. cerevisae [18]. However, in W. ichthyophaga, the HOG
system responds in the opposite direction, since the kinase is phosphorylated in the lowest
salinities and is transiently dephosphorylated when the cells were exposed to a hypersaline
medium [11,18,112]. These diverse signaling pathway configurations suggest that the
HOG system is a key component of the mechanisms of adaptation to salinity and other
stress-inducing conditions. Therefore, we studied the responses of the A. sydowii Hog
orthologues to salinity stress.

Few fungi, like several Aspergilli, have more than one copy of the Hog MAPK [113].
For example, A. nidulans has two orthologues of the S. cerevisae Hog1p, named SakA/HogA
and MpkC. The former is responsible for most of the osmo-protective stress responses in
A. nidulans, while the latter is involved in conidiation and oxidative stress response [113].
Interestingly, A. sydowii has a third copy of the Hog MAPK that cannot be found in its close
relatives A. versicolor and A. mulundensis. Here we named these MAPKs as Hog1, Hog2,
and MpkC, which respectively have protein identifiers 141488, 372814, and 47278 in the
published A. sydowii CBS 593.65 genome (Figure 6A). All three orthologues have complete
protein kinase (PK) domains and the conserved TGY phosphorylation site (Figure 6B),
which implicates that they could be phosphorylated and biologically active. This allowed
us to detect the phosphorylation of the A. sydowii MAPK orthologues using antibodies
with cross-reactivity to the S. cerevisiae Hog1p.
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Figure 6. Hog MAPK system in A. sydowii. (A) Reconstruction of MAPK phylogeny in selected Aspergilli, including
Hog1, Hog2, and MpkC genes of A. sydowii. A more extensive phylogenetic tree can be observed in Supplementary
Figure S3. (B) Hog gene homologs on A. sydowii showing protein size, molecular weight, conserved phosphorylation motifs,
protein kinase (PK) domain, and the region corresponding to Y-215 and D3F9 recognized by the antibodies used to detect
phosphorylated and total Hog, respectively, by Western blot. (C) Relative expression of Hog1 and Hog2 transcripts in
salt-adapted A. sydowii growing without NaCl, 0.5 M or 2.0 M NaCl, representing the average and standard deviations of
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three biological replicates (n = 3) and two technical qPCR replicates. (D) Diagram of the shock conditions used to test the
phosphorylation dynamics of Hog1 and Hog2 (E) Relative expression of Hog1 and Hog2 transcripts after osmotic shock in
A. sydowii, representing the average and standard deviations of three biological replicates (n = 3) and two technical qPCR
replicates. The statistical significance (*) was assessed by a randomization test performed with the software Rest [46]. The
dashed horizontal lines correspond to a cutoff logFC = ±2. (F) Phosphorylation of Hog MAPK homologs after different
osmotic shocks. Extracts from S. cerevisiae cultures shifted from a medium without NaCl to a medium with 1.0 M NaCl were
used as positive controls for Hog1 phosphorylation.

The transcript levels of the Hog1 variant might be higher than those of Hog2, according
to previous RNA-seq experiments (Supplementary Figure S4) [29]. More important, the
expression of both genes was similar under stress conditions (No NaCl or 2.0 M NaCl)
but was lower under optimal salinity conditions (Figure 6C). This effect was more pro-
nounced for Hog2, suggesting that this variant might play a more significant role in the salt
stress response.

We have established that the conditions without NaCl or with 2.0 M NaCl induce
stress responses in A. sydowii [29]. Therefore, changing the mycelium from media with
0.5 M NaCl to another condition induces stress responses, which might be different from
hyperosmotic or hypoosmotic shock responses. A schematic representation of those experi-
mental variations can be observed in Figure 6D. The differential expression of Hog1 and
Hog2 under these scenarios showed that both genes were downregulated after hyper- or
hypoosmotic shocks (Figure 6E), reducing the transcript abundance after long time periods
(8 to 24 h post-stimulus). Again, this effect is more pronounced for Hog2 gene variant than
for Hog1. In contrast, Hog2 gene expression is mostly upregulated after stress-inducing
osmotic shocks, while Hog1 expression is not significantly perturbed.

The phosphorylation of Hog MAPK variants was analyzed by Western Blot from 5 min
to 3 h after an osmotic stimulus and compared to the phosphorylation dynamic of Hog1p
in S. cerevisiae (Figure 6F). The independent patterns of Hog1/Hog2 phosphorylation could
not be discerned with this experiment as the bands corresponding to both protein products
overlapped. Conversely, a higher molecular weight band, below of S. cerevisiae Hog1p
could correspond to the MpkC variant, according to its molecular weight prediction.

Both or at least one of the Hog1/Hog2 proteins were phosphorylated constitutively
in the conditions without NaCl or in 2.0 M NaCl, and to a lesser extent in the 0.5 M
NaCl optimal condition. Such phosphorylation status did not change upon hyper- or
hypoosmotic shocks, but increased when cells were exposed to stress-inducing osmotic
shocks considering the growth optimal condition. These changes were not transient,
though, indicating that a sustained phosphorylation of Hog is the normal status of this
signaling system in A. sydowii. Interestingly, MpkC protein was produced in detectable
amounts only in the condition without NaCl where it was constitutively phosphorylated.
It remained phosphorylated even after a hyperosmotic shock. In contrast, this protein was
transiently phosphorylated upon hypoosmotic shock, especially from 2.0 M NaCl to the
medium without NaCl.

The phosphorylation of Hog1p in S. cerevisiae and its homolog in D. hansenii occurs
transiently and immediately after a mild stress stimulus, and persists up to half an hour
in both models [54,114]. In contrast, in D. hansenii a prolonged Hog1 phosphorylation
state was observed in cells subjected to a severe osmotic stress [54,114,115]. Interestingly,
the phosphorylation of Hog1 remained after cells adapted to severe osmotic stress were
subjected to a hypoosmotic shock [114,115].

Taken together, these results might indicate that the biological activity of Hog1/Hog2
is regulated transcriptionally, while regulation of their activity by phosphorylation is not
evident, as they could not be discriminated by Western Blot. The HOG system in A. sydowii
is responding to osmotic conditions that induce cellular stress, since the presence of salt in
optimal concentrations did not seem to regulate transcript abundance or phosphorylation
status of either of the Hog proteins. On the other hand, the Hog homolog MpkC was
responsive to hypoosmotic shock. The interplay of these MAPKs on the regulation of
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salinity and stress responses should be studied further, as it does not follow the dynamics
of other HOG systems in halotolerant or halophile model microorganisms.

3.5. Na+/K+ Ratio in A. sydowii

Eukaryotes also compensate osmotic imbalance through intracellular regulation of
potassium and sodium ion levels [116], which has been as well observed in halophilic and
halotolerant fungi [28,102,117–119]. Intracellular sodium ions are potentially toxic for eu-
karyotic cells, as they can inhibit numerous metabolic reactions and change cell membrane
potential and transport systems [120,121]. Therefore, as the extracellular amount of sodium
increases, the cells of halotolerant and halophile microorganisms increase the number of
cation transporters to maintain a high K+/Na+ ratio [117,122]. Intracellular potassium is
required in these conditions to sustain the potential across the plasma membrane, compen-
sating for osmotic imbalance and the negative charges of macromolecules. Potassium is
also involved in the regulation of protein synthesis and function [123,124].

In the halotolerant yeast Debaryomyces hansenii, used here as a control, the increase
of extracellular sodium triggered the accumulation of potassium inside the cell. At 0.5 M
NaCl, the K+/Na+ ratio was ten times smaller than in the media without NaCl (Figure
7). Increasing the extracellular concentration to 2.0 M NaCl, a four-fold increase with
respect to the condition with 0.5 M NaCl, reduced the K+/Na+ ratio ten-fold. In contrast, A.
sydowii does not seem to have the same compensatory mechanisms to regulate intracellular
cation concentrations when growing in the medium with 0.5 M NaCl. In this condition
the K+/Na+ ratio decreased almost twenty times compared to the medium without salt. A
higher concentration of NaCl apparently triggered the accumulation of potassium or the
removal of sodium, as the K+/Na+ ratio rose by two- to four-fold in the medium with 2.0 M
NaCl compared to 0.5 M NaCl (Figure 7). This indicates that, as a consequence of salinity
stress, the transport systems that regulate K+ uptake and Na+ extrusion were upregulated or
activated [119], whereas this was not a requirement for the proper functioning of A. sydowii
cells under optimal salinity. In this regard, this moderate halophile fungus has a different
K+/Na+ accumulation pattern as compared to S. cerevisiae or other halotolerant fungi such
as D. hansenii or Debaryomyces nepalensis when exposed to increasing concentrations of
sodium [118].

3.6. Stress Induces Changes in the Redox State of A. sydowii

Fungi and plants are prone to generate Reactive Oxygen Species (ROS) in the presence
of a high salt concentration [125–129]. There is a causal link between salinity and poten-
tial oxidative stress, which is the result of the unbalanced generation vs. scavenging of
ROS [128–130]. Whereas ROS are generated as normal by-products of aerobic metabolism,
their accumulation alters the balance between oxidized and reduced glutathione. High ROS
levels can damage macromolecules such as lipids, proteins, and nucleic acids, which can
lead to cell death [131], although there is also evidence that ROS are signaling molecules
that can regulate growth and cell differentiation [132,133]. However, to our knowledge,
there is no evidence linking ROS levels and halophile fungi adaptation to extreme salinities.
Therefore, we investigated oxidative and antioxidant responses of A. sydowii (lipoperoxida-
tion, protein oxidation, GSH and SOD activity levels), under different salinity conditions.
Hydroperoxides were not detected under our experimental conditions, perhaps because
cells were already adapted at the tested times. As shown in Figure 8, SOD activity (per-
centage) and GSH concentration were higher when the fungus was growing in 2.0 M of
NaCl reaching 11.2% on day 11 and 290.6 µg/mL on day 5, respectively (Figure 8). On
day 11, SOD activity increased significantly (7.4%) when the fungus was growing without
salt as compared with the optimal growing condition (0.5 M NaCl). Meanwhile, GSH was
accumulated significantly at 2.0 M NaCl, with the lowest accumulation in the optimal
growth condition (115–145 µg/mL) (Figure 8). The protein advanced oxidation products
(PAOPs) were accumulated only in the hypersaline condition (2.0 M NaCl) reaching up
to 101.2 µM on day 5, suggesting that this is the most stressful condition for A. sydowii.
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Malondialdehyde (MDA) accumulated at similar levels in all conditions by day 5 and 11.
However, on day 7 there was an inverse correlation between MDA levels and the presence
of salt. MDA is a byproduct of polyunsaturated fatty acid peroxidation mediated by free
radicals or by lipoxygenases [134,135]. The heat map in Figure 8 shows that antioxidant
mechanisms were reduced under optimal salinity as compared to hypoosmotic and hy-
perosmotic conditions. These results indicate that non-optimal salinity growth conditions
(0 and 2.0 M NaCl) favor a higher production of ROS, in contrast to what is observed under
optimal growth conditions (0.5 M NaCl). This is consistent with the detection of high levels
of both antioxidants and oxidative markers in salt-tolerant bacterial isolates from a saline
lake cultured in a media with 20% (3.4 M) NaCl and also with the resistance of H. werneckii
to oxidative stress, which show a correlation between salinity and resistance to oxidative
stress [136].
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Figure 9 shows A. sydowii dynamic response of oxidative markers and antioxidants
when the fungus was challenged by osmotic stress. The fungus was grown for 7 days
in MMG without salt, 0.5 M or 2.0 M of NaCl, then shifted to the other conditions and
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oxidative markers and antioxidants were evaluated after 30 min, 2, and 8 h (some time
points were the same for the evaluation of compatible solutes and Hog phosphorylation).
SOD activity and GSH content were similar when A. sydowii was growing without salt or
with 0.5 M NaCl (time 0) and those levels were maintained when both conditions were
shifted to 2.0 M NaCl. The levels of these antioxidant mechanisms were higher only when
the fungus was growing in 2.0 M and they were maintained after shifting to media without
salt or with 0.5 M NaCl. Hydroperoxides were not detected at the initial time in any
condition, possibly because the fungus was already adapted to the growing media, while
their levels increased mainly when A. sydowii was shifted to 2.0 M NaCl. These results
correlate with PAOP levels, where noticeable changes were observed when the fungus was
shifted from a media without salt or 0.5 M NaCl to media with 2.0 M NaCl. There was
also an increase in PAOP levels in other conditions, but only after 8 h. After osmotic shock,
hydroperoxide was detected at 30 min of the exposure to a new environment only when
the starter culture was growing in 2.0 M NaCl. The hydroperoxide was also detected when
the starter culture growing in 0.5 M salt was transferred to the hypersaline condition (2.0 M
NaCl). Accordingly, protein oxidation was detected after 30 min of exposition to the hypo-
or hypersaline media, while MDA levels had an inverse correlation with SOD activity and
the GSH levels. When cells growing in the absence of salt were exposed to either 0.5 M or
2.0 M NaCl, they responded with a decrease in the enzymatic (SOD) and non-enzymatic
(GSH) antioxidant mechanisms. Strikingly when the cells were exposed to the optimal Na+

condition, there was no accumulation of peroxide or oxidized protein. However, there
was an increase in lipid peroxidation. In the conditions where the fungus was shifted
to a higher salinity (2.0 M), there was more lipid peroxidation; however, this might be
due to lipoxygenase (LOXs) activity, which is regulated by abiotic stresses, including high
salinity [137], rather than to an unregulated accumulation of ROS. Under this condition,
the fungal response was to maintain SOD activity with lower amounts of GSH (around
90 µg/mL).

Previously, whether measurements of antioxidant cellular systems are proper indica-
tors of stress tolerance has been discussed [138]. The effect of oxidative stress can depend
on the duplication rate of the fungus and other environmental conditions. The presence
of antioxidant mechanisms is a positive indicator of cell’s tolerance to salinity [139]. ROS
are not only indicators of stress, but also play regulatory roles depending on the cellular
concentration. In plants, it has been proved that the expression of some LOXs is regulated
by biotic and abiotic stresses including salinity and drought [137] and it is well known
that ROS participate as signaling transduction molecules that control several pathways
involved in the acclimation of these organisms to stressful conditions [140].
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4. Conclusions

We have shown that A. sydowii displays unique physiological responses when grown
under optimal and non-optimal salinity conditions. We found that 0.5 M NaCl, a salt
concentration that is stressful for many other fungal species, results an optimal growing
condition for A. sydowii, a salinity which did not trigger a stress response, and relied on the
synthesis of compatible solutes to maintain the osmotic balance. Accordingly, we observed
that glycerol-3-P dehydrogenase (gpd) gene induction and glycerol accumulation occur only
as a response to saline stress, while other osmolytes are accumulated under optimal growth
NaCl concentrations. The role of the constitutive phosphorylation of Hog kinase homologs
in the accumulation of polyols observed under hypoosmotic conditions remains to be
elucidated. However, it indicates a different regulation of the HOG pathway in moderate
halophiles. Our results contribute to understand the response of the halophilic fungus A.
sydowii under diverse saline environments. The establishment of 0.5 M NaCl as the optimal
growth condition for this fungus is in accordance with its natural environment as a coral reef
pathogen, as in the sea water NaCl concentration is around 0.6 M. This knowledge would
also allow implementation of A. sydowii culture strategies for potential biotechnological
applications, as this fungus is able to degrade hydrocarbons and lignocellulosic materials
and can be a source of halotolerant enzymes.
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