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Abstract: There is increased concern that the quality, generalizability and reproducibility of biomed-
ical research can be influenced by the sex of animals used. We studied the differences between
male and female mice in response to invasive pulmonary mucormycosis including susceptibility to
infection, host immune reaction and responses to antifungal therapy. We used diabetic ketoacidotic
(DKA) or neutropenic mice infected with either Rhizopus delemar or Mucor circinelloides. The only
difference detected was that when DKA mice were infected with M. circinelloides, female mice were
more resistant to infection than male mice (median survival time of 5 vs. 2 days for female and male
mice, respectively). However, a 100% lethality was detected among infected animals of both sexes.
Treatment with either liposomal amphotericin B (L-AMB) or posaconazole (POSA) protected mice
from infection and eliminated the difference seen between infected but untreated female and male
mice. Treatment with L-AMB consistently outperformed POSA in prolonging survival and reducing
tissue fungal burden of DKA and neutropenic mice infected with R. delemar or M. circinelloides, in both
mouse sexes. While little difference was detected in cytokine levels among both sexes, mucormycosis
infection in the DKA mouse model induced more inflammatory cytokines/chemokines involved in
neutrophil (CXCL1) and macrophage (CXCL2) recruitment vs. uninfected mice. As expected, this
inflammatory response was reduced in the neutropenic mouse model. Our studies show that there
are few differences between female and male DKA or neutropenic mice infected with mucormycosis
with no effect on the outcome of treatment or host immune response.
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1. Introduction

There is a growing concern in the scientific community and lay public about the
reproducibility of biomedical research. Study design elements that are critical to the
reproducibility of results include, but are not limited to blinding, randomization and
sample-size calculations [1,2]. Pre-clinical research with animal models may be difficult
to reproduce, due to differences in the strain of animals that is used, laboratories and
laboratory environments and subtle changes in protocols that may not be effectively
communicated in publications [1,2]. In addition, there is increased recognition that the
quality, generalizability and reproducibility of biomedical research can be influenced by
sex of the experimental animal, and that the over-reliance on a single sex of animals in
pre-clinical research may obscure key sex differences that could guide clinical trials [1].
Thus, the National Institutes of Health (NIH) now recognizes that the failure to account for
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sex (a biological variable defined by characteristics encoded in DNA, such as reproductive
organs and other physiological and functional characteristics) as a key biological variable
can undermine the scientific rigor, transparency and generalizability of research findings [3].
Because of this, applications to be considered for funding in fiscal year 2017 and beyond
must report plans to balance male and female cells and animals in preclinical studies unless
unwarranted based on rigorously defined exceptions, and that the absence of previous
data in an area does not by itself constitute a strong justification to use only one sex [3].

Mucormycosis is a life-threatening, fungal infection caused by various species of the
order Mucorales. While mucormycosis primarily occurs in patients immunocompromised
by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy
and/or hematologic malignancies, immunocompetent patients with severe trauma are also
at increased risk of contracting the infection [4–6]. While current treatment options for
mucormycosis include the reversal of underlying predisposing factor, surgical debridement
of infected foci and antifungal therapy, overall mortality rates remain between 40–90% [6–8].
Thus, the development of new therapeutic strategies for mucormycosis is of paramount
importance. Owing to the rarity of the disease, it is difficult to conduct comparative clinical
trials to evaluate treatment options for mucormycosis and there is a heavy reliance on
animal models for evaluation and development of novel therapeutic strategies. Two of the
murine models that have been developed and made available for the scientific community
through the NIH/NIAID pre-clinical resources are models in which DKA is induced in mice
or they are rendered neutropenic [9]. These two models represent two patient categories
at high risk of mucormycosis [4–6]. We and others have used these models extensively to
evaluate the efficacy of current and investigational drugs in treating mucormycosis and to
understand the pathogenesis of infection mainly by using male mice [9–15].

Given the lack of knowledge on the effect of mouse sex on mucormycosis, we used the
DKA and neutropenic mouse models to investigate differences between males and females
in susceptibility to invasive pulmonary mucormycosis, immune responses to infection and
antifungal therapy outcome using Rhizopus delemar and Mucor circinelloides, which are two
of the most common causes of mucormycosis [7,16].

2. Materials and Methods
2.1. Organisms and Culture Conditions

Rhizopus arrhizus var. delemar 99–880 and M. circinelloides f. jenssenii DI15-131 are
clinical isolates obtained from the Fungus Testing Laboratory at The University of Texas
Health Science Center at San Antonio (UTHSCSA). These isolates had been utilized by our
laboratory in numerous studies and resulted in consistent infections in animal models [9,17].
Both isolates were propagated on potato dextrose agar (PDA) plates for 4–6 days at 37 ◦C.
Sporangiospores were collected in sterile phosphate buffered saline (PBS) containing
0.01% Tween 80, followed by two washes in PBS and the number of spores determined
by hemocytometer. The number of sporangiospores per milliliter were adjusted for a
working inoculum of 107 spores/mL of PBS for R. delemar or 108 spores/mL of PBS for M.
circinelloides. Sporangiospore viability was determined by quantification of colony-forming
units on PDA plates supplemented with 0.1% Triton X-100.

2.2. Antifungal Agents

Posaconazole (POSA) (Merck & Co., Inc., Rahway, NJ, USA) was purchased as an
oral suspension (200 mg/5 mL) and kept at room temperature. Liposomal amphotericin
B (L-AMB) (Gilead Science, San Dimas, CA, USA) was initially dissolved in irrigation
water and diluted into 5% dextrose water per the manufacturer’s instructions. Both drugs
were the clinical formulations and were obtained from a local pharmacy. All drugs were
prepared fresh dosed per gram mouse body weight.
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2.3. Mouse Strains and Immunosuppression

Male or female ICR mice weighing ~25 g (Envigo, Indianapolis, IN, USA) were used in
this study. Mice were housed 5 animals per cage with males and females in separate cages.
Mice had access to food and water ad libitum throughout the course of the evaluations.
To induce diabetes and slight ketoacidosis, freshly prepared streptozotocin in ice-cold
citrate buffer (pH 4.2), was filter sterilized and immediately administered to mice by
intraperitoneal injection at 210 mg/kg. Seven days after streptozotocin injection, glycosuria
and ketonuria were determined by the use of keto-Diastix reagent strips (Bayer, Elkhart, IN,
USA). Cortisone acetate (Sigma-Aldrich, ST. Louis, MO, USA) dissolved in 0.05% Tween 80
(Sigma-Aldrich) was also administered to mice (250 mg/kg) subcutaneously on Day −2
and +3, relative to infection [9].

Neutropenia was induced by administering cyclophosphamide and cortisone acetate.
Cyclophosphamide (25 mg/mL; pharmaceutical grade) was dissolved in irrigation water
and administered intraperitoneally at a dose of 200 mg/kg on days −2, +3 and +8, relative
to infection. Cortisone acetate powder was freshly prepared as a suspension of 25 mg/mL
in sterile physiologic phosphate buffered saline and 0.05% Tween 80. The suspension was
administered subcutaneously at a dose of 500 mg/kg on days −2, +3 and +8, relative to
infection. To prevent bacterial super-infection and deaths in the immunosuppressed mice,
mice were given antibacterial prophylaxis consisting of enrofloxacin (enrofloxacin, Bayer,
Leverkusen, Germany) at 50 ppm in the mice’s drinking water three days prior to infecting
with fungal spores, then switched to subcutaneous ceftazidime (5 mg/mouse) on day 0
through day +8 for the DKA mice and through day +13 for the neutropenic mice [9].

2.4. Infection and Treatment

Mice were infected intratracheally with the appropriate spore inocula. First, mice were
sedated by intraperitoneal injection of 0.2 mL of a mixture of ketamine 82.5 mg/kg (Phoenix,
St. Joseph, MO, USA; prepared from a stock solution of 100 mg/mL of PBS) and xylazine
6 mg/Kg (Lloyd Laboratories, Shenandoah, IA, USA; prepared from a stock solution of
100 mg/mL of PBS) [9]. This dose delivered full anesthesia to the mouse for ~15–30 min.
The mice were placed on their backs on heat pads that had been prewarmed to 37 ◦C and
under heating lamps (at arm’s length) to prevent hypothermia. While pulling the tongue
anteriorly and to the side with forceps, 25 µL of 2.5 × 105 spores of R. delemar or 2.5 × 106

spores of M. circinelloides was injected through the vocal cords into the trachea with a Fisher
brand Gel-loading tip (Cat # 02−707-138) [9]. The mice were next placed on their backs
on the heat pads until they recovered from the anesthesia. To determine the delivered
fungal inoculum to the lungs, immediately after infection and prior to recovering from
anesthesia, 5 mice per sex were randomly sacrificed, their lungs harvested, homogenized
and quantitatively cultured on PDA plates containing 0.1% Triton X-100 and allowed to
incubate at 37 ◦C for 48 h.

Following infection, mice were randomly distributed into treatment groups. Unin-
fected mice that intratracheally received 25 µL of PBS alone. Mice were treated with either
15 mg/kg L-AMB (once daily [qd], administered through the tail vein) or 30 mg/kg POSA
(twice daily [bid], given by oral gavage). Treatment was started 24 h post infection and
continued for 4 days for L-AMB and 7 days for POSA. Infected untreated mice (placebo)
received 5% dextrose water. The primary endpoint for efficacy was time to morbidity
of infected mice through day 21 with moribund mice humanely euthanized. Secondary
endpoints included assessment of fungal burden in lungs and tissues (primary and sec-
ondary target organs [9]) using conidial equivalents (CE)/g of tissue by quantitative PCR
(qPCR) [18], and cytokine analysis of lungs homogenates or whole blood sera using a
mouse magnetic Luminex assay from R&D systems (Cat # LXSAMSM-11) and conducted
on mice sacrificed 4 days post infection. The cytokines that were measured were involved
in regulating the innate immune response, and many had been reported to influence the
host defense against infection caused by Mucorales [19–21]. These included: CCL2/MCP-
1/JE, CCL3/MIP-1α, CCL4/MIP-1β, CXCL1/KC, IFN-γ, IL-1α, IL-1β, IL-17A, IL-23 p19,



J. Fungi 2021, 7, 313 4 of 10

TNF-α and VEGF. The tissue fungal burden and cytokine analysis were conducted on
the same mice to better correlate clearance mechanisms with the inflammatory immune
response. All experiments were conducted in duplicate with at least 10 mice per group in
each experiment with the exception of uninfected controls which had 3–5 mice per group
per experiment.

3. Results
3.1. DKA Mice Infected with R. Delemar

In two independent experiments with similar results, we did not detect any significant
difference in survival of male or female DKA mice infected with R. delemar 99–880 (5 and
6 days median survival time and 5% and 0% overall survival for female and male mice,
respectively [p = 1.0]). Consistent with our previous published data in which we used
male DKA mice [9], POSA and L-AMB enhanced median survival time and prolonged
overall survival with L-AMB outperforming POSA. Specifically, POSA resulted in 10 day
median survival time for both female and male mice, while L-AMB resulted in 18 days and
>21 days median survival time for female and male mice, respectively. Further, POSA and
L-AMB treatment caused ~30% and ~50% overall survival (Figure 1A). Importantly, both
POSA and L-AMB showed similar efficacy in both female and male DKA mice (p = 0.571
and p = 0.431 for POSA and L-AMB treatment, respectively) (Figure 1A). Therefore, the
mouse sex had no significant effect on outcome of R. delemar infection or treatment in this
DKA model.
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Figure 1. Female and male DKA mice are equally susceptible to R. delemar infection. (A) Survival
of female (F) or male (M) DKA mice combined from two independent experiments infected with R.
delemar 99-880. Mice (n = 21 to 25 per group, except the uninfected control which had 7 for each sex)
were made diabetic and infected. * p = 0.0003 for POSA-M vs. Placebo-M. ** p = 0.0008 for L-AMB-F
vs. Placebo-F. *** p < 0.05 for L-AMB-M vs. Placebo-M or POSA-M. p values on the figure compare
female and male mice within the same treatment. (B) Combined tissue fungal burden (qPCR) in
lung and brain of mice infected with R. delemar. Mice (n = 20 per group from 2 experiments) were
infected, treated and organs harvested at Day 4 post infection. Lung CFU: ¥ p = 0.03 for Placebo-M vs.
POSA-M, † p = 0.08 for Placebo-F vs. POSA-F, ¥¥ p < 0.006 for L-AMB-M vs. Placebo-M or POSA-M,
‡ p < 0.0001 for L-AMB-F vs. Placebo-F or POSA-F. Brain CFU: £ p = 0.135 for POSA-M vs. Placebo-M,
Ω p = 0.02 for POSA-F vs. Placebo-F, Ψ p = 0.01 for L-AMB-M vs. Placebo-M or POSA-M, ΩΩ p < 0.0001
for L-AMB-F vs. Placebo-F and p = 0.1 for L-AMB-F vs. POSA-F.

We also analyzed tissue fungal burden of target organs in two independent experi-
ments. The combined data for the lung and brain fungal burden are presented in Figure 1B.
The pulmonary fungal burdens of the placebo-treated female and male mice were simi-
lar. While there was a trend towards reduced fungal burden in the brains of the control
female mice relative to the male mice, this difference did not achieve statistical significance.
Consistent with the survival data, both antifungal drugs reduced fungal burden in the
lung when compared to placebo-treated mice, with L-AMB outperforming POSA (>1.0
log-fold and 0.5 log reduction in L-AMB- (p < 0.0001) and POSA-treated mice (p < 0.05
for male mice and p < 0.08 for female mice), respectively) (Figure 1B). While L-AMB also
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reduced the brain fungal burden by >1.0 log-fold (p < 0.0001) in both sexes, POSA caused
minimal reduction of ~0.4 log-fold in female mice (p < 0.03) but not male mice (p = 0.14)
when compared to their respective placebo groups.

For immunological responses, due to the immunosuppression status of the mice,
cytokine analysis of whole serum was not measurable with the overwhelming samples
registering values below the limit of detection (LOD ranged from 0.45–134 pg/mL based on
the cytokine being measured). However, cytokine analysis of lung homogenates showed
measurable levels of TNF-α, IL-23p19, IL-17A, IL-12p70, IL-6, IL-10, IL-1B, IL-1α, IFN-γ,
GM-CSF, CXL1, CXCL-2, CXCL10/CRG-2, CCL2, CCL3, CCL4 and CCL5 (Figure S1). In
general, there were no remarkable differences in cytokine levels between female and male
mice infected/untreated or those treated with L-AMB or POSA. However, there was a
4-fold increase in interferon-γ among POSA-treated female mice vs. POSA-treated male
mice (p = 0.01) and a very small drop of ~25% in the levels of IL-12p70 among female
placebo mice vs. male mice (p = 0.02).

3.2. DKA Mice Infected with M. circinelloides

In two independent experiments with similar results, female DKA mice were more
resistant to M. circinelloides infection when compared to male DKA mice (median survival
time of 6 days vs. 3 days and a 100% mortality on day 12 vs. day 9 for female and male
mice, respectively, p < 0.0001) (Figure 2A). Similar to what we found in DKA mice infected
with R. delemar, both L-AMB and POSA prolonged overall survival of mice infected with
M. circinelloides, with L-AMB outperforming POSA. Specifically, L-AMB-treated mice had
an overall survival of ~80% vs. ~40% of POSA-treated mice (p < 0.02 of L-AMB-treated vs.
POSA-treated and regardless of the mouse sex). Unlike placebo-treated mice, no differences
were seen in the survival of female and male DKA mice when treated with either L-AMB or
POSA (p = 0.695 for L-AMB-treated female vs. male mice, and p = 0.392 for POSA-treated
female vs. male mice) (Figure 2A).
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Figure 2. Female DKA mice are slightly more resistant to M. circinelloides infection than male DKA
mice. (A) Survival of female (F) or male (M) DKA mice combined from two independent experiments
infected with M. circinelloides f. jenssenii DI15-131. Mice (n = 22–24 per group, except the uninfected
control which had 10 for each sex) were made diabetic and infected. * p < 0.03 for POSA-F or POSA-M
vs. Placebo of the corresponding sex. ** p < 0.02 for L-AMB-F or L-AMB-M vs. Placebo or POSA
of the corresponding sex. p values on the figure compare female and male mice within the same
treatment. (B) Combined tissue fungal burden (qPCR) in lung and brain of mice infected with M.
circinelloides. Mice (n = 20 per group from 2 experiments) were infected, treated and organs harvested
at Day 4 post infection. Lung CFU: ¥ p = 0.08 for POSA-M vs. Placebo-M, † p = 0.02 for POSA-F
vs. Placebo-F, ¥¥ p < 0.0003 for L-AMB-M vs. Placebo-M or POSA-M, ‡ p < 0.001 for L-AMB-F vs.
Placebo-F or POSA-F. Brain CFU: £ p = 0.1 for POSA-M vs. Placebo-M, Ω p = 0.02 for POSA-F vs.
Placebo-F, Ψ p < 0.0001 for L-AMB-M vs. Placebo-M or POSA-M, ΩΩ p < 0.005 for L-AMB-F vs.
Placebo-F or POSA-F.

The tissue fungal burden experiments showed that sex had no detectable effect on
the lung and brain fungal burden in mice infected with M. circinelloides (Figure 2B). Addi-
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tionally, in two independent experiments with DKA mice infected with M. circinelloides,
both POSA and L-AMB reduced lung and brain fungal burden vs. placebo treated mice
regardless of the mouse sex. Specifically, POSA-treated female mice had ~0.5-log reduction
in lung and brain fungal burden vs. placebo (p = 0.02), a trend in reduced fungal burden
was observed with POSA-treated male mice vs. placebo but that reduction did not reach
statistical significance (p ≤ 0.09) (Figure 2B). Concordant with the survival studies, L-AMB
outperformed POSA in these studies. L-AMB-treated female or male DKA mice had ~1.0
to 2.0-log reduction in lung and brain fungal burden vs. placebo (p < 0.001) (Figure 2B).
However, unlike the difference seen in survival between placebo female and placebo male
mice, no major differences in tissue fungal burden among the organs tested were noticed
between the two sexes and regardless of the treatment applied (p > 0.05 between female
and male mice) (Figure 2B).

To analyze the effects of sex on the immunological response to infection, we first
attempted to use Luminex technology to measure the levels of cytokine analysis of whole
serum. However, all serum cytokine levels were below the limits of detection. Next,
we measured the cytokine levels in lung homogenates and detected measurable levels
of TNF-α, IL-23p19, IL-17A, IL-12p70, IL-6, IL-10, IL-1B, IL-1α, IFN-γ, GM-CSF, CXL1,
CXCL-2, CXCL10/CRG-2, CCL2, CCL3, CCL4 and CCL5. Infection of female mice with M.
circinelloides but not males resulted in increased levels of CCL2, CCL3 and CCL4 (Figure S2).
These chemokines are mainly associated with recruitment of phagocytes [22,23] and might
explain the relative resistance of female mice to mucormycosis when compared to male
mice. Notably, infection of both male or female mice with M. circinelloides resulted in
reduced levels of CCL5, a chemokine usually associated with recruitment with T-cells,
eosinophils and basophils [24–26]. None of the other tested cytokines showed any enhanced
levels over uninfected mice.

3.3. Neutropenic Mice Infected with M. circinelloides

Because a slight difference was observed in female and male DKA mice infected with
M. circinelloides, we investigated if sex differences in susceptibility to mucormycosis were
also present in the neutropenic mouse model infected with this fungus. We conducted
two independent experiments and present the combined data because the results of each
experiment were similar. Unlike the results obtained with the DKA mouse model, we
did not observe any significant differences in the survival of female or male neutropenic
mice infected with M. circinelloides and treated with placebo, L-AMB or POSA (Figure 3A).
Consistent with our previously reported data using this model [9], both antifungal agents
demonstrated enhanced overall survival vs. placebo regardless of mouse gender (60%–
80% survival for L-AMB-treated or 30%–40% survival for POSA-treated vs. 0% survival
for placebo; p < 0.002 for either drug vs. placebo) (Figure 3A). Furthermore, L-AMB
consistently resulted in 1.5–2.0-log reduction of lung and brain fungal burden in both
female and male mice vs. placebo (p < 0.0001). POSA also reduced fungal burden (~1.0-log)
in lung, but not the brain, of infected mice when compared to placebo (p < 0.01), but in
general this effect was inferior to LAMB (Figure 3B). These results confirm the reported
superiority of L-AMB over POSA in treating mucormycosis. Importantly, and consistent
with the survival studies, no gender differences were noticed in these studies.

Cytokine analysis of lung homogenates, but not sera, showed measurable levels of
TNF-α, IL-23p19, IL-17α, IL-1β, IL-1α, IFN-γ, CXCL1, CCL2, CCL3, CCL4 and VEGF.
Subtly elevated levels of CCL2 were detected in placebo-male compared to placebo-female
mice. Consistently lower levels of inflammatory cytokines including IL-17α, IFN-γ and
IL-1α were detected in POSA-treated female mice vs. POSA-treated male (Figure S3).
However, these differences in cytokines levels are not of large magnitude and they appear
to have little effect, if any, on the course of infection as evident by the similar survival and
tissue fungal burden among female and male neutropenic mice.
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Figure 3. Female and male neutropenic mice are equally susceptible to M. circinelloides infection. (A)
Survival of female (F) or male (M) neutropenic mice combined from two independent experiments
infected with M. circinelloides f. jenssenii DI15-131. Mice (n = 21 per group, except the uninfected
control which had 10 for each sex) were made neutropenic and infected. * p = 0.002 for POSA F or
POSA M vs. Placebo of the corresponding sex. ** p <0.001 for L-AMB-F or L-AMB-M vs. Placebo
of the corresponding sex. p values on the figure compare female and male mice within the same
treatment. (B) Combined tissue fungal burden (qPCR) in lung and brain of mice infected with M.
circinelloides. Mice (n = 26 in each group from 2 experiments) were infected, treated and organs
harvested at Day 4 post infection. Lung CFU: ¥ p = 0.001 for POSA-M vs. Placebo-M, † p = 0.005 for
POSA-F vs. Placebo-F, ¥¥ p < 0.01 for L-AMB-M vs. Placebo-M or POSA-M, ‡ p < 0.0001 for L-AMB-F
vs. Placebo-F or POSA-F. Brain CFU: £ p = 0.75 for POSA-M vs. Placebo-M, Ω p = 0.53 for POSA-F
vs. Placebo-F, Ψ p < 0.0001 for L-AMB-M vs. Placebo-M or POSA-M, ΩΩ p < 0.005 for L-AMB-F vs.
Placebo-F or POSA-F.

4. Discussion

In medical mycology, few sex-related differences have been reported. One example
where differences clearly exist between males and females is in infections caused by
Paracoccidioides species, which are endemic in certain areas of South America [27–29]. The
severity of incidence and severity of disease caused by this fungal species are both greater in
males than in females, both in patients and experimentally infected animals [27–30]. Studies
have demonstrated that this difference between the sexes is related to both the endocrine
and immune responses. Estrogen has a direct effect on the growth of the fungus, as well as
inhibiting the conversion to the yeast morphology. The immune response is also considered
to be sexually dimorphic, as female develop more effective humoral and cell-mediated
pro-inflammatory responses than males [31–34]. For example, in the asymptomatic form
of paracoccidioidomycosis, a T-helper type 1 (Th1) response occurs, while a T-helper type
2 (Th2) response has been associated with severe disease. Interestingly, the endocrine
and immune responses may be linked, as estrogen has been shown to stimulate pro-
inflammatory cytokines (e.g., IL-12, IFN-γ and TNF-α), and down-regulate IL-10 [30]. In
contrast, the synthesis of IL-10 may be enhanced by testosterone.

While the Th1/Th2 paradigm has not been extensively studied in relation to mu-
cormycosis, studies conducted on healthy individuals have shown the presence of specific
anti-Rhizopus oryzae (R. arrhizus) T-cells that are characterized as memory Th1 cells that are
capable of producing interferon-γ and enhance the anti-Mucorales phagocyte activity [35].
This study indicates that similar to the other mold infection, aspergillosis [36–39], a Th1
immune response is likely to be protective against mucormycosis. Therefore, females might
be more resistant to mucormycosis than males. This assumption is modestly supported by
two studies. The first is a review of 929 reported cases of mucormycosis that have been
reported in the English-language literature between 1885 and 2005 which showed that
mucormycosis in males represented 65% of the reported cases vs. 35% in females [7]. Addi-
tionally, a recent study that evaluated the newly approved antifungal agent isavuconazole
in treating mucormycosis, showed that 81% of the enrollee were males, indicating that the
disease is potentially more prevalent in males than females [40].



J. Fungi 2021, 7, 313 8 of 10

We used three models of intratracheal mucomrycosis infection to study the effect
of mouse sex on infection and antifungal treatment outcome, and on host immune re-
sponse. These included DKA mice infected with either R. delemar or M. circinelloides, and
neutropenic mice infected with M. circinelloides. These two isolates are among the most
commonly isolated Mucorales from patients [41]. The only evidence for an effect of mouse
gender on the infection outcome was noticed with DKA female mice being more resistant
than male mice when infected with M. circinelloides (Figure 2A). However, this difference
in susceptibility to infection was very subtle and did not appear to have an effect on the
outcome of antifungal treatment. Additionally, this subtle resistance of female DKA mice
to infection was not detected when R. delemar was used to infect the DKA mice. Con-
sistent with little effect of mouse sex on the infection/treatment outcome, no differences
between female and male mice were noted in neutropenic mice infected with M. circinel-
loides. Furthermore, few differences were detected in cytokine levels among both sexes in
the DKA or neutropenic mice. However, it appeared that in the DKA mouse model, the
infection induced more inflammatory cytokines and chemokines involved in neutrophil
(CXCL1) [23] and macrophage (CXCL2) [42] recruitment vs. uninfected mice and regardless
of the mouse gender. As expected, this enhanced inflammatory response was reduced in
the neutropenic mouse model. Thus, there is little effect, if any, of mouse gender on the
outcome of murine mucormycosis using these two models. Based on these results, it is
possible to indifferently use male, female mice or a combination of both for animal models
of invasive mucormycosis when using the outbred ICR mice. Outbred mice are preferred
to inbred mice in treatment experiments to account for inter-individual variability.

Our studies with the DKA and neutropenic mouse models also confirmed previously
reported data of the superiority of L-AMB when compared to POSA treatment [9,43]. These
results also reflect the recent Global guidelines of using L-AMB as a first-line therapy and
reserving POSA treatment for salvage therapy [6]. It is also reassuring that the female and
male mice responded to L-AMB or POSA treatment favorably in both models and with
two different agents of mucormycosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7040313/s1, Figure S1: Cytokine analysis of lung homogenate from female or male DKA
mice infected with R. delemar. Figure S2: Cytokine analysis of lung homogenate from female or male
DKA mice infected with M. circinelloides f. jenssenii, Figure S3: Cytokine analysis of lung homogenate
from female or male neutropenic mice infected with M. circinelloides f. jenssenii.
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