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Abstract: Research on Podospora anserina unraveled a network of molecular pathways affecting
biological aging. In particular, a number of pathways active in the control of mitochondria were
identified on different levels. A long-known key process active during aging of P. anserina is the age-
related reorganization of the mitochondrial DNA (mtDNA). Mechanisms involved in the stabilization
of the mtDNA lead to lifespan extension. Another critical issue is to balance mitochondrial levels of
reactive oxygen species (ROS). This is important because ROS are essential signaling molecules, but
at increased levels cause molecular damage. At a higher level of the network, mechanisms are active
in the repair of damaged compounds. However, if damage passes critical limits, the corresponding
pathways are overwhelmed and impaired molecules as well as those present in excess are degraded
by specific enzymes or via different forms of autophagy. Subsequently, degraded units need to be
replaced by novel functional ones. The corresponding processes are dependent on the availability
of intact genetic information. Although a number of different pathways involved in the control of
cellular homeostasis were uncovered in the past, certainly many more exist. In addition, the signaling
pathways involved in the control and coordination of the underlying pathways are only initially
understood. In some cases, like the induction of autophagy, ROS are active. Additionally, sensing
and signaling the energetic status of the organism plays a key role. The precise mechanisms involved
are elusive and remain to be elucidated.

Keywords: aging; autophagy; homeostasis; mitochondria; peroxisomes; Podospora anserina; quality
control; signaling

1. Introduction

Podospora anserina is a filamentous fungus that, in contrast to most other fungi, is
characterized by a defined limited lifespan. Already in the 1950s it was reported that this
ascomycete develops a well-defined senescence syndrome [1]. Depending on the strain,
this syndrome occurs after a defined short period of growth (e.g., after 2–3 weeks): the
pigmentation of the peripheral part of the thallus increases while the growth rate decreases
until it comes to a complete stop and the thallus dies at the growth front. Subsequently,
this phenotype was carefully investigated and it turned out to be under the control of
environmental and genetic factors. Both nuclear as well as extranuclear genetic traits are
active [2–4]. Later on, it was demonstrated that a genetic element located in mitochondria
accumulates as a plasmid-like covalently closed circular DNA (plDNA). It behaves like a
mobile element and gives rise to gross reorganization of the standard mitochondrial DNA
(mtDNA). As a consequence, large parts of the mtDNA with a number of essential genes
are deleted leading to deficiencies in mitochondrial biogenesis and function and death of
the thallus at the hyphal tips [5–9].

Since this time, senescence in P. anserina was carefully analyzed and the fungus became
a well-established model system in experimental aging research [10–12]. In particular, the
analyses of a number of mutants, which live longer than the wild-type, provided important
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clues and revealed insights into the mechanisms of lifespan control. This work unraveled
a paramount role of mitochondria and of the cellular energy metabolism. One group
of mutants (ex and mex) contained deletions of parts of the PaCoxI gene and, thus, an
essential component of complex IV of the respiratory chain is ablated. In these mutants
the expression of a nuclear gene coding for an alternative oxidase (PaAOX) is induced and
respiratory deficiency is rescued [13,14]. As a consequence, the corresponding mutants
are long-lived. The molecular basis of this example of mitochondrial-nuclear interactions,
which requires signaling from impaired mitochondria to the nucleus and the activation
of PaAox-specific transcription factors [15], became clear via the analysis of other mutants
and uncovered an impact of ROS (for more details see below).

Subsequently, a number of different molecular pathways, involved in the control of
cellular homeostasis, were identified which are effective in keeping the individual thallus
functional over a longer period of time. However, when impairments accumulate beyond
rescue limits, programmed cell death (PCD) [16] is induced and the thallus dies at the
hyphal tips. PCD was found to be controlled by various factors like “apoptosis inducing
factors” (AIFs) [17] and the activation of the two calcium-dependent metacaspases PaMCA1
and PaMCA2 [18–20]. During this process, the opening of a mitochondria transition pore
(mPTP) plays a key role [21–23].

In this review, we focus on the network of interacting pathways and include recent
studies that provide new perspectives to unravel the role of cellular homeostasis in aging
and lifespan control of P. anserina in more detail. We put special emphasis on the bioen-
ergetic role of mitochondria and include some ongoing work on the potential impact of
mitochondrial ultrastructure regulation and on peroxisomes which, like mitochondria, are
involved in the control of cellular energy metabolism. From these studies, it is clear that
pathways controlling the quality and quantity of these organelles are crucial for cellular
homeostasis. The involved pathways act at different cellular stages and need to be well
coordinated by signal transduction pathways.

2. Generation, Balancing of Cellular Levels and Role of Reactive Oxygen Species

Previous research on mutants with a lifespan differing from that of the wild-type
was instrumental in the elaboration of mechanisms involved in the control of P. anserina
aging and lifespan. Among the various long-lived mutants investigated, the grisea mutant,
in which the nuclear encoded gene for the GRISEA transcription factor is not expressed
due to a mutation in the single intron of this gene, provided a number of relevant data
to understand the relevance of mitochondrial respiration. The grisea mutant is a copper-
uptake mutant leading to deficiency in complex IV of the respiratory chain the function
of which depends on the availability of copper as a cofactor. In this mutant, like in the
mentioned ex mutants, the expression of PaAox is induced [24–26].

The grisea mutant is long-lived and respires via an alternative respiration chain, by-
passing complex III and IV of the respiratory chain (Figure 1). As a consequence, the
formation of the superoxide anion (hereafter superoxide) is lower in the corresponding
mutant. A disproportion reaction catalyzed by a superoxide dismutase (SOD) leads to
hydrogen peroxide, a ROS that is able to pass the phospholipid bilayer of membranes and
acts in the different cellular compartments. Hydrogen peroxide can be transformed to water
via the activity of catalases, peroxidases or, in the presence of copper (I) or iron (II) (Cu+,
Fe2+), can give rise to the formation of the hydroxyl radical for which no decomposition
enzyme exists (Figure 2). This free radical is highly toxic and, together with the other ROS,
causes damage to all kinds of cellular components like proteins, nucleic acids, and lipids.
However, ROS (i.e., hydrogen peroxide) are also essential for cellular activities because, at
low concentrations, they act as signaling molecules. Due to this dual function, it is essential
to carefully balance cellular ROS levels which is achieved by controlling the generation of
ROS and by scavenging them. Different components, enzymes, as well as nonenzymatic
antioxidants (e.g., vitamins C and E, carotinoids, flavonoids, or polyamines), are involved
in these processes [27–35].
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generated at the FoF1-ATP-synthase (V). 
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In one P. anserina study, it was demonstrated that respiration via the copper-inde-
pendent alternative pathway results in a strongly reduced generation of superoxide, ex-
plaining the increased lifespan as a result of a reduction in ROS-induced molecular dam-
aging [37]. This explanation can also be applied to other mutants which respire via the 
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piratory chain, which are proton pumping membrane complexes, the electromotive force 
generated at the inner mitochondrial membrane is lower in mutants respiring via PaAOX 
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generated at the FoF1-ATP-synthase (complex V). The derived differences in the energetic 
status are responsible for the observed reduction in growth rate and impairments in the 

Figure 1. Scheme indication electron and proton flow in and through the inner mitochondrial
membrane. Both, standard cytochrome c oxidase (IV) and alternative oxidase (AOX) dependent
respiration are indicated. Standard respiration releases superoxide to both, the intermembrane space
and the mitochondrial matrix. During alternative oxidation, superoxide is only released to the matrix
at complex I. Since less protons are pumped to the intermembrane space via alternative respiration,
the generated electron motive force is lower than at that of standard respiration and less ATP is
generated at the FoF1-ATP-synthase (V).

As mentioned above, in heterotrophic eukaryotes a main site of ROS generation are
mitochondria. The primary ROS is the superoxide free radical and mainly produced
at complex I and III of the standard respiratory chain. At those complexes, superoxide
molecules are released to the mitochondrial matrix, and at complex III to the intermem-
brane space as well (Figure 2). Due to its negative charge, superoxide is not able to cross
biomembranes directly through the phospholipid bilayer. However, it can be released
from the intermembrane space to the cytoplasm via anion channels (porins) in the outer
mitochondrial membrane [36].

In one P. anserina study, it was demonstrated that respiration via the copper-independent
alternative pathway results in a strongly reduced generation of superoxide, explaining
the increased lifespan as a result of a reduction in ROS-induced molecular damaging [37].
This explanation can also be applied to other mutants which respire via the alternative
oxidase [14,38]. As a consequence of by-passing complex III and IV of the respiratory chain,
which are proton pumping membrane complexes, the electromotive force generated at the
inner mitochondrial membrane is lower in mutants respiring via PaAOX than in strains
using the standard PaCOX-dependent pathway and therefore less ATP is generated at
the FoF1-ATP-synthase (complex V). The derived differences in the energetic status are
responsible for the observed reduction in growth rate and impairments in the formation of
female gametangia [14,25,38]. Although not analyzed in detail, sensing (i.e., the AMP/ATP
ratio) and signaling of the energy status by “AMP-activated kinase” (AMPK), a central
sensor and regulator of the cellular nutrient status, is involved in the underlying molecular
pathways (Figure 2).
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and are effective in the induction of responses. The energetic status (AMP/ATP ratio) of the cell can 
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ation of hydrogen peroxide by the increased abundance of PaSOD3 in the overexpressor 
[30,39]. 

In another series of studies PaMTH1, a protein encoded by a nuclear gene, was iden-
tified to accumulate during aging and turned out to be an S-adenosylmethionine-depend-
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Figure 2. Age-related mitochondrial signaling in P. anserina. The scheme shows a part of a mitochondrion with two cristae
formed by the invagination of the inner mitochondrial membrane (IMM). On the right, the standard respiratory chain is
part of the IMM, on the left, the alternative respiratory chain with the alternative oxidase (AOX) is displayed. To note: at
the standard respiratory chain superoxide is released into the inner space of cristae and into the matrix, at the alternative
respiratory chain only into the matrix. In the matrix, superoxide (O−·) can be transformed into hydrogen peroxide (H2O2)
that, in the presence of Cu (I) or Fe (II) (for simplicity only Cu (II) is shown) can form the highly toxic hydroxyl radical
(·OH) or can pass the IMM and outer membrane (OMM) phospholipid layer reaching the cytosol. Superoxide in the
intermembrane space can be released to the cytoplasm via porins. Damaged (red asterisks) or excessive proteins can be
degraded by PaLON, PaCLPXP, PaIAP, or other proteases (not shown) to peptides that can be transported to the cytosol and
are effective in the induction of responses. The energetic status (AMP/ATP ratio) of the cell can be sensed by AMPK and
induces a variety of molecular responses.

The effect of ROS scavenging on P. anserina was investigated in several studies. One
series of studies analyzed the effect of the modulation of PaSOD3 levels, a manganese-
dependent mitochondrial SOD (MnSOD). The abundance of this isoform was found to
decline during aging [22]. Surprisingly, the overexpression of the corresponding gene did
not result in lifespan extension but in a decreased lifespan and resistance against hydrogen
peroxide [35]. In the mutant, it was found that several enzymes involved in cellular quality
control were affected. These effects turned out to result from the increased generation of
hydrogen peroxide by the increased abundance of PaSOD3 in the overexpressor [30,39].

In another series of studies PaMTH1, a protein encoded by a nuclear gene, was identi-
fied to accumulate during aging and turned out to be an S-adenosylmethionine-dependent
methyltransferase [22,29,40]. During aging the protein is imported into mitochondria.
PaMTH1 is able to methylate flavonoids with vicinal hydroxyl groups, which are prone to
produce ROS in the presence of iron or copper [31,41]. The methylation of these groups
via PaMTH1 thus prevents ROS generation by these compounds. In accordance with this
function, overexpression of PaMth1 leads to a protection of proteins against oxidation and
an increase in lifespan [32,42].

Overall, the data demonstrate a damaging effect of ROS contributing to degeneration
of P. anserina cultures. Processes leading to well-balanced levels of ROS are effective in the
control of cellular homeostasis and act as pro-survival mechanisms.
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3. Repair and Degradation of Cellular Components
3.1. Stabilization of mtDNA and Mitochondrial Base Excision Repair

Apart from pathways active in balancing the generation and scavenging of ROS
preventing damage of cellular components, mechanisms evolved which repair damaged
molecules or, if this is not possible, degrade them and resynthesize new and functional
ones. The control of the integrity of DNA is well investigated in many biological systems
in great detail. As mentioned, the mtDNA of P. anserina becomes greatly rearranged during
aging. In this process, the first intron of the PaCoxI gene plays a key role which, after
liberation and formation of plDNA, acts as a mutator via the induction of age-related
mtDNA rearrangements [6–8,43]. In a first step, plDNA integrates either into a position
directly downstream of the pl-intron in PaCoxI (“homing-like” transposition) or into other
sites in the mtDNA (“ectopic” transposition). Thus, two intron copies are present in a
single mtDNA molecule. Homologous recombination between these sequences may lead
to the amplification of plDNA or of larger mtDNA circles. Those circles containing no
origin of replication are subsequently lost. Significantly, although not formally proven, a
protein with reverse transcriptase activity encoded by the pl-intron may be involved in
transposition processes [44]. The described scenario is supported by various experimental
data. For instance, in strains in which the pl-intron is deleted (e.g., ex and mex mutants)
the mtDNA is stabilized [13,14]. Or, in the long-lived mutant AL2-1, the processes leading
to the amplification of plDNA are delayed. This delay is linked to the presence of the linear
plasmid pAL2-1, which encodes an RNA and DNA polymerase [45–47].

Apart from the processes counteracting gross mtDNA reorganizations, repair of subtle
mutations is possible and likely to affect aging in P. anserina. In one study, a decrease
of base excision repair (BER) activity was reported during aging of P. anserina. For one
enzyme of BER, DNA glycosylase, activity was found to be higher in long-lived mutants
with a lower ROS burden [48].

3.2. Degradation of Damaged Molecules and of Excess Components

During the lifespan of any organism, all kinds of cellular components change in
quality and quantity. For instance, due to molecular stress (e.g., oxidative stress, heat stress)
proteins may be oxidized or may aggregate and become impaired in function. Or, due
to exogenous (e.g., nutrient deprivation) or endogenous conditions (e.g., developmental
stages) their abundance needs to be adopted. This situation requires a dynamic system in
which damaged or excess components can be degraded and, if necessary, be resynthesized
again. In P. anserina, different pathways were shown to be active and have a significant
impact on lifespan.

3.2.1. Proteases

One series of studies were dealing with naturally occurring processes active in control-
ling cellular protein quality. These proteases degrade their substrate proteins to peptides
which, via membrane protein complexes (e.g., ABC transporters, porins), are released
from mitochondria to the cytoplasm and give rise to signaling (Figure 2) [49,50]. Here
a great impact of mitochondrial proteases on lifespan control and senescence of P. anse-
rina was uncovered. For instance, two complementary studies uncovered the role of the
PaLON, the mitochondrial matrix LON protease of P. anserina. In a strain overexpressing
PaLon, the abundance of carbonylated proteins (i.e., mitochondrial aconitase) was found
to be decreased. No effects on vital functions like fertility or growth rate were observed
demonstrating an increase of the healthy period of time, the healthspan, in the lifespan
of the fungus [51]. In contrast, deletion of PaLon retarded growth and led to lifespan
reduction [52]. Another mitochondrial protease is PaIAP, which is an ATP-dependent
protease in the inner mitochondrial membrane. From studies in yeast and Neurospora crassa
it is known that this protease is involved in the degradation of inner membrane proteins
(e.g., cytochrome oxidase subunit 2, prohibitins 1 and 2 [53,54]). Deletion of PaIap resulted
in an unexpected pronounced lifespan extension. More detailed analysis uncovered that



J. Fungi 2021, 7, 263 6 of 16

this lifespan extension occurs when cultures are grown at standard laboratory temperature
of 27 ◦C. At temperatures of 37 ◦C spore germination and fruiting body development were
affected and lifespan was decreased [55]. It appears that PaIAP is part of a flexible system
allowing survival under changing temperature conditions as they appear in nature.

Yet another mitochondrial protease is PaCLPP which forms a multiprotein complex
with PaCLPX (Figure 2). The PaCLPXP complex consists of two hexameric rings of PaCLPP
forming the proteolytic chamber in which proteins are cleaved to peptides. This part
of the complex interacts with one or two hexameric rings of PaCLPX, acting as chaper-
ones and introducing the proteins to be degraded into the proteolytic chamber. Thus,
the complex, which is located in the mitochondrial matrix, structurally resembles the
cytoplasmic proteasome.

The function of the eukaryotic CLPXP complex is currently only initially elaborated.
In the nematode Caenorhabditis elegans the protease was demonstrated to be involved in the
control of the mitochondrial unfolded protein response [56]. In P. anserina, evidence derived
from a stringent substrate-trapping assay provided compelling evidence for a key role of
PaCLPXP in controlling the mitochondrial energy metabolism [57]. Among the identified
19 high confident substrates, there were proteins of the pyruvate dehydrogenase complex,
the Krebs cycle and the respiratory chain [57]. Some overlapping proteins were later also
found in mammals and Arabidopsis thaliana. In particular, components of the N-module of
complex I of the respiratory chain appear to be conserved substrates of CLPXP [58–60].

Surprisingly, in P. anserina, the deletion of the genes coding for PaClpP as well as
PaClpX let to a pronounced extension of the lifespan. In addition, the double mutant is
long-lived. In this mutant mitochondrial respiration is affected: oxygen consumption exper-
iments revealed a general decline of respiration. In comparison to the wild-type, the double
deletion strain displays a significant increase in alternative respiration. Unexpectedly, ATP
content was not changed in the double mutant [61]. The mutant phenotype of the PaClpP
deletion strain was rescued to wild-type characteristics by the expression of the human
ClpP gene identifying a conservation of the proteins from the two evolutionarily-distant
species [61,62].

The 26S proteasome, although not located in mitochondria, was previously demon-
strated to be active in the degradation of mitochondrial proteins via “mitochondria-
associated degradation” (MAD) [63]. Moreover, research on mammalian cell culture
or centenarians revealed a link between high proteasome activity and long lifespan [64,65].
An attempt to identify a potential role of the ubiquitin proteasome system (UPS) in aging of
P. anserina, an age-related analysis of transcripts and proteins of specific components of the
P. anserina proteasome were studied. No age-related differences in abundance were found.
Moreover, a study using Gfp-Cl1 transgene coding for the CL1 degron sequence fused to
GFP, led to the interesting observation that after heat stress this potential substrate of the
proteasome localized to the vacuole. In western blot experiments, the fusion protein was
partly degraded leaving its GFP portion stably retained. Overall, this specific approach
did not reveal evidence for the expected function of the UPS in quality control of the CL1
degron as a proteasomal substrate in P. anserina but instead suggested an efficient role of
basal autophagy, the vacuolar degradation of proteins [66]. A role of autophagy in the
control of aging was further suggested by a genome-wide transcriptome analysis of the
P. anserina wild-type. In this study, it was found that transcripts coding for the proteasomal
subunits decreased in abundance at later stages in the lifespan while transcripts of the
autophagic machinery increased [67] indicating that autophagy takes over quality control
functions from the UPS in particular in older age. A later analysis basically verified this
observation on the protein level but in addition identified that autophagy first increases in
later age but finally decreases in very old age, in stages that were not investigated in the
transcriptome analysis due to technical limitations [61,68].
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3.2.2. Vacuolar Degradation

First experimental evidence for an increase of macroautophagy, a form of autophagy in
which cellular components are delivered via autophagosomes to the vacuole, was observed
in a microscopic study investigating the formation of autophagosomes during aging of
the P. anserina wild-type in which a GFP-ATG8 fusion protein was expressed [69]. Under
standard growth conditions on a minimal growth medium no or only few GFP-labeled
autophagosomes were visible. In senescent cultures, a larger number of autophagosomes
were observed. Moreover, under nitrogen-depleted conditions, under which autophagy is
induced, autophagosomes were found to occur already in young cultures. These data veri-
fied a role of macroautophagy in the control of aging and the energetic status of P. anserina.
Significantly, the ablation of PaATG1, a serine/threonine kinase that is essential for the
formation of autophagosomes, led to a reduction of the wild-type specific lifespan and
identified autophagy as a longevity-assurance pathway. The demonstration of the degra-
dation of cytoplasmic superoxide dismutase 1 (SOD1) and the link to nitrogen starvation
suggests that it is non-selective (bulk) autophagy, the degradation of cellular components
in a portion of the cytoplasm delivered by autophagosomes to the vacuole, which is active
to compensate age-related deficiencies in energy transduction and other impairments (e.g.,
quality control via UPS) as they appear in older age of P. anserina.

Another example for a compensatory, pro-survival function of autophagy was demon-
strated in a PaSod3 deletion mutant. Due to the ablation of the mitochondrial MnSOD
(Figure 2), which is involved in mitochondrial superoxide scavenging, it was expected that
the mutant is functionally impaired and short-lived. In fact, lifespan did not differ from
that of the wild-type. This unexpected phenotype was found to dependent on functional
autophagy. In the PaSod3 deletion strain, in contrast to the wild-type, autophagy is induced
already in young cultures. In addition, the induction of mitophagy, the selective vacuolar
degradation of mitochondria, was strongly induced while non-selective autophagy in the
mutant did not differ from that in the wild-type [68]. Further on, in the same study, the
effect of mild paraquat-induced external oxidative stress on the wild-type and the PaSod3
deletion strain revealed that addition to the growth medium of 20 µM paraquat, that
gives rise to extra mitochondrial superoxide generation, had different effects on lifespan in
the two strains. The wild-type showed a strong increase in lifespan while in the mutant
lifespan was decreased. These opposite effects are dependent on a functional autophagic
machinery. Overall, these data can be explained by a hormetic (beneficial) effect of mild
oxidative stress that is induced in the wild-type. In contrast, in the mutant oxidative stress
is already higher than in the wild-type without the addition of paraquat due to the ablation
of PaSOD3. In this situation, additional superoxide generation leads to excessive cellular
oxidative stress which leads to autophagy-dependent cell death (ADCD) [16,68]. This kind
of cell death is also observed in a short-lived mutant in which PaCypD coding for a peptidyl
prolyl-cis, trans-isomerase (CYPD) a regulator of the mitochondrial permeability transition
pore (mPTP) is overexpressed. Deletion of PaCypD leads to a decrease in autophagy in
older age of the P. anserina wild-type. Moreover, the study also demonstrated that PaCYPD
is required for mitohormesis [23].

Taken together, autophagy appears to be a “double-edged sword”. Low stress re-
sults in hormetic, pro-survival effects of autophagy while excessive stress leads to death
of P. anserina cultures via the induction of ADCD. These opposite outcomes can be trig-
gered by exogenous factors. The polyphenol curcumin from Curcuma longa leads to a
hormetic induction of autophagy and lifespan extension while the polyphenol gossypol
from Gossypium spec leads to ADCD and a decreased lifespan [70,71].

Another example of the capacity to compensate impairments of other components of
pathways in the control of cellular homeostasis was observed in the deletion mutants coding
for the mitochondrial PaCLPXP complex (Figure 2). Counterintuitively, these mutants
are long-lived with a constitutive induction of non-selective autophagy. Significantly,
lifespan extension depends on a functional molecular autophagy machinery. Moreover, the
relevance of autophagy was underlined by the observation that, in contrast to the wild-type,
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autophagy was already induced in early life stages (four-day-old cultures) [61]. Overall,
these data indicate intimate interactions of PaCLPXP and autophagy. A common function
of non-selective autophagy and of CLPXP is the control of cellular metabolism. This link
was further demonstrated in a recent study aimed to further characterize PaCLPXP. In this
study the surprising observation was that the deletion of PaSnf1 coding for the catalytic
subunit of AMPK led to lifespan extension (Figure 2) [72]. The study revealed that PaSNF1
is required for autophagy, mitochondrial dynamics and respiration. Most surprisingly, the
PaSnf1/PaClpP double deletion resulted in a synergistic effect with an even longer lifespan
than that of the single mutants. The lifespan increasing effect was found to be stronger
in strains of the mating type “minus” containing the rmp1-1 allele of the rmp1 gene that
is closely linked to the mating-type locus. These data imply the interaction of completely
different molecular pathways active in protein quality control, the sensing and control of
cellular energy with the poorly characterized RMP1 protein, a protein that is involved in
respiratory complex assembly and is likely active in mitochondrial translation [73,74]. The
coordination of the corresponding pathways is unclear.

The impact of macroautophagy in P. anserina was further demonstrated in a mutant
in which PaATG24 was ablated leading to a short-lived phenotype. In addition, growth
rate and fertility are affected [75]. PaATG24 is a putative sorting nexin. Members of
this evolutionary conserved protein family are involved in vesicle transport, membrane
trafficking and protein sorting [76–78]. Deletion of PaAtg24 leads to a changed mor-
phology and size of vacuoles and a reduction of non-selective and selective autophagy.
Mitophagy is reduced in the mutant and increases during aging. In contrast, general
autophagy and pexophagy, the selective degradation of peroxisomes, is almost completely
inhibited in the mutant and does not change during aging. Overall, the data uncovered
membrane-regulated pathways involved in autophagy and lifespan regulation. The impact
of pexophagy on aging and lifespan control is yet not analyzed but, since this organelle is
also involved in energy metabolism and interacts with mitochondria, it is an interesting
question whether or not and in how far these organelles are subject to age-related regulation
and for biological aging.

4. Biogenesis and Dynamics of Mitochondria

Mitochondria are semiautonomous organelles in which most of the approximately
1200–1600 proteins are encoded by nuclear DNA and only a few by mtDNA. Mitochondria
are dynamic and change their morphology and ultrastructure depending on physiological
constraints. Mitochondrial mass (size and number of mitochondria) changes during
growth and development (Figure 3). This process is not the result of de novo synthesis
of the organelle but by the biosynthesis of new components and their integration into
existing mitochondria.

During “growth” of mitochondrial units, they form filamentous morphotypes that sub-
sequently can divide into smaller units. These can fuse again to form filamentous organelles.
Fission and fusion are genetically controlled by a number of proteins. Additionally, excess
or functionally impaired (damaged) mitochondria can be removed by autophagy.

In addition to the processes of mitochondrial quality control discussed above the
control of mitochondrial dynamics was demonstrated in P. anserina to have an effect on
aging. Deletion of a gene coding for the dynamin-like protein PaDNM1, an essential
protein involved in fission of mitochondria, led to an 11-fold increase in mean lifespan.
Mitochondria of this strain had an strongly elongated morphology and even formed
networks of fused filaments [79]. Only in very old cultures, mitochondria were found to
be fragmented. Furthermore, in this strain no signs of typical reorganization of mtDNA
found in the wild-type occurred and the release of hydrogen peroxide was delayed to
very old age. Lifespan extension was linked to an increase in resistance to the induction
of programmed cell death. The relevance of PaDnm1 for normal aging of the wild-type is
indicated by the increased transcription of the gene in old cultures [79]. Computational
modeling integrating mitochondrial fission and fusion, ROS stress, and mitophagy revealed
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a positive impact of mitochondrial dynamics in situations when mitochondria are only
marginally damaged. In contrast, deceleration of fission and fusion is an advantage to
reach a long lifespan when damage of mitochondria passed critical limits [80,81].
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5. Perspectives

As discussed above, a hierarchical network of pathways involved in the control
of functional mitochondria and energy metabolism and impacts aging and lifespan of
P. anserina. It is clear that other, yet not integrated, pathways and cellular compartments are
involved in triggering degenerative processes in this species, which, at least in part, may be
evolutionary conserved and, therefore, are also relevant in other species including humans.

5.1. Other Pathways Involved in Mitochondrial Homeostasis

Yet unexplored, but clearly relevant, are processes leading to mitochondrial biogenesis
that are linked to a balanced expression of mitochondrial and nuclear encoded genes and
the transport of proteins synthesized in the cytosol [49,82,83]. These proteins need to enter
mitochondria via a sophisticated protein import machinery and delivered to the different
mitochondrial sub-compartments where they have to be properly assembled to functional
complexes (e.g., respiratory chain). The various steps of the underlying processes may be
prone to age-related impairments and thus are certainly relevant for aging.

Other poorly investigated pathways are pathways that are involved in shaping mito-
chondrial ultrastructure. Age-related changes were demonstrated by electron cryotomog-
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raphy studies to occur during aging. It was found that the inner mitochondrial membrane
changes from a tubular organization of cristae to the formation of vesicular units [84].
Moreover, it was shown that the inner membrane of vesicles at some sites come into contact
with the outer membrane. At these sites, breakage of the outer membrane is thought to
release mitochondrial vesicles. According to a model, the vesicles finally burst and release
mitochondrial content, including mitochondrial copper that is stored in this organelle, into
the cytoplasm. Subsequently, released excess copper may lead to the induction of the two
metacaspases of P. anserina and finally to the induction of PCD [20]. The details of these
processes are yet not formally demonstrated. However, in P. anserina the increase of cyto-
plasmic copper that may originate from mitochondria was demonstrated [85]. Interestingly,
also during aging of human diploid fibroblasts an accumulation of cellular copper was
reported [86], suggesting a conservation of molecular copper-related mechanisms.

Yet another factor involved in the typical cristae formation of juvenile mitochondria
was demonstrated to be dimers of FoF1-ATP-synthase which are involved in curvature
formation at the tip of the cristae (see above) [84,87]. It remains to be evaluated what finally
leads to premature aging of P. anserina strains which are impaired in FoF1-ATP-synthase.

Another site of membrane curvature is the basic part of cristae, turned cristae junctions
are controlled by the “mitochondrial contact site and cristae organization system” (MICOS).
During aging and the reorganization of the inner mitochondrial membrane, these large
protein complexes necessarily need to change. The impact of these protein complexes on
aging has to be evaluated.

Additionally, lipid composition of mitochondrial membranes and the impact on
mitochondrial function and aging is unexplored but an emerging field of interest. In
particular, the lipid content of inner mitochondrial membrane, which evolved from the
endocytosis of α-proteobacteria, differs from that of other typical eukaryotic membranes.
In particular, the enhanced level of cardiolipin seems to be important. This lipid, a non-
bilayer forming phospholipid of conical shape, has been implicated in the formation and
stabilization of respiratory supercomplexes, which are more efficient in respiration than a
chain of monomer respiratory complexes [88,89]. In this context the pathways involved in
the formation of cardiolipin, which is located in the inner mitochondrial membrane, are of
considerable interest to be unraveled.

5.2. Potential Role of Peroxisomes

In a previous study, investigating the role of PaATG24, it was found that deletion of
PaAtg24 reduces bulk autophagy, mitophagy and pexophagy [75]. Moreover, the number
of peroxisomes, which slightly increase during wild-type aging, increases strongly in the
short-lived PaAtg24 deletion mutant suggesting a role of peroxisomes in the aging process
in P. anserina (Figure 4).

A key function of peroxisomes is to degrade fatty acids via ß-oxidation leading to
the formation of acetyl-CoA that finally is further metabolized (i.e., in the Krebs cycle
in mitochondria). In most organisms, from yeast to humans, during the first step of this
process acyl-CoA oxidase performed the oxidation of the fatty acid, which leads to trans-
∆2-enoyl-CoA and the formation of hydrogen peroxide as a byproduct. This molecule
contributes to the cellular ROS load, to ROS scavenging, signaling, and via unbalanced
conditions to molecular damaging.

There is considerable evidence that a disturbance in peroxisomal redox homeosta-
sis affects mitochondrial function and redox balance. For instance, the inactivation of
peroxisomal catalase (for more details see above) in human cells results in functionally
impaired mitochondria, which lose their ability to maintain a membrane potential and
synthesize ROS themselves [90]. On the other hand, it was shown that enhancing the
activity of peroxisomal catalase has beneficial effects on mitochondria. It is described that
during aging peroxisomal protein import of peroxisomal catalase is becoming particularly
impaired [91]. Enhancing the effectivity of catalase import into the peroxisomes, reduces
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cellular hydrogen peroxide levels, as well as the number of senescent cells in a population,
and reverses mitochondrial depolarization [92].
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Figure 4. Age-dependent peroxisome abundance in the wild-type and the PaATG24 deletion mutant. (a) Fluorescence mi-
croscopic analysis of peroxisomes in ∆PaAtg24 (∆PaAtg24/mCherry-SKL) and control strain (mCherry-SKL) with peroxisomal
reporter mCHERRY-SKL in seven- and 14-day-old cultures. Experimental conditions are described in [75]. (b) Quantification
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For statistical analysis, the two-tailed t-test was used (*** = p ≤ 0.001).

Interestingly, in some ascomycetous fungi, like N. crassa and P. anserina, no perox-
isomal acyl-CoA oxidase was detected. Instead, the enzyme acyl-CoA dehydrogenase
was found [93,94], which performs the same reaction as acyl-CoA oxidase but without the
production of hydrogen peroxide. Without the production of this ROS, no detoxification
system is needed and peroxisomes in N. crassa do not contain catalases [95]. In P. anserina
the absence of all known catalases (PaCATA, PaCATB, PaCAT2, PaCATP1, and PaCATP2)
has no effect on the usability of fatty acids and on the fungus’ lifespan [96]. These charac-
teristics identify P. anserina as a great model to study peroxisomal processes beyond the
different effects of ROS on the cell and unravel the peroxisomal ROS-independent role of
peroxisomes on aging and development. For example, P. anserina is used as a model to
study the Zellweger syndrome (also known as cerebro-hepato-renal syndrome). Patients of
this hereditary disease cannot build functional peroxisomes. Malformations in the central
nervous system, skeleton, liver and kidneys, and other organs, as well as a dramatically
reduced lifespan characterize the syndrome [97]. Studies with a P. anserina Pex5 deletion
strain unraveled massive impairments of developmental processes leading to a strong
reduction of the produced number of fruiting bodies. Interestingly, the morphology of mi-
tochondria is also changed. While functional mitochondria of the wild-type are described
to be filamentous, the mutant shows round shaped and often aggregated mitochondria [98],
which is a strong hInt. for interactions of mitochondria and peroxisomes. Such interactions
are further supported by the fact that mitochondria and peroxisomes are both very dy-
namic organelles which partly use identical or homologous control elements. For instance,
peroxisomal and mitochondrial fission both are controlled by the dynamin-related protein 1
(DNM1) [99,100]. In addition, for peroxisomes a DNM1-independent pathway mediated by
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the dynamin-related protein VPS1 is described [101]. However, in contrast to mitochondria,
peroxisome biogenesis can occur also de novo from the endoplasmatic reticulum (ER)
by sorting of peroxisomal membrane proteins to a specific region of the ER, from where
pre-peroxisomal vesicles bud off. Afterwards peroxisomal matrix proteins are imported
(for a current review see [102]).

Another similarity of mitochondria and peroxisomes is the use of isoforms of the LON
protease that is responsible for degrading proteins damaged by oxidation. The activity of
LON plays a critical role in maintaining function in both mitochondria and peroxisomes,
because of its important role in removing oxidatively modified proteins and preventing
their accumulation (reviewed in [103]). The role of peroxisomal LON in P. anserina is yet
unclear but interesting, since P. anserina peroxisomes do not produce hydrogen peroxide
during ß-oxidation and consequently oxidation of proteins may not be a critical issue in
this species.

Since peroxisomes, in contrast to mitochondria, do not contain DNA or a gene expres-
sion machinery, all peroxisomal proteins are encoded by the nucleus. Peroxisomal proteins,
which are synthesized in the cytoplasm, need to be properly transported to the site of
their function in the peroxisomal membrane or the peroxisomal matrix. Thus, a protein
import machinery is crucial for proper function of peroxisomes. In P. anserina, it has been
shown that the absence of such proteins result in a variety of different impairments. For
instance, the absence of PaPEX2 leads to a block of sexual development at the dikaryotic
stage. Consequently, ascospore formation is blocked and the corresponding mutant strains
are sterile [104]. In addition, it is known that peroxisomal dynamics are tightly regulated
during the sexual development of the fungus. In the course of ascospore maturation,
the number of peroxisomes decreases dramatically [105]. The observed elimination of
peroxisomes is speculated to result from pexophagy. These data are linked to a recent study
emphasizing a key role of pexophagy in the regulation of proper peroxisome numbers
at different stages in the life of P. anserina [75]. The precise mechanisms involved in this
regulation are yet not known but are a key focus of studies aimed to unravel the role of
peroxisomes in aging and development.
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