Supplementary material

Table	S1 :	List	of	plasmids	used	in	this	study.
Lanc	$\mathbf{D}\mathbf{I}$	LISU	UI	plasinus	uscu	111	uns	study.

Plasmid	Characteristics	Source
pHAN1	amp ^R , his-3, Pccg1::ha	[1]
pRS426	amp^R , ura3	[2]
pRS-nat	amp^{R} , ura3, nat ^R	[3]
pRS-hyg	amp^{R} , ura3, hyg^{R}	[4]
p1783-1	amp^{R} , ura3, hyg ^R ,	[5]
	Pgpd::egfp::TtrpC	
pRHN1	amp^{R} , ura3, nat ^R	[6]
	Pgpd::Dsred::Ttrpc	
pDsred-SKL	amp^{R} , nat^{R}	[7]
	Pgpd::Dsred-SKL::TtrpC	
pTagRFP-T_nat	amp^{R} , nat^{R}	This study
	Pccg1::TagRFP-T::TtrpC	
pAL5Lifeact	amp^{R} , bar^{R}	[8]
	Pccg1::tRFP::TtrpC	
pegfp-Smlon2	amp^{R} , ura3, nat ^R	This study
	PSmlon2::ORF	
and for Southan 2	egjp+smion2::1Smion2	
pegip-Smion2	amp, uras, nyg	This study
	egfp+Smlon2::TSmlon2	
ptrfp-Smlon2	amp^{R} , $ura3$, nat^{R}	This study
	PSmlon2::ORF	
	trfp+Smlon2::TSmlon2	

pegfp-Smlon2∆SRL	amp ^R , ura3, nat ^R PSmlon2::ORF egfp+Smlon2	This study
	deletion of aa 935-937 (SRL)::TSmlon2	
pSmlon2-KO	<i>amp^R, ura3,</i> 5'-flanking region and 3'-flanking region of <i>Smlon2</i> interrupted by the <i>hph</i> -cassette in pRS426	This study

nat^R: nourseothricin resistant, *hyg*^R: hygromycin resistant; *amp*^R ampicillin resistance; *bar*^R, Basta-resistance (bar) gene *ura3*, Orotidine-5'-phosphate decarboxylase gene of *S. cerevisiae; hph*, hygromycin B phosphotransferase gene, *Pgpd:* promoter of the glycerinaldehyd-3-phosphat-dehydrogenase-gene of *Aspergillus nidulans; TtrpC:* terminator of the anthranilat synthase gene of *Aspergillus nidulans;* SKL: peroxisomal targeting sequence Ser-Lys-Leu; SRL: peroxisomal targeting sequence Ser-Arg-Leu; *Dsred*: gene for red fluorescence protein (DsRED) of *Discosoma* species; *egfp*: gene for green fluorescence protein enhanced green fluorescent protein (eGFP) of *Aequorea Victoria, trfp*: gene for red fluorescence protein TagRFP-T of *Entacmaea quadricolor*.

Table S2: List of primers used in this study.

Name	Sequence (5'-> 3')
pRSccg1	GTAACGCCAGGGTTTTCCCAGTCACGACG TAGAAGGAGCAGTCCATCTG
Pccg1_RFP	TTAATCAGCTCTTCGCCCTTAGACACCAT TTTGGTTGATGTGAGGGGTT
RFP-f	ATGGTGTCTAAGGGCGAAGAG
RFP-r-trpC	TTTGATGATTTCAGTAACGTTAAGTGGAT TTACTTGTACAGCTCGTCCATGC
TrpC_F	GATCCACTTAACGTTACTGAAATCATCAAA
pRS426GFPrev	GCGGATAACAATTTCACACAGGAAACAGC TCGAGTGGAGATGTGGAGTG
lon2-ko-5f	GTAACGCCAGGGTTTTCCCAGTCACGACG GCATTCTCAGTCATCATTAG
lon2-ko-3r	GCGGATAACAATTTCACACAGGAAACAGC CGTCTGGCTACCTACCTTAC
lon2-ko-5r-hph	CCAAAAATGCTCCTTCAATATCAGTTAAC GGGGACGTCGGTCTATAGTG
lon2-ko-3f-hph	GAGTAGATGCCGACCGGGAACCAGTTAAC ATTGGCTACCTCAAGGTAGT
hph-f	GTTAACTGATATTGAAGGAGCATTTTTGG
hph-r	GTTAACTGGTTCCCGGTCGGCATCTACTC
lon2-ko-v5f	GCTAGCGGGTCTAGATGTTGA
lon2-ko-v3r	GTGTAGCCAGTCGAGTCTGCA
tC1_0	CCTGGACGACTAAACCAAAA
h3_0	GATGGCTGTGTAGAAGTACT
lon2-s3-f	TCAGCGGCTATGCTCGAAGTC

lon2-s4-r	GATGCCTCCGACGGCCGTGAT
lon2-p-3r	<i>GTGAACAGCTCCTCGCCCTTGCTCACCAT</i> GGGGACGTCGGTCTATAGTG
Smlon2P_trfp	
	GGGGACGTCGGTCTATAGTG
GFP-f	ATGGTGAGCAAGGGCGAGGAGC
egfp-r-Smlon2	ATCGTGACCGTCGGAGCTCGCACGGGAGC CTTGTACAGCTCGTCCATGC
trfp-r_Smlon2	ATGGTGTCTAAGGGCGAAGAG
Smlon2-f-ATG	GCTCCCGTGCGAGCTCCGACG
lon2-SRLr2	TCATTCGACGCTCGGGTAATCGTGTTCGCTGGGCC
lon2-SRLf	<i>GCGAACACGATTACCCGAGCGTCGAATGA</i> ATTGGCTACCTCAAGGTAGT

Bold italics = overhangs

Figure S1: Phylogenetic tree of Lon proteases from fungi, plants, animals and bacteria.

The phylogenetic tree of Lon proteases was generated with the Neighbor Joining method. Orthologs were identified with BLASTP search using amino acid sequences of the *Sordaria* macrospora SmLON2 (SMAC_00912) marked in red. The multiple sequence alignment and phylogenetic analysis was performed with MAFFT version 7 [9] using the amino acid sequence: Sm_LON2, Sordaria macrospora (XM_003349975.1); Sm_SMAC_01730, S. macrospora (KAA8635865.1); Nc_LON2, Neurospora crassa (XP_962516.1); Nc_NCU05261, N. crassa (XP_961826.1); Pc_Pln, Penicillium chrysogenum, (KZN88437.1); Tl_Plon, Thermomyces lanuginosus (Thela2p4_005149, https://gb.fungalgenomics.ca); Tl_Mlon, T. lanuginosus (Thela2p4 006664, https://gb.fungalgenomics.ca); Hp Pln, Hansenula polymorpha, (ABB88892.1); At_LON2, Arabidopsis thaliana (NP_568675.1), Hs_LON, Homo sapiens (NP_113678.2); Sc_PIM1, Saccharomyces cerevisiae (P36775); Ec_La, Escherichia coli (CAD6055224.1). The bootstrap values based on 1000 replications are rounded to whole numbers and are indicated at the nodes. Lon-protease targeted to peroxisomes are framed in blue and proteins targeted to mitochondria are framed in orange.

(A) Schematic representation of the *Smlon2* ORF and the 5' and 3' flanking region. After homologous recombination, the *hph* cassette replaced the entire *Smlon2* ORF. Primer combinations for PCR verification of the deletion, the corresponding sizes of fragments, the position of the restriction sites for *Xba*I and the probe for the Southern blot are indicated. (B) PCR verification of homologous integration of the *hph* cassette into the *Smlon2* locus. Genomic DNA was isolated from WT and Δ Smlon2 and tested with given primer combinations. Water serves as negative control (-). DNA-Ruler 1kb Plus. (C) Confirmation of the deletion by Southern blot. The isolated genomic DNA was hydrolyzed with the enzyme *Xba*I.

Figure S3: Localization of the Lon protease SmLON2 fused with tRFP. Fluorescence microscopic analysis of the Δ Smlon2 strain carrying plasmid ptrfp-Smlon2. DIC, differential interference contrast. Scale bar as indicated.

Figure S4: Localization of free eGFP, TagRFP-T and DsRED. Fluorescence microscopic analysis of the WT strain carrying plasmid p1783-1 (*egfp* under control of the *A. nidulans gpd* promoter; [5]), pTagRFP-T_nat (*trfp* under control the *Neurospora crassa ccg1* promoter) and pRHN1 (*Dsred* under control of the *A. nidulans gpd* promoter; [6]), respectively. DIC, differential interference contrast. Scale bars as indicated.

Figure S5: Vegetative growth of WT, Δ Smlon2 and the complemented strains expressing variants of *Smlon2* under different stress conditions. Growth rate of WT, Δ Smnbr1 and complemented strains expressing the *S. macrospora* WT *Smlon2* (Δ Smlon2::egfp-Smlon2^{ect}) and the mutated version of *Smlon2* (Δ Smlon2::egfp-Smlon2 Δ SRL^{ect}) respectively, was determined in race tubes for five days. Normal conditions were on fructification medium (SWG) at 27°C, the growth of the WT was set to 1. Temperature stress was caused by cultivation of the strains at 30°C. For the induction of β -oxidation in microbodies we reduced the amount of glucose in the SWG medium to 0.5 % and added 0.15 % oleic acid (SWG + G + OA). Oxidative stress was induced by the addition of 0.015 % H₂O₂ (no growth of Δ Smlon2!) and amino-acid starvation was induced by adding 3-amino-1,2,4-triazole (SWG + 2.5 mM 3-AT) to the SWG medium. Data are means with standard deviations for three biological replicates and three independent experiments (n=15). Asterisks show significance difference to the WT analyzed by Students t-test (p<0.0001).

Figure S6: Sexual development of *S. macrospora* WT, Δ Smlon2 and the complemented strains expressing variants of *Smlon2* under oxidative stress conditions. WT, Δ Smnbr1 and complemented strains expressing the WT *Smlon2* gene (Δ Smlon2egfp::Smlon2^{ect}) and the mutated version of *Smlon2* (Δ Smlon2::egfp-Smlon2 Δ SRL^{ect}) respectively, were grown under normal conditions on fructification medium (SWG) at 27°C. Oxidative stress was induced by increasing concentrations of H₂O₂ from 0.005 % to 0.02 %.

	10	20	30	40	50	60
LON2	MAPVRAPTVTIPL	LPLPKGTILLP	GVVQRIAVSS	STRPDIASLL	AAVYAKAASKI	FPNGRID
	::::::::::::::::::::::::::::::::::::::		::::::::::			: : : : : : :
LON2ed	MAPVRAPTVTIPL	LPLPKGTILLP	GVVQRIAVSS	STRPDIASLL	AAVYAKAASKI	FPNGRID
	10	20	30	40	50	60
T 0110		80	90	100	110	120
LONZ	TIPIACVPLASPL	LGPEGNLLIEN	GDNKNETSGL	JVDPAKATKAI	JLFPIGVAAK.	LTGVEGR
ION20d				וגשיייגאנסטזנ		
TONSEO	TIPIACVPLASPL 70	80	GDNKNE I SGL	100	JLFFIGVAAN. 110	120
	10	00	20	TOO	IIO	120
	130	140	150	160	170	180
LON2	GTGEFTLLVEGVT	RIHVEKVIADK	AYLEGKVSSY	ADPALITDS	ALEELFMSLKI	LLSRQFV
						: : : : : : :
LON2ed	GTGEFTLLVEGVT	RIHVEKVIADK	AYLEGKVSSY	ADPALITDS	ALEELFMSLKI	LLSRQFV
	130	140	150	160	170	180
	190	200	210	220	230	240
LON2	TILRLSSLLPQSS	GTPGLSPLLAR	RLDFYIAKQF	(YPGALADFM)	ANIVESTYEEP	KLQILTL
LONZEO	1 1 LKLSSLLPQSS 1 0 0	200	.KLDF I IAKQr 210		ANIVESIIEEI 230	240
	100	200	210	220	250	240
	250	260	270	280	290	300
LON2	IDV <mark>K</mark> ERVAKVIEL	LDRQVTNIKNS	MKITTITATS	SLPFPMDPDS	TKPGKVKPPVI	KAPGQGV
	: : : <mark>.</mark> : : : : : : : : : :		: : : : : : : : : :			:::::::
LON2ed	IDV <mark>E</mark> ERVAKVIEL	LDRQVTNIKNS	MKITTITATS	SLPFPMDPDS	TKPGKVKPPVI	KAPGQGV
	250	260	270	280	290	300
	310	320	330	340	350	360
LON2	GMPFPPQGGFMGR	GGNPDDEQEPN	EIEELQKRLI	DAARLSPEAAI	KIADREIKRLI	KKIHPAQ
LONZED	GMPFPPQGGFMGR	GGNPDDEQEPN 320	330 EIFETŐKKTI	JAARLSPEAAI	AIADREIKRLI 350	AKIHPAQ 360
	510	520	550	540	330	500
	370	380	390	400	410	420
LON2	AEYAVTRTYLETL	AEIPWTATTDD	RLGPDTLNRA	ARKOLDDDHY	GLDKVKKRLLE	EYLAVLR
	: : : : : : : : : : : : : : : : : : : :		:::::::::	~ : : : : : : : : : : : : :		: : : : : : :
LON2ed	AEYAVTRTYLETL	AEIPWTATTDD	RLGPDTLNRA	ARKQLDDDHY	GLDKVKKRLLE	EYLAVLR
	370	380	390	400	410	420
	430	440	450	460	470	480
LON2	LKQAINDDVDIQI	KQIEQELGVGS	ENGKEDAAQI	PAAVDLTVDEI	KVKAGGAKLEA	ALKNRRM
						: : : : : : : :
LONZed	LKQAINDDVDIQI	KQIEQELGVGS	ENGKEDAAQE	PAAVDL'I'VDEI	AVKAGGAKLEA	ALKNRRM
	430	440	450	460	470	480
	190	500	510	520	530	510
LON2	VDKSPTLLLVGPP	GVGKTSLARSV	ATALGRKEHE	STSLGGVRDE	AETRGHRRTYN	JAAMPGI.
-0112						
LON2ed	VDKSPILLLVGPP	GVGKTSLARSV	ATALGRKFHF	RISLGGVRDE	AEIRGHRRTY	/AAMPGL
-	490	500	510	520	530	540

	55	50	560	570	580	590	600
LON2	VVQGLKKV(GVANPVFLL	DEIDKVGGSS	IHGDPSAAML	EVLDPEQNHN	(FTDHYV <mark>N</mark> IPI	DLS
	::::::::		::::::::::	::::::::::	:::::::::	::::: <mark>.</mark> :::	:::
LON2ed	VVQGLKKV	GVANPVFLL	DEIDKVGGSS	IHGDPSAAML	EVLDPEQNHN	FTDHYV <mark>D</mark> IPI	DLS
	53	50	560	570	580	590	600
	6	1 0	620	630	640	650	660
LON2	KVLFIATAN	NSLDTIPAP	LLDRMETIYI	PGYTTLEKRH	IAMOHLVPKC	LRVNGLDESO	VSF
20112							:::
LON2ed	KVLFIATA	NSLDTIPAP	LLDRMETIYI	<mark>P</mark> GYTTLEKRH	IAMQHLVPKÇ	LRVNGLDESQ	VSF
	61	10	620	630	640	650	660
	61	70	680	690	700	710	720
LON2	TPEVVSKI	IESYTREAG	VRNLEREISS	VARG <mark>KAVEFA</mark>	DAKDSGHPEN	YNPQLTVDDL	EKF
TON204	TDEVUCKT						:::
LONZEO	IFEVVSKI.	TESTIKEAG 70	680	690	700	710	720
	0	, 0	000	000	,	110	120
	73	30	740	750	760	770	780
LON2	LGIEKFEEI	EIAEKTSRP	G <mark>I</mark> VTGLVAYS	SGGNG <mark>S</mark> ILFI	EVADMPGNGS	VQLTGKLGDV	LKE
	:::::::	: : : : : : : : :	: <mark>.</mark> : : : : : : : : :	::::: <mark>.</mark> ::::	::::::::::	:::::::::	:::
LON2ed	LGIEKFEEH	EIAEKTSRP	G <mark>M</mark> VTGLVAYS	SGGNG <mark>G</mark> ILFI	EVADMPGNGS	VQLTGKLGDV	LKE
	73	30	740	750	760	770	780
	7.0	0.0	000	010	000	0.2.0	0 1 0
TON2		90 WKANAVET C	800 T TOS DNENTM	<u>KUDGINANC</u> 910	82U		840 97 F
TOUS	SVEVALIW.	• • • • • • • • • • • •			·····	SGISQAIADI	:::
LON2ed	SVEVALTW	VKAHAYELG	LTOSPNENIM	KDRSIHVHCP	SGAVPKDGPS	SGISOAIALI	SLF
	79	90	800	810	820	830	840
	85	50	860	870	880	890	900
LON2	SGKAVPST	MAMTGEISL	RGRITAVGGI	KEKLIGALRA	.GVKTVLLPAÇ	NRKDVKDLPQ	EVK
				· · · · · · · · · · · · · ·			:::
LONZed	SGKAVPST	MAMTGEISL. 50	RGRITAVGGI	KEKLIGALRA	GVKTVLLPAQ 000	NRKDVKDLPQ	
	0.	50	000	070	000	090	900
	9-	10	920	930			
LON2	DGLEIIHVS	SHIWEAIRY	VWPDGQWPSE	HDYPSVESRL	ı		
	::::::::						
LON2ed	DGLEIIHVS	SHIWEAIRY	<mark>vwp</mark> dgqwpse	HDYPSVESRL	ı		
	91	10	920	930			

Figure S7: RNA A-I editing of *Smlon2.* Alignment of the unedited (LON2) and edited (LON2ed) version of the SmLON2. Six sites were edited in the transcript of *Smlon2* (*SMAC-00912*): position 1379, 1807, 2429, 2866, 2906, and 3860. These lead to amino acid changes at positions K245E, N594D, I740M and S753G in the SmLON2 protein. Amino acid changes are

indicated in yellow, the LON domain is depicted in grey, the ATPase domain in blue and the

protease domain in green.

References

- 1. Kawabata, T. and H. Inoue, *Detection of physical interactions by immunoprecipitation of FLAGand HA-tagged proteins expressed at the his-3 locus in Neurospora crassa.* Fungal Genetics Newsletter **54**: p. 5-8.
- 2. Christianson, T.W., et al., *Multifunctional yeast high-copy-number shuttle vectors.* Gene, 1992. **110**(1): p. 119-22.
- 3. Klix, V., et al., Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell, 2010. **9**(6): p. 894-905.
- 4. Bloemendal, S., et al., *A homologue of the human STRIPAK complex controls sexual development in fungi.* Mol Microbiol, 2012. **84**(2): p. 310-23.
- 5. Pöggeler, S., et al., *Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi.* Curr Genet, 2003. **43**(1): p. 54-61.
- 6. Janus, D., et al., *An Efficient Fungal RNA-Silencing System Using the DsRed Reporter Gene.* Applied and Environmental Microbiology, 2007. **73**(3): p. 962-970.
- 7. Elleuche, S. and S. Pöggeler, *Visualization of peroxisomes via SKL-tagged DsRed protein in Sordaria macrospora.* Fungal Genetics Reports, 2008. **55**: p. 8-12.
- 8. Lichius, A. and N.D. Read, A versatile set of Lifeact-RFP expression plasmids for live-cell imaging of *F*-actin in filamentous fungi Fungal Genetics Reports 2010. **57**: p. 8-14.
- 9. Katoh, K., J. Rozewicki, and K.D. Yamada, *MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.* Briefings in Bioinformatics, 2019. **20**(4): p. 1160-1166.