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Abstract: Increasing high temperature (HT) has a deleterious effect on plant growth. Earlier works
reported the protective role of arbuscular mycorrhizal fungi (AMF) under stress conditions, par-
ticularly influencing the physiological parameters. However, the protective role of AMF under
high-temperature stress examining physiological parameters with characteristic phospholipid fatty
acids (PLFA) of soil microbial communities including AMF has not been studied. This work aims to
study how high-temperature stress affects photosynthetic and below-ground traits in maize plants
with and without AMF. Photosynthetic parameters like quantum yield of photosystem (PS) II, PSI,
electron transport, and fractions of open reaction centers decreased in HT exposed plants, but recov-
ered in AMF + HT plants. AMF + HT plants had significantly higher AM-signature 16:1ω5cis neutral
lipid fatty acid (NLFA), spore density in soil, and root colonization with lower lipid peroxidation
than non-mycorrhizal HT plants. As a result, enriched plants had more active living biomass, which
improved photosynthetic efficiency when exposed to heat. This study provides an understanding
of how AM-mediated plants can tolerate high temperatures while maintaining the stability of their
photosynthetic apparatus. This is the first study to combine above- and below-ground traits, which
could lead to a new understanding of plant and rhizosphere stress.

Keywords: arbuscular mycorrhizal fungi; fatty acid biomarkers; high temperature; maize (Zea mays L.);
photosynthesis; PSI; PSII

1. Introduction

Maize (Zea mays L.) is one of the important and widely grown commercial crops of
the world. Maize is known for its adaptability to varying climatic conditions [1]. Higher
temperatures (HT) (35 ◦C and above) affect the vegetative and reproductive growth of
maize, from germination to grain filling [2]. High-temperature stress-induced responses
in plants include modifications in the photosynthetic machinery, organizational changes
in cellular structures to maintain membrane functioning, and stomatal closure to limit
transpirational water loss [3]. A slight increase in temperature can have a negative impact
on growing crops, grain filling, and ultimately yield [4]. Jagdish et al. [5] reported that heat
stress such as short term HT, heat waves, or long term high temperature, have a detrimental
effect on plant growth and yield [5].

Plants depend on rhizosphere microflora to protect them from a variety of environ-
mental stresses [6]. Arbuscular mycorrhizal fungi (AMF) are the most prevalent among
them, forming a symbiotic association with the roots of almost 80% of terrestrial plants [7].
AMF improves plant growth under stressful conditions by modulating multiple commu-
nication events leading to enhanced photosynthetic rate [8]. AMF augments plant stress
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tolerance by increasing nutrient levels, improving stomatal regulation, water use efficiency
to reduce oxidative damage, modifying hormonal balance and osmotic adjustments [9–11].
The inoculation with AMF enables host plants to cope up with stressful conditions such as
salinity, drought, and heavy metals [12–14].

Photosynthesis is considered one of the critical processes that decouple under var-
ious abiotic stresses. When compared to other photosynthesis protein complexes, high-
temperature stress causes the most damage to photosystem II (PSII) and reduces the leaf
photosynthetic capacity [3,15].

Studies evaluating the role of AMF in the mitigation of high-temperature stress on
plants are often based on the effects on plant physiological traits. However, soil microbial
communities are also an important factor for determining plant performance and may
provide important insights into AMF mediated stress mitigation. [16,17]. The lipid profiling
of signature markers (e.g., 16:1ω5cis phospholipid fatty acid (PLFA) and neutral lipid fatty
acids (NLFA) in soil and roots) provides a detailed account of the alterations in the microbial
community due to the stress caused by elevated temperature [18–20] and is used as a stress
indicator [21]. The ratios of cyclopropyl to monoenoic fatty acids, as well as Gram-positive
to Gram-negative bacteria, are PLFA stress indicators that explain temperature impacts.
The trans/cis stress ratio and the Gram-negative stress ratio are two physiological stress
indicators. The Gram-positive/Gram-negative ratio is an indicator of energy limitation [22].

In our previous study, we demonstrated that AMF ameliorates the effect of high-
temperature stress in maize plants, particularly on PSII [23]. Since high temperature is a
global problem and maize is one of the important crops, it becomes imperative to carry
out an in-depth study with AMF enriched soil and its implications on high temperature.
Thus, to focus the problem and to understand the role of AMF formation in plants exposed
to high temperature we tested a hypothesis for how AM-mediated plants are modulated
by high temperature and consequently, how it influences the photosynthetic (PSI, PSII)
efficiency and soil PLFA microbial communities of fatty acids biomarkers. We present the
hypothesis that when AM-enriched plants are exposed to high temperatures, the presence
of their active hyphal biomass facilitates the plants to have better water and nutrient
uptake, photosynthetic efficiency and protects plants from oxidative damage. We also
tested whether the plants exposed to high temperatures depict any alteration in AMF
formation (root colonization, spore density and lipid biomarkers), plant photosynthetic
parameters and shift in soil PLFA microbial communities as stress perturbations?

Thus, combining photosynthetic parameters with signature fatty acid biomarkers in
relation to high-temperature stress may help unravel the role of AMF and the belowground
system in adjusting the plants from stressful conditions. Information from this study will
pave the way to utilize AMF as a stress ameliorator for improving abiotic stress tolerance
in crop plants.

2. Materials and Methods
2.1. Plant Material, AMF Inoculum

Maize (Zea mays L.; cultivar Navjot) was used as the experimental plant. Rhizosphere
soil from the long-term soybean-based farming system managed at ICAR-Indian Insti-
tute of Soybean Research (IISR) Indore; was collected and sieved using the wet sieving
decanting method [24]. A mixed starter culture of native AMF (which mainly comprised
of Rhizophagus irregulariae, Funneliformis mosseae, and other Glomus species, procured from
ICAR-IISR, Indore) was prepared as per the method of Sharma et al. [25] The starter culture
was further raised on maize for 16 weeks using sterilized soil: sand mix (3:1 ratio) and
this was amended with field yard manure (FYM) (5:1) and used for enrichment. To enrich
the soil for AMF formation, the starter culture was mixed with field soil and raised on
maize for several weeks as per the method of Mathur et al. [23]. The standard method
of strain preparation was followed. Experiments were carried in unsterilized soil having
2–3 spores/10 g of soil. For the enriched pots, the soils were prepared by adding 50 g of
mixed AMF inoculum consisting of 2500 spores. The inoculum was multiplied by growing
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maize for one cycle. The final spore count of the enriched soil was 20–25 spores/10 g. The
experiment was conducted in two sets. The AM spore density of AMF enriched soil ranged
from 20–25 spores/10 g soil. Microcosm (pot) trial) was conducted in Vertisols soil [pH 7.5
(1:2.5 soil water ratio), organic carbon (0.5%), Olsen P (6.2 mg/kg), mineral N (6.4 mg/kg)]
with and without AMF.

The experiment was conducted in pots (black gusseted polythene bags with 25 kg
capacity, holes for drainage) filled with medium black cotton soil previously mixed with
well-decomposed farmyard manure (FYM) in a ratio of 5:1, soil to FYM). All pots received
5–7 maize seeds, which were later thinned to three plants per pot.

2.2. Growing Conditions and Experimental Design

Plants were watered daily (~1.5 lit in each pot) to avoid any type of water stress
due to high temperatures. India is a tropical country, where the average temperature for
most of the days during summer is between 40 to 44 ◦C. The maximum temperature at
the time of experiments was found to be, 43–44 ◦C (month of May) (Indore, 22◦44′ N),
(www.acuweather.com, (17–28th May 2018) ICAR-IISR, Indore, India). For HT stress, right
from the sowing till harvesting, pots were kept on the open terrace where the plants faced
a maximum day temperature of 43 ◦C (±0.2 ◦C), while the relative humidity was ±28%

The experiment design was laid out in a completely randomized design in three replica-
tions (three pots for each treatment, and each pot had 3 plants) with the following treatments:

Control = maize plants were grown in normal soil and plants were not subjected to
high temperature.

AMF = maize plants were grown in AMF enriched soil and plants were not subjected
to high temperature.

HT = maize plants were grown in normal soil and experienced higher temperatures
(ambient temperature during summer 43 ◦C).

AMF + HT = maize plants were grown in AMF enriched soil and experienced high-
temperature stress.

The plants were harvested after 100 days of sowing at maturity. Rhizosphere soil
samples were collected for high temperature exposure and control plants by uprooting the
plants and gently shaking off the soil adhering to the roots. One part of the soil samples
was kept at −20 ◦C for PLFA analysis and the rest was air-dried, sieved, and processed for
the estimation of AM spore density.

2.3. Measurement of Total Chlorophyll Content

Total chlorophyll (Chl) content (in SPAD units) in leaves was measured using at leaf
SPAD chlorophyll meter (FT Green LLC, Wilmington, DE, USA) according to Zhu et al. [26].
All the measurements were performed between 11:00 AM to12:00 PM under natural sunlight.

2.4. Chlorophyll a Fluorescence Measurement

Quantum yield of PSI and PSII were measured with Dual-PAM-100 system (Heinz
Walz, GmbH, Effeltrich, Germany) according to Pfündel et al. [27]. Plants were kept in
dark for 30 min before measurements. A weak modulated light (12 µE) was given to get
minimal fluorescence (Fo), followed by actinic light (55 µE), and saturating pulse (6000 µE)
to obtain maximum fluorescence (Fm). Leaves were exposed to saturating pulse (one pulse
per min) for 10 min to obtain steady-state fluorescence. Details of various chlorophyll (Chl)
a fluorescence parameters are presented in Table 1. Y(II), Y(NPQ), Y(NO), qL (Table 1) were
calculated as per Kramer et al. [28]. The quantum yields of PSI and PSII were measured
by saturating pulses during the process of the slow induction curve. Parameters were
evaluated automatically according to the methods of Kramer et al. [28] and Klughammer
and Schreiber [29] (Table 1):

YII = (Fm
′ − F)/Fm

′, YNPQ = F/Fm
′ − F/Fm, YNO = F/Fm

YI = (Pm
′ − P)/Pm, YND = (P − Po)/Pm, YNA = (Pm − Pm

′)/Pm

www.acuweather.com
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Table 1. Description of various Chlorophyll a fluorescence parameters [28–32].

Fluorescence Parameters Description

ETR electron transport rate

Fo minimal fluorescence

Fm maximum fluorescence

Pm
maximal change in P700 signal during the quantitative transformation of P700 from the fully reduced
to the fully oxidized state

qL fraction of open PSII reaction centers

qP
photochemical quenching coefficient used to assess PSII susceptibility to photo-inhibition and reflects
the oxidation-reduction state of the primary acceptor (QA) for PSII

qN
non-photochemical quenching coefficient, i.e., the fraction of dark-adapted variable fluorescence that
is lost upon adaptation to light

Y(I) effective photochemical quantum yield of PSI

Y(II) effective quantum yield of PSII

Y(NA) quantum yield of non-photochemical energy dissipation of reaction centers due to PSI acceptor-side
limitation

Y(ND) quantum yield of non-photochemical energy dissipation in reaction centers due to PSI donor-side
limitation

Y(NO) quantum yield of non-regulated energy dissipation and the fraction of energy that is passively
dissipated in the form of heat and fluorescence mainly due to the closed PSII centers

Y(NPQ) quantum yield of light-induced non-photochemical fluorescence quenching

2.5. Measurement of Malondialdehyde (MDA) Content

MDA content was measured by estimating thiobarbituric acid reactive substances
(TBARS) using the method described by Zhang and Qu [33]. The absorbance was read at
532, 600, and 450 nm. The MDA content was calculated using the formula:

6.45 × (A532 − A600) − 0.56 × A450.

2.6. AMF Root Colonization and Spore Density

Fresh roots were carefully washed under running tap water and then cut into 1 cm
pieces. A total of 100 segments were measured for each treatment. Mycorrhizal colonization
in roots was examined microscopically (at 40× and 100× magnification) after digesting
and clearing the roots in KOH and staining with trypan blue (0.05% in lactoglycerol) [34].
The frequency distribution method of Biermann and Linderman [35] was used for studying
colonization in stained root segments based on hyphal infection, the number of vesicles
and arbuscules present in the individual segment.

2.7. Quantification of Signature Fatty Acids in Soil

Phospholipid fatty acid analysis (PLFA) was performed following the high throughput
method [19,36]. The four steps viz., drying, extraction, lipid separation, and transesterifi-
cation were performed consecutively. Bligh dyer extraction of about 1.5 g of freeze-dried
soil sample was performed, following which the separation and extraction of lipids were
performed using a 96 well soil phase extraction (SPE) column. The neutral lipids and
phospholipids were eluted, respectively, using chloroform and methanol: chloroform:
H2O (5:5:1) fraction. After transesterification, the extracted fatty acids were dissolved
in hexane and stored in 2 mL vials for subsequent analysis using a gas chromatograph
(Agilent 7890A Agilent Technologies, Wilmington, DE, USA). The samples were ana-
lyzed using the flame ionization detector on GC controlled with Agilent Chemstation
(MIDI Inc., Newark, DE, USA). Agilent column (HP-Ultra 2 column, 25 m long × 0.2 mm
internal diameter × 0.33 µm film thickness) was used to separate FAMEs and run the
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program as per the method in [36]. For the identification of FAME profiles, the MIDI
PLFAD1 calibration mix and peak naming table (MIDI, Inc., Newark, DE, USA) was used.
The signature fatty acid biomarkers for microbial groups were assessed and expressed as
PLFA nanomoles g−1 soil.

The PLFAs were summed into biomarker categories as follows: Gram-positive bacteria,
iso and anteiso saturated branched fatty acids; Gram-negative bacteria, mono-unsaturated
fatty acids, and cyclopropyl 17:0 and 19:0, actinomycetes, 10-methyl fatty acids, fungi,
18:2 ω6cis, and arbuscular mycorrhizal fungi, 16:1 ω5 cis fatty acids [37]. The ratio of
fungi/bacteria (total fungal lipids/total bacterial lipids) and Gram-positive/Gram-negative
(trans/cis stress ratio or 16:1ω7t/16:1ω7c) were also determined.

2.8. Statistical Analysis

Graphs and data for chlorophyll fluorescence were analyzed by using Origin Pro8. The
total chlorophyll and MDA content were analyzed using GraphPad Prism 5.01 Software
(software, Inc., San Diego California USA.). Significance was determined at p < 0.01
(* p < 0.05, ** p < 0.01 and *** p < 0.001) and the results are expressed as mean values and
standard deviation (SD). The data were statistically analyzed using the one-way analysis of
variance (ANOVA) carried out with the COSTAT software [38]. To compare the variances
between means, a least significant difference (LSD) through Duncan’s multiple range test
(DMRT) at a significance level of p < 0.05 was used. The physiological, microscopic, and
biochemical parameters were subjected to principal component analysis (PCA) using R
studio version 4.0.0, Boston, Massachusetts [39–41] to identify the pattern of variation
between parameters, and differences among treatments. All the experiments were carried
out with three replicates for each treatment.

3. Results
3.1. Total Chlorophyll Content Measurement

AMF-colonized plants had higher total chlorophyll (Chl) content (Table 2) as com-
pared to control plants. Due to temperature stress, water availability was reduced which
drastically decreased the total chlorophyll content in high temperature exposed maize
plants (Table 2). AMF + HT plants performed better and recovered total chlorophyll content
as compared to high temperature exposed plants (Table 2).

Table 2. Malondialdehyde (MDA) content (µM mg−1 FWL) and total chlorophyll content in
maize plants.

Treatments MDA Concentration
(µM mg−1 FWL)

Total Chl Concentration
(SPAD Units)

Control 57.0 ± 2.01 41 ± 1
AMF 32.0 * ± 2.0 46 * ± 1
HT 167 *** ± 10.06 20 *** ± 1

AMF + HT 88.0 ** ± 4.01 37 ** ± 2
The data are the mean values of three replicates ± standard deviation. Significance was determined according to
Dunnet comparison of all columns versus control column at p < 0.01 (* p < 0.05, ** p < 0.01, and *** p < 0.001).

3.2. Chlorophyll (Chl) a Fluorescence Measurements

Parameters of Chl fluorescence are powerful indicators for the functioning of the
photosynthetic apparatus under stress conditions. In PSII, light energy partitioning can be
assessed by Chl a fluorescence yield parameters using the saturation pulse (SP) method.
Chlorophyll a fluorescence kinetics significantly differed among the treatments. The
maximum quantum yield of PSII (YII) decreased considerably with high temperature
exposure. In contrast, Y(NO) and Y(NPQ) increased in high temperature exposed maize
plants (Figure 1A). AMF plants had maximum Y(II) while Y(NO) and Y(NPQ) were found
to be minimum (Figure 1A). All these parameters were recovered in AMF + HT maize
plants (Figure 1A).
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Figure 1. Quantum yields of energy conversion in PSII in control, AMF, high temperature (HT),
AMF + HT for (A) Y(II) = quantum yield of PSII, Y(NO) = the yield of non-regulated energy dissipa-
tion, Y(NPQ) = the yield of regulated energy dissipation, (B) Chlorophyll fluorescence quenching
coefficients (qP, qL, qN) in maize leaves under high temperature. The data are the mean values of
three replicates ± standard deviation, treatment means followed with different letters vary signifi-
cantly at p = 0.05 in compliance with Fisher least significant differences (LSD) and Duncan multiple
range test (DMRT) for multiple comparisons.

In this study, most of the PSII centers were open in AMF plants, that is, qL increased
for AMF while they were closed in high temperature exposed maize plants (Figure 1B). In
AMF + HT plants, more centers were in open form as compared to HT plants. qP increased
in AMF and control plants while decreased drastically in HT plants (Figure 1B). qN was
lower in control and AMF plants while increased in high temperature exposed plants
(Figure 1B). These ratios were moderate in AMF + HT plants thus showing protection of
the plants from severe temperature stress (Figure 1B).

As compared to control plants, the highest electron transport rates were observed in
AMF plants, while these rates decreased drastically in HT plants (Figure 2A). AMF + HT
plants showed a higher ratio for electron transport rates (Figure 2A). Pm is considered one
of the best indicators for PSI activity and represents the total amount of photo-oxidizable
P700. AMF inoculated plants without high temperature exposure showed significantly
higher Pm and Fm followed by control and AMF + HT. Pm and Fm showed a significant
decrease in HT plants while comparatively higher values in AMF + HT indicate a possible
restoration in plants resulting from the alleviation of HT stress by AMF (Figure 2B). The
decrease in Fm and Pm was accompanied by a declined electron transport rate of PSII and
PSI (ETRII and ETRI) for HT plants as well.
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Figure 2. Response of (A) electron transport rates in PSI (ETRI) and PSII (ETRII), (B) maximal change
in P700 (Pm) and maximum fluorescence (Fm) signal, assessed in maize leaves. The data are the
mean values of three replicates ± standard deviation, treatment means followed with different letters
vary significantly at p = 0.05 in compliance with Fisher least significant differences (LSD) and Duncan
multiple range test (DMRT) for multiple comparisons.

Figure 3 represents the analysis of quantum efficiency of PSI Y(I), Y(NA), and Y(ND).
Y(I) was found to be maximum in AMF plants while minimum in HT plants. Further, a
remarkable enhancement in Y(NA) and Y(ND) was observed in HT plants (Figure 3).

3.3. Root Colonization and Spore Density

AMF enriched plants under normal conditions had higher root colonization (~75–80%)
and the colonization decreased under high-temperature stress (~40–45%). The colonization
in non-AM plants exposed to high temperatures was negligible. The spore count was
significantly higher in the rhizosphere of AMF enriched plants (22–26 spores g−1 soil). In
AMF + HT soil, the spore count was ~10–15 spores/g. No spores were detected in the
non-AM plants grown in HT treatment. Control pots had 2.26 spores/g soil and the lowest
root colonization (1.33%).

3.4. PLFA Analysis

Irrespective of the stress, AMF enrichment significantly enhanced 16:1ω5cis NLFA. A
Significantly higher content was detected in AMF enriched plants (35.28 nanomoles NLFA g−1

soil) in comparison to the other treatments (Table 3). This was followed by AMF + HT plants
under stress (20.66 nanomoles NLFA g−1 soil). Control plants and the plants under HT
stress contained significantly lower 16:1ω5cis NLFA (10.78 nanomoles NLFA g−1 soil and
10.18 nanomoles NLFA g−1, respectively) than their AMF counterparts (Table 3).
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Figure 3. Quantum yields of energy conversion in PSI in control, AMF, high temperature (HT), AMF + HT maize leaves
under high temperature, for Y(I) = quantum yield of PSI, Y(NA) = the quantum yield of non-photochemical energy
dissipation caused by acceptor-side limitation, Y(ND) = is the quantum yield of non-photochemical energy dissipation
caused by donor side limitation. The data are the mean values of three replicates ± standard deviation, treatment means
followed with different letters vary significantly at p = 0.05 in compliance with Fisher least significant differences (LSD) and
Duncan multiple range test (DMRT) for multiple comparisons.

Table 3. The effect of high-temperature stress on PLFA communities (nanomoles g−1) analyzed in maize rhizosphere.

Treatment 16:1ω5cis
PLFA

16:1ω5cis
NLFA

Gram-
Negative Gram-Positive Fungi Actinomycetes

Control 5.96 ± 0.42 a 10.78 ± 5.17 c 44.80 ± 4.18 a 47.30 ± 16.95 a 1.48 ± 0.35 a 19.00 ± 5.82 a

AMF 4.44 ± 0.01 c 35.28 ± 0.64 a 34.21 ± 3.54 b 43.77 ± 4.59 a 1.63 ± 0.00 a 17.30 ± 1.62 a

HT 6.21 ± 0.06 a 10.18 ± 0.00 c 43.50 ± 2.50 ab 53.93 ± 3.88 a 1.45 ± 0.26 a 20.24 ± 3.53 a

AMF + HT 4.97 ± 0.32 b 20.66 ± 1.54 b 38.83 ± 5.04 ab 49.70 ± 6.89 a 1.52 ± 0.01 a 17.71 ± 3.19 a

LSD (p = 0.05) 0.50 5.11 7.39 18.13 0.41 7.23
Main effect *** *** * ns ns ns

The data are the mean values of three replicates ± standard deviation, treatment means followed with different letters vary significantly at
p = 0.05 in compliance with Fisher least significant differences (LSD) and Duncan multiple range test (DMRT) for multiple comparisons.
AM = 16:1ω5cis PLFA (AM signature fatty acid biomarker for hyphal biomass), NLFA= 16:1ω5cis neutral lipid fatty acid (AM signature
fatty acid biomarker for storage lipids). Significance was determined at p < 0.01 (ns= non-significant, * p < 0.05, and *** p < 0.001) and the
results are expressed as mean values and standard deviation (SD).

Significant differences were observed in the content of 16:1ω5cis PLFA across all
the treatments examined. However, the content was highest in the pots under HT stress
(6.21 nanomoles PLFA g−1). Remarkably, AMF enriched pots either under HT (4.97 nanomoles
PLFA g−1) or without high temperature exposure (4.44 nanomoles PLFA g−1) contained
lower PLFA than the control (5.96 nanomoles PLFA g−1) and HT pots (6.21 nanomoles
PLFA g−1) (Table 3).
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The number of fungal biomarkers was statistically at par across all the treatments stud-
ied. Nevertheless, the content was the highest in the AMF enriched pots (1.63 nanomoles
PLFA g−1 soil) followed by AMF + HT under stress (1.52 nanomoles PLFA g−1 soil). Irre-
spective of AMF application, the content of Gram-positive bacterial biomarker was higher
in pots under HT stress (HT: 53.93 nanomoles PLFA g−1 soil, AMF + HT: 49.70 nanomoles
PLFA g−1 soil). The population of actinomycetes was slightly higher in the pots devoid of
AMF enrichment than AMF enriched pots (Control: 19.0 nanomoles PLFA g−1 soil, HT:
20.24 nanomoles PLFA g−1 soil) (Table 3).

The Gram-negative bacterial biomarker followed the same trend as 16:1ω5cis PLFA. It
was significantly higher in control pots (44.80 nanomoles PLFA g−1 soil). AMF enriched
pots recorded a significantly lower Gram-negative bacterial population (34.21 nanomoles
PLFA g−1 soil) than in the other treatments (Table 4).

Table 4. The effect of high-temperature stress on fungi/bacteria-specific PLFA community analyzed
in maize rhizosphere.

Treatment Fungi/Bacteria Gram-Positive/
Gram-Negative

Control 0.0767 ± 0.01 a 1.52 ± 0.09 a

AMF 0.0800 ± 0.01 a 1.60 ± 0.03 a

HT 0.0800 ± 0.01 a 1.51 ± 0.08 a

AMF + HT 0.0833 ± 0.01 a 1.50 ± 0.09 a

LSD (p = 0.05) 0.02 0.14
Main effect ns ns

The data are the mean values of three replicates ± standard deviation, treatment means followed with different
letters vary significantly at p = 0.05 in compliance with Fisher least significant differences (LSD) and Duncan
multiple range test (DMRT) for multiple comparisons. Significance was determined at p < 0.01 (ns = non-
significant) and the results are expressed as mean values and standard deviation (SD).

The fungal to bacterial ratio differed non-significantly across all the treatments exam-
ined. The fungi/bacteria ratio was slightly higher in AMF + HT pots (0.0833) than in the
other treatments. Similarly, the Gram-positive/Gram-negative ratio was also statistically at
par across all the treatments tried.

3.5. MDA Content

Total malondialdehyde (MDA) content decreased in AMF colonized plants compared
to control plants. Maximum MDA content was observed in high temperature exposed
plants, while AMF + HT plants showed a lower MDA content than HT maize plants (Table 2).

3.6. Principal Component Analysis (PCA)

The result of PCA indicated the individual contribution of PLFA biomarkers to prin-
cipal components. The score plots revealed that AMF played a critical role in directing
the variation between treatments (Figure 4A, Table S1). The PC1 and PC2 described 95%
(89.1% and 6.9%) to the total variation in the data where PC1 was heavily loaded with
fungi (0.99), spore density (1.00), and root colonization (0.98), 16:1ω5cis NLFA (0.99),
Gram-positive/Gram-negative ratio (0.80), whereas PC2 was loaded with the biomarkers
for Gram-negative bacteria (0.22), 16:1ω5cis PLFA (0.19), and actinomycetes (0.19). The
fungi/bacteria ratio had no variance among PCs (0.00) (Figure 4A, Table S1).
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Figure 4. (A) PCA score plot for the treatments and parameters (AMF biomass and microbial
communities). The percent values that indicate the variation contributed by each PC are dis-
played in parentheses. The highest contribution was made by the parameters present in the
right (Table S1). (B) Graphical illustration of individual contribution of the treatments to PCs.
Control = maize plants grown in normal soil. AMF = maize plants grown in AMF enriched soil,
HT = maize plants grown in normal soil under higher temperature (natural temperature during
summer 43 ◦C). AMF + HT = maize plants grown in AMF enriched soil under high-temperature
stress. Fungi = fungal biomass, AM = PLFA = 16:1ω5cis (AM signature fatty acid biomarker
for hyphal biomass), SC = spore count, RC = root colonization, NLFA = 16:1ω5cis neutral lipid
fatty acid (AM signature fatty acid biomarker for storage lipids), GN = Gram-negative bacte-
ria, GP GN ratio = Gram-positive/Gram-negative ratio, Acti = actinomycetes, GP = Gram-positive, FB
ratio = Fungi/Bacteria ratio.

The most significant variation, which was detected in PC1 (89.1%), validated that
AMF and non-AMF treatments have markedly different microbial signatures. Regarding
the individual contribution of the treatments to the total variation (PC1 and PC2), the
following trend was observed: HT > AMF > control > AMF + HT (Figure 4B).
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The contribution of crucial physiological parameters was apparent in the PCA loading
plot (Figure S1A). The distinction between physiological parameters was based mainly on
PC1 (96.7%), which was loaded with YI (0.99), YII (1.00), ETRI (0.99), ETRII (0.99), Pm (0.98),
qL (0.99), qP (0.98) and Fm (0.97). PC2 (2.6%) displayed less influence and was loaded with
YNPQ (0.35), qN (0.19), and YNA (0.01) (Figure S1A, Table S2).

The scores plot of the PCA analysis also revealed comprehensible groupings of the
treatments (Figure S1A). The treatment groups were distinctly separated along PC1 and
PC2. PC1 was loaded with AMF and control plants and PC2 with HT and AMF + HT
plants (Figure S1A). Based on physiological parameters, the individual contribution of the
treatments to the total variation (PC1 and PC2) was as follows: HT > AMF > control >
AMF + HT (Figure S1B).

To further study the variation contributed by the parameters, PCA was applied with
physiological parameters and signature lipids (Figure S2A). The first component of the
PCA seemed to echo variances in Pm (1.00), qL (0.98), ETRI (0.98), ETRII (0.98), YI (0.99),
YII (0.96), Fm (0.96), qP (0.95), fungi (0.88), Gram-positive/Gram-negative ratio (0.80) and
16:1ω5cis NLFA (0.80). The second component showed variances in 16:1ω5cis PLFA (0.59),
actinomycetes (0.37), and Gram-negative (0.74) (Figure S2A, Table S3). Among the signature
lipids, Gram-positive bacteria and 16:1ω5cis NLFA and among physiological parameters
YNA, YND, YI, Pm, and YNO made the highest contribution to the total variance accounted
by PC1 and PC2 (Figure S2B).

4. Discussion

Various studies have reported that AMF improved stress mitigation and tolerance in
plants [11,13,14,23,42,43]. AMF increases plant growth by improving nutrition acquisition,
root architecture, and increasing antioxidant activity, as well as stress tolerance [44–46].

4.1. Total Chlorophyll Content

Higher chlorophyll content in AMF enriched plants compared to high temperature
exposed plants could be associated with an increased photosynthesis rate or an increase in
the N and Mg content (major components of chlorophyll molecules) of plants accompanied
with an increased carbohydrate/sugar accumulation. In other words, AMF symbiosis
creates a carbon sink in plants and consequently increases photosynthesis [13,23,47], which
was evident in our study (Table 2). This subsequently led to higher production in photo-
synthates and biomass evident by higher Chl content in AMF and AMF + HT exposed
maize plants. Higher chlorophyll content thus led to improved overall photosynthesis in
AMF and AMF + HT plants which was confirmed by measuring Chl a fluorescence.

4.2. Chlorophyll a Fluorescence

In high temperature exposed plants, a decline in Y(II) indicates decreased quantum
efficiency, as well as the closing of the open reaction centers. The major decrease in Y(II) is
mainly due to a significant reduction in the fraction of open or active PSII reaction center. In
the case of AMF + HT plants, AMF protected the plants by enhancing their photosynthetic
efficiency. The decline in YII was accompanied by an increase in Y(NO) representing a
significant inhibitory effect of HT on photochemical energy utilization of PSII. Higher non-
regulated heat dissipation was a consequence of the PSII center being closed as electron
transport was inhibited under HT exposure. It is speculated that the higher the fraction
of close PSII centers, the higher will be the value for Y(NO). Y(NO) is also considered an
excellent indicator of PSII damage. Y(NO) was found to be very low for AMF and control
plants representing a healthy state of plants (Figure 1A). The declined quantum yield of PSII
was also supported by reduced electron transport rate ETR(II) (Figure 2A) and an increase
in the value of Y(NO) indicating that both photochemical energy conversion and protective
regulatory mechanisms were inefficient to protect the plant under HT stress. NPQ, one
of the most efficient photoprotective responses and mechanisms, significantly increased
under HT conditions. Since the phenomenon of NPQ takes place in the antenna system, it
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is an efficient protective reaction from overstimulation that could result in the formation of
reactive oxygen species (ROS). It is suggested that the higher NPQ values are indicative of
a more efficient energy dissipation mechanism that protects the photosynthetic apparatus
of leaves from light-induced damage under HT conditions [48], which was indicated in
our study. AMF enrichment could improve the energy dissipation ability of a plant, which
protected the photosynthetic apparatus against excess light under HT exposure. AMF
showed minimum NPQ values in maize plants, probably due to the increased utilization
of photons (Figure 1A). The qP values indicated that AMF enrichment can improve the
utilization of photons and improve PSII susceptibility to photoinhibition and temperature
stress. The coefficient of NPQ, qN tells us about the proportion of the absorbed light energy
being dissipated into heat. This indicates less efficiency of PSII in the use of excitation
energy for photochemical reactions. qN increased dramatically in HT exposed maize
plants while it slightly increased in AMF + HT (Figure 1B). It was minimal in AMF plants
depicting that the absorbed light energy was being utilized in photochemistry instead of
getting dissipated as heat. A low value of qL with HT exposure in maize plants reflected
the over-reduction of PSII reaction centers. Increased qL in AMF + HT indicated more
number of active and open reaction centers due to the presence of AMF (Figure 1B). The
inhibition of electron transport at any point in the whole electron transport chain creates
an excitation pressure over PSII, which can be observed as a decrease in ETR(II) and YII
in HT exposed maize plants. A moderate change in ETR(II) and ETR(I) in AMF + HT
plants was observed (Figure 2A). It is well known that increasing temperature increases
thylakoid membrane fluidity [49]. The efficacy of electron transport can be hindered by
high temperature induced structural changes in the protein complexes, downregulation
of PSI and PSII, and inhibition of oxygen-evolving complex. These results suggest that
electron transport after PSII was blocked, leading to excess energy production that could
not be safely dissipated [50]. ETR(I) was comparatively less affected indicating that PSI
was a little bit robust as compared to PSII. The redox poise in the AMF maize plants
was sustained even under HT conditions, which in turn, maintained the stable electron
transport rate as evident by enhanced ETRII and ETRI rates in AMF + HT plants. Pm was
measured through saturation pulse application with pre-illumination of far-red light. The
measured decrease of Pm in HT exposed plants could also be due to either photoinactive
PSI or due to decreased content of photo-oxidizable PSI per leaf area unit [51], while these
values recovered in AMF + HT. A decline in Fm in HT plants suggests an imbalance in
the photosynthetic apparatus leading to an increase in the possibility of dissociation of
light-harvesting complex from PSII and thus disrupting the energetic connectivity [52].
This was recuperated in AMF + HT plants indicating that AMF protected the maize plants
and photosynthesis was enhanced.

AMF maize plants showed maximum quantum yield for PSI (YI). AM fungi may have
provided the host plants with additional transport channels for improving the uptake of
water and nutrients from the soil through external hyphae [13,53] resulting in enhanced
Y(I) (Figure 3). The low quantum yield of PSI in HT-exposed maize plants resulted from
noticeable donor side limitation of PSI, as depicted by Y(ND), which was higher in HT
exposed plants than in AMF plants. By these results, it can be interpreted that the fraction
of the PSI complex having the capability of charge separation and stabilization reduced
under HT treatment. In AMF + HT plants, the PSI complex was still in oxidizable form and
PSI photochemistry was still possible. Y(ND) bumped up in HT plants due to inefficient
light absorption by the antennae of PSII which provides electrons by water splitting
and PSI. Ineffective absorption reduced the rates of PSII charge separation that did not
match the capacity of PSI [27]. The small PSII antenna size can efficiently restrict PSI
photochemistry via donor-side limitation. Decreased Y(I), also inhibited electron flow in
the intersystem chain and lesser electrons coming from the stromal donors for PSI. The
decrease in Y(I) is thus caused by an increase in the donor and acceptor side limitations
of PSI. Moreover, when compared to control and AMF, the value of Y(NA) increased in
HT exposed plants. The higher value of Y(NA) in HT plants demonstrated that high-
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temperature stress reduced the fraction of oxidized P700 because of lack of acceptors
which may be explained as an adaptation to the donor-side limitation of PSI. Higher
Y(NA) represented an over-reduction of the PSI acceptor side, which contributed to the
photoinhibition of PSI, suggesting a shortage of electron acceptors (NADP+ or oxidized
ferredoxin) resulting from low CO2 fixation [54]. It is assumed that the effect of HT
exposure reduced the number of active reaction centers, while enrichment with AMF
enhanced the number of active reaction centers [23]. AMF + HT plants were less affected
by higher temperature as evident by the higher values of Y(I), Y(NA), and Y(ND) (Figure 3).
The fluorescence studies were in accordance with the content of stress biomarkers in soil.
Overall, AMF ameliorated the damaging effects of high-temperature stress by protecting
PSI and PSII, enhancing photosynthesis, and providing proper nutrients and moisture
from soil which further improved plant growth under stress conditions. AMF not only
enhanced the photosynthesis but also protected the plants, which was in corroboration
with the NLFA results as well.

4.3. Root Colonization and Spore Density

Although HT stress decreased root colonization in plants, AMF + HT plants had
substantially higher colonization than HT exposed plants. It is speculated that AMF
facilitated the high temperature exposed maize plants to protect them from temperature
stress. In AMF + HT exposed maize plants, an increase in AMF biomass (spore density and
root colonization) was observed as compared to control and HT plants. This indicated the
strategy of AMF + HT plants to combat the stress caused by high temperature by allocating
more C to AMF, thereby increasing the AMF biomass in soil. Previously, Hussain et al. [11]
have reported that AMF coating on seeds enhanced root colonization in maize plants.
AMF not only improves colonization and protects plants under high-temperature stress as
shown in the present study but also mitigated the impact of Al toxicity in lotus and barley
plants by accumulating Al in roots and ultimately protecting the plants from metal stress
as well [14]. Root colonization helped in the upregulation of photosynthetic rate in AMF
and AMF + HT plants. The results obtained from root colonization were studied in depth
by the study of NLFA and PLFA in the presence of AMF under high temperature exposure
in plants.

4.4. PLFA

It has been reported that the sensitivity of NLFA as an indicator of AMF biomass
is more significant than 16:1ω5cis PLFA [55]. In our study, the effect of treatments on
16:1ω5cis NLFA was highly significant (Tables 3 and 4). The abundance of 16:1ω5cis
NLFA in AMF + HT over control and HT alone depict the plant mediated stress mitigation
strategy which was also evident from fluorescence results. The 16:1ω5cis PLFA did not
maintain consistency with NLFA and microscopic measures of AM biomass and a higher
content was observed in control and HT. A similar trend observed in the case of Gram-
negative and 16:1ω5cis PLFA is due to the presence of 16:1ω5cis PLFA in Gram-negative
bacteria [56] and therefore the content of 16:1ω5cis PLFA may be higher in control and HT
pots. Many studies have reported that as the soil gets warmed (due to HT), it encourages
the proliferation of AMF extra radical hyphae [57] as a result of which the hyphae penetrate
deep inside the soil and increases the supply of nutrients and moisture [58] which was
evident in our study. This hyphal elongation further indicates an undeviating response of
AMF under HT stress.

Temperature stands as a key environmental factor that impacts PLFA stress indica-
tors [21]. The abundance of Gram-positive and actinomycete biomarkers at HT aligns
with previous studies [21] where, as a consequence of warming, an increase in the relative
abundance of Gram-positive and actinomycete biomarkers was observed. However, the
population of actinomycete in the AMF + HT pots was lower possibly due to alleviation of
stress by AMF. Moreover, Gram-positive bacteria increase at a higher temperature, which is
related to decreased substrate availability and greater environmental stress resistance than
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Gram-negative bacteria [22], and therefore, the population of Gram-positive bacteria was
higher in HT pots irrespective of AMF enrichment. It has been found that, in comparison
to bacterial biomass, a higher temperature is more detrimental to fungal biomass [59]. Con-
sistent with other studies [21], the population of fungi, was lowest in HT. However, this
was not the case in AMF + HT, which is also attributable to AM-induced stress alleviation.

The higher ratio of fungi to bacteria ratio in AMF + HT plants indicates a less stressed
scenario of soils resulting from higher AMF and fungal biomass. At higher temperatures,
the adaptable microbial groups are selected from the microbial community and the less
adjustable/tolerant ones are inhibited [60]. The inconsistency exhibited by the Gram-
positive/Gram-negative ratio is in agreement with earlier studies, where the variation was
credited to species succession instead of phenotypic adaptation to stress [60].

AMF and AMF + HT treatments were visibly distinguished from control and HT.
Gram-negative/Gram-positive ratio, fungi, 16:1ω5cis NLFA, spore count, and root col-
onization were positively correlated with each other and were present with AMF and
AMF + HT. 16:1ω5cis NLFA depicts AMF storage lipids viz., spores, and vesicles [55]
and this substantiates the significant and positive correlation observed between 16:1ω5cis
NLFA and spore density. Additionally, the positive correlation between 16:1ω5cis NLFA
and root colonization can be attributed to the presence of AMF storage structure inside the
plant roots which is a characteristic of Glomus species. The variables viz., Gram-negative,
actinomycetes, 16:1ω5cis PLFA, Gram-positive, were present along PC2 with control and
HT. The negative correlation of 16:1ω5cis PLFA with NLFA and microscopic parameters
might have arisen from the 16:1ω5cis PLFA of Gram-negative bacterial origin [56].

In the case of physiological parameters, Fm, ETRI, ETRII, YI, YII and qp were present
with AMF and control while, YNPQ, qN, YNA, YNO, YND, Pm, and qL were present
along with AMF + HT and HT. Microbial membranes are more subtle to environmental
perturbations, and therefore, the response of fatty acid biomarkers to the treatment-induced
effects was quite spontaneous. However, NLFA 16:15cis and microscopic parameters were
significantly and positively correlated with photosynthetic parameters (YII, YI, ETRI, ETRII,
Pm, Fm, qL, qP). Similarly, a significant correlation of photosynthetic parameters (YII, YI,
ETRI, ETRII, Pm, Fm, qL, qP) with the Gram-positive/Gram-negative ratio was observed.

4.5. MDA Content

After validating the effect of high-temperature stress on physiological parameters
and soil quality indicators, and to ensure its effect on membrane integrity, MDA content
was measured. In general, malondialdehyde (MDA) is coupled with the peroxidation
of polyunsaturated fatty acids in the membrane and subsequently with cellular integrity.
Lipid peroxidation indicates oxidative tissue damage by hydrogen peroxide, superoxide,
hydroxyl radicals. This results in the structural alteration of membranes with the release of
cell and organelle content, loss of essential fatty acids, and formation of cytosolic aldehyde
and peroxide products [61]. ROS react with lipids leading to the formation of highly
active peroxy radicals, which in turn starts a cascade reaction. The level of MDA decides
the degree of membrane lipid peroxidation [61]. Damage to cell membrane indicated by
higher concentrations of MDA content was observed in HT exposed maize plants when
compared with control, AMF, and AMF + HT plants (Table 2), which is also evident from
the results obtained from photosynthesis measurements. Temperature stress caused the
peroxidation of membrane lipids, however in AMF + HT plants, MDA content decreased
due to the presence of AMF which protected the plants. Our results are in accordance
with the previous studies where AM symbiosis improved plant defense against HT stress
by decreasing the level of lipid peroxidation (MDA) [62] and improving photosynthesis.
Several studies have also demonstrated that MDA content in AM plants was lower than
that in the non-AM plants [62]. A similar trend was observed in our study, which indicates
that AM symbiosis could alleviate the peroxidation of membrane lipids and maintain
the fluidity of the membrane [63]. This suggests that AMF not only protected the cell
membrane from ROS damage but also improved photosynthesis.
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5. Conclusions

We put forward the evidence that under high temperature exposure, arbuscular my-
corrhizal fungi symbiosis (AMF enrichment) can facilitate high photosynthetic capacity
and prevent the photosynthetic apparatus from being damaged. The damaging effect of
high-temperature stress on PSI and PSII was restrained by arbuscular mycorrhizal fungi en-
richment. AMF + HT plants showed recovery for high temperature exposure maize plants
for all of the parameters studied. In support of the physiological parameters (evident from
fluorescence results), the abundance of NLFA in AMF + HT over control and high tempera-
ture exposed plants alone indicate the arbuscular mycorrhizal mediated stress mitigation
strategy to protect itself and survive under high temperature exposure. Furthermore, our
hypothesis concludes that not only the above-ground but the below-ground parameters,
with higher content of NLFA and ratio of Gram-positive to Gram-negative bacteria in
stressed plants could be one of the probable indications that arbuscular mycorrhizal fungi
helped the plants in ameliorating high-temperature stress. Taken together, these results
indicate that arbuscular mycorrhizal fungi help the plant to maintain the stability of PSI
and PSII, improves the damaging effect of high temperature exposure, enhanced photo-
synthesis, soil quality, and crop growth leading to improvements in the yield. This is the
first study combining plant physiological traits (aboveground) and PLFA (belowground)
parameters bringing novel insight into plant improvement under stress conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof7100867/s1, Figure S1: (A) PCA score plot for the treatments and physiological parameters.
The percent values that indicate the variation contributed by each PC are displayed in parentheses.
The highest contribution was made by the parameters present in the right (Supplementary Table S2).
(B) Graphical illustration of individual contribution of the treatments to PCs. Control = maize
plants grown in normal soil. AMF = maize plants grown in AMF enriched soil, HT = maize
plants grown in normal soil under higher temperature (natural temperature during summer 43 ◦C).
AMF + HT = maize plants grown in AMF enriched soil under high-temperature stress. Pm = Re-
sponse of maximal change in P700, Fm = maximum fluorescence, ETRI = relative electron trans-
port rates in PSI, ETRII = PSII with the application of a saturation pulse, qp = photochemical
quenching, qn = non-photochemical quenching coefficient, qL = fraction of open PSII reaction
centers, Y(I) = quantum yield of PSI, Y(II) = quantum yield of PSII, Y(NA) = quantum yield of
non-photochemical energy dissipation due to acceptor-side limitation, Y(ND) = quantum yield of
non-photochemical energy dissipation due to donor-side limitation, Y(NO) = yield of non-regulated
energy dissipation, Y(NPQ) = yield of regulated energy dissipation. Figure S2: (A) PCA score plot
for the physiological parameters and signature lipids. The percent values that indicate the variation
contributed by each PC are displayed in parentheses. The highest contribution was made by the pa-
rameters present in the right (Supplementary Table S3). (B) Graphical illustration of individual contri-
bution of the physiological parameters and signature lipids to PCs. Pm = Response of maximal change
in P700, Fm = maximum fluorescence, ETRI = relative electron transport rates in PSI, ETRII = PSII
with the application of a saturation pulse, qp = photochemical quenching, qN = non-photochemical
quenching coefficient, qL = fraction of open PSII reaction centers, Y(I) = quantum yield of PSI,
Y(II) = quantum yield of PSII, Y(NA) = quantum yield of non-photochemical energy dissipation due
to acceptor-side limitation, Y(ND) = quantum yield of non-photochemical energy dissipation due to
donor-side limitation, Y(NO) = yield of non-regulated energy dissipation, Y(NPQ)= yield of regu-
lated energy dissipation, fungi= fungal biomass, AM = PLFA = 16:1ω5cis (AM signature fatty acid
biomarker for hyphal biomass), NLFA = 16:1ω5cis neutral lipid fatty acid (AM signature fatty acid
biomarker for storage lipids), GN = Gram-negative bacteria, GP GN ratio = Gram-positive/Gram-
negative ratio, Acti = actinomycetes, GP = Gram-positive, FB ratio = Fungi/Bacteria ratio. Table S1:
Eigen values, variance, and variable coordinates of different signature lipids, and AM associated
microscopic variables assessed in the soil corresponding to Figure 4A (Principle component analysis
score plot) PCA loadings N > 0.5 are shown in bold. Table S2: Eigen values, variance, and variable
coordinates of different physiological variables assessed in plants corresponding to Figure S1A
(Principal component analysis score plot) PCA loadings N > 0.5 are shown in bold. Table S3: Eigen
values, variance, and variable coordinates of different physiological variables and signature lipids
assessed in plants corresponding to Figure S2A (Principle component analysis score plot).

https://www.mdpi.com/article/10.3390/jof7100867/s1
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energy dissipation due to donor-side limitation; Y(NO), yield of non-regulated energy dissipation;
Y(NPQ), yield of regulated energy dissipation.

References
1. Tiwari, Y.K.; Yadav, S.K. High temperature stress tolerance in maize (Zea mays L.): Physiological and molecular mechanisms. J.

Plant Biol. 2019, 62, 93–102. [CrossRef]
2. Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Sai, Z.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive effects of drought

and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019,
9, 3890. [CrossRef]

3. Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B Biol. 2014,
137, 116–126. [CrossRef]

4. Hasanuzzaman, M.; Nahar, K.; Alam, M.d.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mecha-
nisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [CrossRef]

5. Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 2021,
44, 1992–2005. [CrossRef]

6. Ruiz-Lozano, J.M.; Aroca, R. Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic
stress tolerance. In Symbioses and Stress; Seckbach, J., Grube, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 357–374.

7. Smith, S.; Read, D. Mycorrhiza Symbiosis; Academic Press: London, UK, 2008.
8. Birhane, E.; Sterck, F.; Fetene, M.; Bongers, F.; Kuyper, T. Arbuscular mycorrhizal fungi enhance photosynthesis, water use

efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 2012, 169, 895–904.
[CrossRef] [PubMed]

9. Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under
drought than under amply watered conditions: A meta-analysis. Mycorrhiza 2014, 25, 13–24. [CrossRef] [PubMed]

10. Fernández-Lizarazo, J.C.; Moreno-Fonseca, L.P. Mechanisms for tolerance to water-deficit stress in plants inoculated with
arbuscular mycorrhizal fungi. A review. Agron. Colomb. 2016, 34, 179–189. [CrossRef]

11. Hussain, H.A.; Qingwen, Z.; Hussain, S.; Hongbo, L.; Waqqas, A.; Li, Z. Effects of arbuscular mycorrhizal fungi on maize growth,
root colonization, and root exudates varied with inoculum and application method. J. Soil Sci. Plant Nutri. 2021, 21, 2.

http://doi.org/10.1007/s12374-018-0350-x
http://doi.org/10.1038/s41598-019-40362-7
http://doi.org/10.1016/j.jphotobiol.2014.01.010
http://doi.org/10.3390/ijms14059643
http://doi.org/10.1111/pce.14050
http://doi.org/10.1007/s00442-012-2258-3
http://www.ncbi.nlm.nih.gov/pubmed/22286084
http://doi.org/10.1007/s00572-014-0585-4
http://www.ncbi.nlm.nih.gov/pubmed/24831020
http://doi.org/10.15446/agron.colomb.v34n2.55569


J. Fungi 2021, 7, 867 17 of 18

12. Gavito, M.E.; Olsson, P.A.; Rouhier, H.; Medinapeñafiel, A.; Jakobsen, I.; Bago, A. Temperature constraints on the growth and
functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol. 2005, 168, 179–188. [CrossRef] [PubMed]

13. Mathur, S.; Tomar, R.S.; Jajoo, A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought
stress. Photosynth. Res. 2019, 139, 227–238. [CrossRef]

14. Alotaibi, M.O.; Saleh, A.M.; Sobrinho, R.L.; Sheteiwy, M.S.; El-Sawah, A.M.; Mohammed, A.E.; Elgawad, H.A. Arbuscular
mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. J. Fungi 2021, 7, 531.
[CrossRef]

15. Eustis, A.; Murphy, K.M.; Barrios-Masias, F.H. Leaf gas exchange performance of ten Quinoa genotypes under a simulated
heatwave. Plants 2020, 9, 81. [CrossRef]

16. Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol.
2011, 9, 119–130. [CrossRef] [PubMed]

17. Rui, J.; Li, J.; Wang, S.; An, J.; Liu, W.; Lin, Q.; Yang, Y.; He, Z.; Li, X. Responses of bacterial communities to simulated climate
changes in alpine meadow soil of the Qinghai-Tibet plateau. Appl. Environ. Microbiol. 2015, 81, 6070–6077. [CrossRef]

18. Olsson, P.A.; Thingstrup, I.; Jakobsen, I.; Bååth, E. Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field.
Soil Biol. Biochem. 1999, 31, 1879–1887. [CrossRef]

19. Sharma, M.P.; Buyer, J.S. Comparison of biochemical and microscopic methods for quantification of arbuscular mycorrhizal fungi
in soil and roots. Appl. Soil Ecol. 2015, 95, 86–89. [CrossRef]

20. Agnihotri, R.; Bharti, A.; Ramesh, A.; Prakash, A.; Sharma, M.P. Glomalin related protein and C16:1ω5 PLFA associated with AM
fungi as potential signatures for assessing the soil C sequestration under contrasting soil management practices. Eur. J. Soil Biol.
2021, 103, 103286. [CrossRef]

21. Feng, X.; Simpson, M.J. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation
of grassland soils contrasting in organic matter quality. Soil Biol. Biochem. 2009, 41, 804–812. [CrossRef]

22. Wu, Y.; Yu, X.; Wang, H.; Ding, N.; Xu, J. Does history matter? Temperature effects on soil microbial biomass and community
structure based on the phospholipids fatty acid (PLFA) analysis. J. Soils Sediments 2010, 10, 223–230. [CrossRef]

23. Mathur, S.; Sharma, M.P.; Jajoo, A. Improved photosynthetic efficacy of maize (Zea mays) plants with Arbuscular mycorrhizal
fungi (AMF) under high temperature stress. J. Photochem. Photobiol. B Biol. 2018, 180, 149–154. [CrossRef] [PubMed]

24. Gerdemann, J.; Nicolson, T. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br.
Mycol. Soc. 1963, 46, 235–244. [CrossRef]

25. Sharma, M.P.; Singh, S.; Sharma, S.K.; Ramesh, A.; Bhatia, V.S. Co-inoculation of resident AM Fungi and soybean rhizobia
enhanced nodulation, yield, soil biological parameters and saved fertilizer inputs in vertisols under microcosm and field
conditions. Soybean Res. 2016, 14, 39–53.

26. Zhu, J.; Tremblay, N.; Liang, Y. Comparing SPAD and at LEAF values for chlorophyll assessment in crop species. Can. J. Soil Sci.
2012, 92, 645–648. [CrossRef]

27. Pfündel, E.; Klughammer, C.; Ulrich, S. Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I
and II using the Dual-PAM-100 measuring system. PAM Appl. Notes 2008, 1, 21–24.

28. Kramer, D.M.; Avenson, T.J.; Kanazawa, A.; Cruz, J.A.; Ivanov, B.; Edwards, G.E. The relationship between photosynthetic
electron transfer and its regulation. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G.C., Govindjee,
Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 251–278.

29. Klughammer, C.; Schreiber, U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured
by PAM fluorometry and the saturation pulse method. PAM Appl. Notes 2008, 1, 27–35.

30. Hussain, M.I.; Reigosa, M.J. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation,
reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.
PLoS ONE 2015, 10, e0114826.

31. Chen, J.; Zhang, H.; Zhang, X.; Tang, M. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved
photosynthesis, water status, and K+/Na+ homeostasis. Front. Plant Sci. 2017, 8, 1739. [CrossRef]

32. Wang, Y.; Wang, J.; Yan, X.; Sun, S.; Lin, J. The effect of arbuscular mycorrhizal fungi on Photosystem II of the host plant under
salt stress: A meta-analysis. Agronomy 2019, 9, 806. [CrossRef]

33. Zhang, Z.L.; Qu, W. Experimental Guidance of Plant Physiology; Higher Education Press: Beijing, China, 2004.
34. Koske, R.E.; Gemma, J.N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486–488.

[CrossRef]
35. Biermann, B.J.; Lindermann, R.Q. Quantifying vesicular-arbuscular mycorrhizae: Proposed method towards standardization.

New Phytol. 1981, 87, 63–67. [CrossRef]
36. Buyer, J.S.; Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 2012, 61, 127–130. [CrossRef]
37. Buyer, J.S.; Teasdale, J.R.; Roberts, D.P.; Zasada, I.A.; Maul, J.E. Factors affecting soil microbial community structure in tomato

cropping systems. Soil Biol. Biochem. 2010, 42, 831–841. [CrossRef]
38. CoHort/CoStat Software. CoHort Software. 798 Lighthouse Ave., PMB 320; CoHort/CoStat Software: Monterey, CA, USA, 1991.
39. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [CrossRef]
40. Wickham, H.; Hester, J.; Chang, W. Devtools: Tools to Make Developing R Packages Easier. R Package Devtools Version 2.3.1.

2019. Available online: https://cran.r-project.org/package=devtools (accessed on 23 July 2020).

http://doi.org/10.1111/j.1469-8137.2005.01481.x
http://www.ncbi.nlm.nih.gov/pubmed/16159332
http://doi.org/10.1007/s11120-018-0538-4
http://doi.org/10.3390/jof7070531
http://doi.org/10.3390/plants9010081
http://doi.org/10.1038/nrmicro2504
http://www.ncbi.nlm.nih.gov/pubmed/21233850
http://doi.org/10.1128/AEM.00557-15
http://doi.org/10.1016/S0038-0717(99)00119-4
http://doi.org/10.1016/j.apsoil.2015.06.001
http://doi.org/10.1016/j.ejsobi.2021.103286
http://doi.org/10.1016/j.soilbio.2009.01.020
http://doi.org/10.1007/s11368-009-0118-5
http://doi.org/10.1016/j.jphotobiol.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29425887
http://doi.org/10.1016/S0007-1536(63)80079-0
http://doi.org/10.4141/cjss2011-100
http://doi.org/10.3389/fpls.2017.01739
http://doi.org/10.3390/agronomy9120806
http://doi.org/10.1016/S0953-7562(89)80195-9
http://doi.org/10.1111/j.1469-8137.1981.tb01690.x
http://doi.org/10.1016/j.apsoil.2012.06.005
http://doi.org/10.1016/j.soilbio.2010.01.020
http://doi.org/10.18637/jss.v025.i01
https://cran.r-project.org/package=devtools


J. Fungi 2021, 7, 867 18 of 18

41. Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Package Version 1.0.7 R
Package Version. 2020. Available online: https://rpkgs.datanovia.com/factoextra/ (accessed on 23 July 2020).

42. Liu, C.Y.; Zhang, F.; Zhang, D.J.; Srivastava, A.K.; Wu, Q.S.; Zou, Y.N. Mycorrhiza stimulates root-hair growth and IAA synthesis
and transport in trifoliate orange under drought stress. Sci. Rep. 2018, 8, 1978. [CrossRef]

43. Mathur, S.; Jajoo, A. Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem
II heterogeneity. Ind. Crops Prod. 2020, 143, 111934. [CrossRef]

44. He, J.D.; Zou, Y.N.; Wu, Q.S.; Kamil, K. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and
gene expression of antioxidant enzymes. Sci. Hortic. 2020, 262, 108745. [CrossRef]

45. Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [CrossRef]
46. Pozo, M.J.; López-Ráez, J.A.; Azcón-Aguilar, C.; García-Garrido, J.M. Phytohormones as integrators of environmental signals in

the regulation of mycorrhizal symbioses. New Phytol. 2015, 205, 1431–1436. [CrossRef]
47. Haneef, I.; Faizan, S.; Perveen, R.; Kausar, S. Role of arbuscular mycorrhizal fungi on growth and photosynthetic pigments in

(Coriandrum sativum L.) grown under cadmium stress. World J. Agric. Sci. 2013, 9, 245–250.
48. Chen, J.; Burke, J.J.; Xin, Z. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the

adaptive responses of photosynthetic systems to high temperature. BMC Plant Biol. 2018, 18, 11. [CrossRef]
49. Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat stress: An overview of molecular

responses in photosynthesis. Photosynth. Res. 2008, 98, 541–550. [CrossRef]
50. Tomar, R.S.; Jajoo, A. Photosystem I (PSI) becomes more tolerant to fluoranthene due to initiation of cyclic electron flow (CEF).

Funct. Plant Biol. 2017, 44, 978–984. [CrossRef]
51. Brestic, M.; Zivcak, M.; Kunderlikova, K.; Sytar, O.; Shao, H.; Kalaji, H.M.; Allakhverdiev, S.I. Low PSI content limits the

photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2015,
125, 151–166. [CrossRef]

52. Oukarroum, A.; Schansker, G.; Strasser, R.J. Drought stress effects on Photosystem I content and Photosystem II thermotolerance
analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant 2009, 137, 188–199.
[CrossRef] [PubMed]

53. Mo, Y.; Wang, Y.; Yang, R.; Zheng, J.; Liu, C.; Li, H.; Ma, J.; Zhang, Y.; Wei, C.; Zhang, X. Regulation of plant growth, photosynthesis,
antioxidation and osmosis by an Arbuscular mycorrhizal fungus in Watermelon seedlings under well-watered and drought
conditions. Front. Plant Sci. 2016, 7, 644. [CrossRef] [PubMed]

54. Shikanai, T. Cyclic electron transport around Photosystem I: Genetic approaches. Ann. Rev. Plant Biol. 2007, 58, 199–217.
[CrossRef]

55. Olsson, P.A.; Bååth, E.; Jakobsen, I. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal
fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl. Environ. Microbiol. 1997, 63, 3531–3538. [CrossRef]

56. Nichols, P.; Stulp, B.K.; Jones, J.G.; White, D.C. Comparison of fatty acid content and DNA homology of the filamentous gliding
bacteria Vitreoscilla, Flexibacter, Filibacter. Arch. Microbiol. 1986, 146, 1–6. [CrossRef]

57. Bunn, R.; Lekberg, Y.; Zabinski, C. Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology
2009, 90, 1378–1388. [CrossRef] [PubMed]

58. Heinemeyer, A.; Fitter, A.H. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: Growth responses of the host
plant and its AM fungal partner. J. Exp. Bot. 2004, 55, 525–534. [CrossRef]

59. Ali, R.S.; Poll, C.; Kandeler, E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and
substrate quality. Soil Biol. Biochem. 2018, 127, 60–70. [CrossRef]

60. Bai, Z.; Ma, Q.; Wu, X.; Zhang, Y.; Yu, W. Temperature sensitivity of a PLFA-distinguishable microbial community differs between
varying and constant temperature regimes. Geoderma 2017, 308, 54–59. [CrossRef]

61. Ali, M.B.; Hahn, E.; Paek, K. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase
activity in Phalaenopsis. Plant Physiol. Biochem. 2005, 43, 213–223. [CrossRef] [PubMed]

62. Zhu, X.C.; Song, F.B.; Xu, H.W. Influence of arbuscular mycorrhizae on lipid peroxidation and antioxidant enzyme activity of
maize plants under temperature stress. Mycorrhiza 2010, 20, 325–332. [CrossRef]

63. Zhu, X.; Song, F.; Liu, F. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In Arbuscular Mycorrhizas and
Stress Tolerance of Plants; Wu, Q.S., Ed.; Springer Nature: Singapore, 2017. [CrossRef]

https://rpkgs.datanovia.com/factoextra/
http://doi.org/10.1038/s41598-018-20456-4
http://doi.org/10.1016/j.indcrop.2019.111934
http://doi.org/10.1016/j.scienta.2019.108745
http://doi.org/10.1007/s005720100097
http://doi.org/10.1111/nph.13252
http://doi.org/10.1186/s12870-018-1228-2
http://doi.org/10.1007/s11120-008-9331-0
http://doi.org/10.1071/FP17121
http://doi.org/10.1007/s11120-015-0093-1
http://doi.org/10.1111/j.1399-3054.2009.01273.x
http://www.ncbi.nlm.nih.gov/pubmed/19719481
http://doi.org/10.3389/fpls.2016.00644
http://www.ncbi.nlm.nih.gov/pubmed/27242845
http://doi.org/10.1146/annurev.arplant.58.091406.110525
http://doi.org/10.1128/aem.63.9.3531-3538.1997
http://doi.org/10.1007/BF00690149
http://doi.org/10.1890/07-2080.1
http://www.ncbi.nlm.nih.gov/pubmed/19537557
http://doi.org/10.1093/jxb/erh049
http://doi.org/10.1016/j.soilbio.2018.09.010
http://doi.org/10.1016/j.geoderma.2017.08.026
http://doi.org/10.1016/j.plaphy.2005.01.007
http://www.ncbi.nlm.nih.gov/pubmed/15854829
http://doi.org/10.1007/s00572-009-0285-7
http://doi.org/10.1007/978-981-10-4115-0_8

	Introduction 
	Materials and Methods 
	Plant Material, AMF Inoculum 
	Growing Conditions and Experimental Design 
	Measurement of Total Chlorophyll Content 
	Chlorophyll a Fluorescence Measurement 
	Measurement of Malondialdehyde (MDA) Content 
	AMF Root Colonization and Spore Density 
	Quantification of Signature Fatty Acids in Soil 
	Statistical Analysis 

	Results 
	Total Chlorophyll Content Measurement 
	Chlorophyll (Chl) a Fluorescence Measurements 
	Root Colonization and Spore Density 
	PLFA Analysis 
	MDA Content 
	Principal Component Analysis (PCA) 

	Discussion 
	Total Chlorophyll Content 
	Chlorophyll a Fluorescence 
	Root Colonization and Spore Density 
	PLFA 
	MDA Content 

	Conclusions 
	References

