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Abstract: Fungal infections and, in particular, those caused by species of the Candida genus, are 

growing at an alarming rate and have high associated rates of mortality and morbidity. These 

infections, generally referred as candidiasis, range from common superficial rushes caused by an 

overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success 

of currently used antifungal drugs to treat candidiasis is being endangered by the continuous 

emergence of resistant strains, specially among non-albicans Candida species. In this review article, 

the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of 

resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully 

inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural 

or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that 

these novel approaches, either used alone or in combination with traditional antifungals, may 

contribute to foster the identification of novel anti-Candida therapies. 

Keywords: candidiasis; antifungal drugs; resistance to antifungals; non-conventional therapeutics; 

phytotherapeutics and probiotics; antimicrobials; Candida 

 

1. Relevance of Candidiasis within the Spectrum of Fungal Infections 

In recent years, the number of fungal infections has risen significantly, being today estimated to 

affect, yearly, around 150 million people and cause 1.5 million deaths [1,2]. These infections range 

from superficial rushes in the mucosas, in the skin or in the nails, to systemic infections, in which the 

fungal cells disseminate in the bloodstream and may end up colonizing any major internal organ [1]. 

Candida species are among the more relevant etiological agents causative of superficial and invasive 

fungal infections. Vulvovaginal candidiasis (the common name attributed to infections caused by 

Candida spp. in the vaginal tract) is estimated to affect 70% to 75% of women worldwide, 5% to 8% of 

these in a recurrent manner [3]. The incidence of invasive candidiasis annually is estimated to be 

700,000 infections, with associated mortality rates close to 50%, especially in countries where no 

adequate antifungal therapy is available [1,2]. Different from other relevant fungal pathogens, such 
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as those belonging to the Aspergillus or Cryptococcus genera, Candida spp. are part of the human 

commensal microbiota colonizing the skin, the genitourinary or the gastrointestinal tracts [4]. Under 

certain conditions, such as reduced activity of the host immune system, prolonged use of antibiotics 

or chemotherapy, these commensal populations can overgrow, triggering more serious (in some 

cases life-threatening) infections [2]. C. albicans is the more relevant species in causing superficial and 

invasive candidiasis, but a growing incidence of non-albicans Candida species (usually known as 

NACS) is reported [5]. C. glabrata, C. tropicalis, C. parapsilosis and C. krusei are among the more 

relevant NACS, accounting, together with C. albicans, for more than 80% of all described cases of 

candidiasis [6,7]. The crude mortality rate associated to infections caused by NACS has been 

reported to exceed those attributed to C. albicans (ca. 37%) reaching in the highest cases ~50% for C. 

glabrata and ~59% for C. krusei [8]. This epidemiological shift from C. albicans to NACS is believed to 

result from a selective pressure caused by the massive utilization of azoles in prophylactic and active 

treatments that resulted in the selection of species innately more tolerant to these drugs. The use of 

better diagnosis methods to identify isolates in the clinical setting is another relevant factor as in the 

past the identification of the Candida isolates may have not been as accurate as it is today [9]. 

2. Available Antifungals against Candida spp. and Their Modes of Action 

The development of antifungal drugs is limited by the similarity between fungal and human 

cells, making it therefore difficult to identify molecules that specifically target the microbial cell 

while not damaging the host. The classes of antifungals available include azoles, polyenes and 

echinocandins. These target the biosynthesis of ergosterol or the cell wall, two cellular traits absent 

in mammalian cells (Figure 1). 5-fluorocytosine, a fluoropyrimidine, is also used to treat candidiasis 

but in this case the mechanism is more general as it targets DNA synthesis (Figure 1). A small 

description of the mechanisms of action of these molecules and the underlying resistance 

mechanisms is provided in the following subsections. 

 

Figure 1. Representative examples of the antifungals currently available to treat candidiasis. 

Chemical structure of representative examples of antifungals (azoles, echinocandins, polyenes and 

fluoropyrimidines) available, with the class of the drug being highlighted in black bold while the 

name of the drugs is shown in green. The nitrogen-based ring that distinguishes imidazoles 

(clotrimazole) from triazoles (fluconazole) is highlighted in blue. 
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2.1. Polyenes 

The better studied and more largely used polyene is amphotericin B which was the first 

antifungal developed for the treatment of disseminated candidiasis [10]. Nystatin is also used 

against Candida although only to treat oral infections [11]. The high lipophilicity of polyenes renders 

them able to penetrate the phospholipid bilayer of the plasma membrane where they bind ergosterol 

and promote the formation of pores (Figure 2) [12]. Necessarily, this perturbs the action of the 

plasma membrane as a selective barrier and a matrix for proteins. Despite its potent effect against 

Candida, the usefulness of amphotericin B is limited by its nephrotoxicity [13]. Although safer 

formulations to vehicle this drug have been developed (mostly based on the use of liposomes), its 

high cost remains an impediment and it is mostly used as a second-line therapy [13]. All Candida 

species show susceptibility to polyenes but in the case of C. glabrata and C. krusei the use of maximal 

doses is recommended (Table 1) [13]. 

2.2. Azoles 

Azoles comprise the largest family of antifungals used against Candida. The first azoles used in 

clinical practice were clotrimazole and miconazole that were approved for use in 1969, followed by 

ketaconazole in 1981 [14]. These three drugs are all imidazoles since they harbour an imidazole ring 

in their structure (as shown in Figure 1). The usefulness of clotrimazole and miconazole as 

antifungals was limited by their inhibitory effect on the human hepatic CYP enzymes [15]. As a 

response to that, in the early 90s the triazoles fluconazole and itraconazole were introduced in the 

market, showing improved pharmacokinetic profile, a broader spectrum of antifungal activity and a 

lower inhibitory effect against the human CYP450 system [14]. In the early 2000s voriconazole 

emerged, being advantageous by showing higher activity against the more azole-resilient NCAS 

species, compared to fluconazole or itraconazole [14]. Today imidazoles are mostly used for the 

treatment of superficial candidiasis, while triazoles are preferred for the treatment of invasive 

candidiasis [14,16]. Regardless of the family they belong to, azoles act by inhibiting the activity of the 

lanosterol-14α-demethylase enzyme (encoded by the ERG11 gene) that is involved in ergosterol 

biosynthesis. As a result of this inhibition, azole-exposed fungal cells accumulate toxic sterols in the 

plasma membrane dramatically affecting its permeability (Figure 2) [12]. C. glabrata and C. krusei 

show less susceptibility to azoles than the remaining Candida spp. and higher doses are 

recommended to treat infections caused by these species (Table 1). 

2.3. Fluoropyrimidines 

The fluoropyrimidine more commonly used in the treatment of candidiasis is 5-flucytosine 

(5-FC), which enters fungal cells through cytosine transporter(s) being afterwards metabolized via 

the pyrimidine salvage pathway to 5-fluorouracil (5-FU), considered the active form of 5-FC (Figure 

2). 5-FU incorporates in RNA, causing premature chain termination, and inhibits the activity of 

thymidylate synthase, an enzyme essential for DNA synthesis (Figure 2) [12,17]. With the exception 

of C. krusei, the remaining Candida spp. are susceptible to 5-FC (Table 1). Although the enzymes that 

drive conversion of 5-FC into 5-FU are not present in mammalian cells [12], bacteria living in the 

human gut were shown to efficiently convert 5-FC into 5-FU [17] thereby explaining the toxic effects 

reported in patients under 5-FC therapy. Due to its toxic effects, 5-FC is given to patients in low 

concentration and in combination with other antifungals [13]. 

2.4. Echinocandins 

Echinocandins are the only new class of antifungals discovered in recent years [1]. These are 

commercially available in three forms: caspofungin, anidulafungin and micafungin. Two more 

recent molecules, rezafungin and biafungin, have been recently described but its use in the clinical 

setting is not yet established as their efficacy is still under assessment in clinical trials. Compared to 

the already available echinocandins, rezafungin and biafungin show higher activity, lower toxicity 

and fewer drug interactions [18]–[19,20]. Echinocandins act by inhibiting the catalytic subunits of 
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β-(1,3)-D-glucan synthase, essential for cell wall synthesis. Consequently, no elongation of 

(1,3)-β-D-glucans is observed in fungal cells exposed to echinocandins, rendering them highly 

susceptible to lysis (Figure 2) [12]. Echinocandins show efficacy against all Candida species, although 

C. parapsilosis has been found to be intrinsically less susceptible [13]. Due to their safety profile and 

fungicidal activity, echinocandins are frequently used as the primary treatment of invasive 

candidiasis [13]. 

 

Figure 2. Schematic representation of the known mechanisms of action of the different classes of 

antifungals available for treatment of candidiasis. 5-FU—5-fluorouracil; 5-FUMP—5-fluorouridine 

monophosphate; FdUMP—5-fluorodeoxyuridine monophosphate; FUTP—5-fluorouridine 

triphosphate. 

Table 1. General susceptibility patterns of Candida species to antifungal drugs used in the treatment 

of candidiasis (adapted from [21],[22]). S—susceptible; S-DD—susceptible dose-dependent; 

I—intermediate; R—resistant. 

Species Imidazoles Triazoles Flucytosine Ampho. B Echinocandins 

C. albicans S to R S S S S 

C. tropicalis S S S S S 

C. parapsilosis S S S S S to I 

C. glabrata S-DD to R S-DD to R S S to I S 

C. krusei S to R S-DD to R I to R S to I S 

3. Incidence of Antifungal Resistance and Underlying Mechanisms 

In recent years, the number of resistant strains among Candida increased prominently, 

especially among NACS [23-25] (Table 2). Among the different antifungal classes, the highest 

percentage of resistance is observed for azoles, as detailed in Table 2. It is believed that this growing 

emergence of resistance to azoles is linked to the massive use of fluconazole in prophylaxis of 

patients considered at risk of suffering an infection caused by Candida [26-29]. The use of agricultural 
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fungicides structurally similar to clinical azoles exerted another layer of pressure for the selection of 

more azole-tolerant Candida strains [30,31]. Although resistance to echinocandins and amphotericin 

B is very low, a slight, but detectable, increase in the emergence of resistant strains has been 

observed for C. glabrata and C. krusei [32] (Table 2). 

Table 2. Percentage of isolates among the five more prevalent Candida spp. exhibiting resistance to 

azoles, echinocandins, flucytosine or amphotericin B (amphoB), as reported by surveillance 

epidemiological studies [22,32-39]. ** The high range of percentages found for C. krusei results from 

this species showing highly divergent susceptibilities to different imidazoles or triazoles (e.g., most 

strains are largely resistant to fluconazole but susceptible to voriconazole). 

Species Imidazoles Triazoles Echinocandins Flucytosine Ampho. B 

C. albicans 0–54 0–16.6 0 0.3–4.3 0 

C. glabrata 0–50.5 6.9–15.7 1.1–1.5 0–0.6 0–1.6 

C. tropicalis 4–14 4.1–6.1 0 1–12.5 0–1 

C. parapsilosis 0–2 1.8–14 0 0–1.4 0 

C. krusei 0–73.1 ** 2.8–100 ** 0–2.8 1–16 0–12 

3.1. Molecular Mechanisms Underlying Resistance to Antifungals in Clinical Strains 

In this section the main mechanisms behind resistance of clinical Candida strains to the different 

classes of antifungals will be described. In general, these mechanisms of resistance can be 

summarized as involving the evolution of adaptive responses aiming to counteract the deleterious 

effects of the antifungal (e.g., reducing drug efficacy by changing the target) or to reduce the internal 

concentration of the drug (e.g., through the overexpressing drug-efflux pumps). The mechanisms 

already characterized as underlying resistance to to azoles in clinical isolates were gathered in Table 

3, while those conferring tolerance to echinocandins, polyenes or 5-FU in clinical strains are detailed 

in Table 4. 

3.1.1. Azoles 

Resistance to azoles in Candida has been largely associated to modifications or overexpression of 

the drug target Erg11, modifications in the ergosterol pathway or overexpression of genes encoding 

drug-efflux pumps (Table 3). Numerous single nucleotide polymorphisms (SNPs) were reported to 

occur in the azole-target enzyme Erg11 encoded by C. albicans, C. krusei or C. tropicalis, it being 

thought that these mutations reduce the inhibitory effect of the azole over the enzyme [40-44]. 

Overexpression of ERG11 has also been described as a mechanism driving resistance in C. albicans, C. 

parapsilosis and C. tropicalis isolates [41,42,45,46]. The higher transcription of ERG11 in these 

azole-resistant isolates has been shown to result from these strains upregulating or encoding 

hyperactive forms of the Upc2 transcription factor, a strong positive regulator of ERG11 gene [47-49] 

(Figure 3). Differently, the CgERG11 allele encoded by C. glabrata azole-resistant isolates is, in the 

vast majority of the cases, identical to the one encoded by susceptible strains [50-53]. No link 

between the overexpression of CgERG11 and increased resistance to azoles could also be established 

in C. glabrata [51,53,54] suggesting that this species has evolved responses to handle azole stress 

distinct from those verified in C. albicans or C. parapsilosis. 

The induction of the activity of drug-efflux pumps has been observed in several azole-resistant 

isolates belonging to the different Candida species [42,46,49,55-70]. The more studied drug efflux 

pumps linked to azole resistance are those belonging to the ATP-binding cassette (ABC) superfamily 

which include in C. albicans CaMdr1, CaCdr1 and CaCdr2 [55,56,71]; in C. glabrata, CgCdr1, CgCdr2 

and CgPdh1 [59-61]; in C. krusei, CkAbc1 and CkAbc2 [69]; in C. parapsilosis CpCdr1 and in C. 

tropicalis CtCdr1 [42,46]. More recently, multi drug resistance (MDR) transporters belonging to the 

Major Facilitator Superfamily (MFS) have also been implicated in tolerance of different Candida 

species to azoles including CaMdr1 in C. albicans, C. parapsilosis and C. tropicalis [42,46,49] and 

CgTpo1_1, CgTpo3 and CgQdr2 in C. glabrata [72]. Although the influence of these transporters in 

mediating resistance in clinical isolates has not been studied at the same extent as those of the ABC 
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superfamily, promising results had been obtained in a recent study showing a positive correlation 

between the expression of the C. glabrata CgAqr1, CgTpo1_1, CgTpo3 and CgQdr2 MFS-MDR 

transporters and resistance to clotrimazole [70]. In this study it was also shown that the deletion of 

CgTPO3 abolishes resistance to clotrimazole in one of the identified resistant clinical isolates [70]. 

The model that is generally accepted to explain the positive effect of the ABC and MFS transporters 

in drug resistance is their role in directly mediating the extrusion of the drugs, however, from the 

biochemical point of view this model is difficult to accept considering the wide structural divergence 

of the hypothesized substrates, [as reviewed in 73]. Indeed, more recent studies performed in the 

eukaryotic model yeast S. cerevisiae show that ABC and MFS-MDR transporters have physiological 

substrates whose transport may affect the partition of the drugs between the intra- and the 

extracellular environment, [as reviewed in 73]. Specifically, some MDR transporters have been 

shown to influence the lipid composition of the plasma membrane, by promoting the transport of 

phospholipids and/or ergosterol, which thereby may affect the diffusion rate of the drugs across the 

membrane, [as reviewed in 74]. It was recently shown that deletion of the poorly characterized C. 

albicans ABC transporter CaRoa1 results in increased membrane rigidity and, consequently, in a 

reduced intracellular concentration of azoles [75]. Further studies in Candida spp. are required to 

clarify whether the observed positive effect of ABC and MFS- MDR transporters in reducing internal 

concentration of azoles is exerted directly or indirectly, via the transport of another physiological 

substrate and the relevance of these mechanisms in driving resistance in clinical isolates. 

In all cases described so far, the higher activity of MDR pumps is linked to their higher 

expression in the azole-resistant isolates [72]. In C. albicans and in C. glabrata the transcriptional 

regulation of these drug-efflux pumps is under a tight control of the pleiotropic drug resistance 

network (or PDR) that in C. glabrata is dependent of the CgPdr1 regulator [76] while in C. albicans is 

controlled by CaTac1 [77] (Table 3). Further studies, exploring gene-by-gene or genome-wide 

approaches, have implicated other regulators in the transcriptional regulation of drug-efflux pumps 

or ergosterol metabolism under azole stress including CaMrr1 and CaCap1 in C. albicans [78,79]; 

CgStb5 in C. glabrata [80], Upc2 in C. albicans, C. tropicalis, C. parapsilosis and C. glabrata [48,49,57,81] 

and CpTac1 and CpMmr1 in C. parapsilosis [41,82]. The knowledge gathered on the regulatory 

associations between known transcription factors involved in azole resistance and MDR pumps is 

briefly summarized in Figure 3. In the case of the less-studied species C. tropicalis and C. krusei, the 

regulators of the identified drug-efflux pump-encoding genes are not yet identified. Nonetheless, 

similarity searches revealed that these species encode proteins showing similarity to CaTac1 

(CTRG_05307 in C. tropicalis) and to CaMrr1 (CTRG_02269 in C. tropicalis and JL09_3889 in C. krusei) 

[83]. 
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Figure 3. Schematic representation of regulatory associations between regulators involved in azole 

resistance and genes encoding multidrug resistance efflux pumps demonstrated to be involved in 

azole resistance in Candida spp. The information concerning the regulatory associations between 

transcription factor and target genes was retrieved from the PathoYeastract database [84]. Although  

ABC-MDR and MFS-MDR transporters involved in azole resistance in C. krusei and C. tropicalis had 

been identified, until so far the regulators of these genes remain to be characterized. 

The overexpression of drug-efflux pump-encoding genes results, in many cases, from the 

occurrence of activating mutations in the coding sequence of the corresponding regulators 

[41,45,78,82,85-89]. This type of mechanism has been documented for CgPdr1 in C. glabrata; for 

CaTac1, CaMrr1 and CaUpc2 in C. albicans and for CpMrr1 and CpTac1 in C. parapsilosis 

[41,45,78,82,85,88]. An important feature of these “hyper-active” alleles is that they become active 

even when azoles are absent [78,85,88]. Interestingly, it was recently shown that C. albicans strains 

harboring CaTac1 gain-of-function alleles exhibit a decreased fitness in vivo, specially when 

challenged with stresses other than azoles [90]. It thus seems that specialization of the cells to 

improve azole stress at the expense of CaTac1 hyper-activation results in reduced capacity to handle 

unrelated stresses. In the same line, the expression of CgPdr1 gain-of-function alleles were also 

hypothesized to be linked with a reduced tolerance of C. glabrata to organic acids [51,68,91,92]. 

3.1.2. Flucytosine, Echinocandines and Polyenes 

Acquired resistance to polyenes in clinical isolates is rare and the few studies correlate that 

phenotype with a reduction of ergosterol content in the plasma membrane of the resistant isolates 

[50,93-97]. These events are generally associated with the occurrence of SNPs that inactivate genes of 

the ergosterol biosynthetic pathway and thereby alter the sterol content of the membrane, this being 

described in C. albicans, C. glabrata and C. tropicalis (detailed in Table 4) [50,93-97]. No significant link 

between the activity of drug-efflux pumps and resistance to polyenes has been identified in resistant 

isolates belonging to the different Candida species. Although amphotericin B-resistant isolates had 

been identified in C. krusei and C. parapsilosis [98,99], the underlying mechanisms remain to be 

disclosed (Table 2). The echinocandin-resistance phenotype exhibited by the small number of 

identified resistant Candida isolates was attributed to mutations in the -1,3-glucanase-encoding 

genes FKS1 and FKS2 genes [100-104]. These mutations are thought to reduce the sensitivity of the 

proteins to the drug [101] (Table 4) [100-104]. The naturally high tolerance to echinocandins of C. 

parapsilosis as well as of the closely related species C. orthopsilosis and C. metapsilosis, was also 

suggested to result from these species encoding a CpFKS1 allele less sensitive to echinocandins [105]. 

Up to now, increased activity of drug-efflux pumps has not been identified as a relevant mechanism 

by which clinical isolates acquire resistance to echinocandins. Concerning flucytosine, resistance in 

clinical isolates has been linked to modifications on the coding sequence of the Fcy cytosine 

permease or in the uracil phosphotransferase Fur1 (Table 4 and Figure 1) [106-111]. Resistance of 

some C. tropicalis isolates was linked to the emergence of mutations in CtURA3 gene, encoding the 

enzyme involved in the metabolization of UMP, the natural substrate of thymidylate synthase 

(Figure 1) [109,110]. It is thought that this mutation increases the synthesis of UMP compensating for 

the loss of this metabolite that will occur with formation of 5-FdUMP (Figure 1) [106]. 
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Table 3. Summary of the mechanisms of resistance registered in azole-resistant Candida isolates, as described in [40-43,45-70,72,76-79,82,85-89,93,94,97,112-129]. 

 C. albicans C. glabrata C. krusei C. parapsilosis C. tropicalis 

Modification of 

drug target 

(protein or 

pathway) 

SNPs reducing the 

inactivation of CaERG11 by 

azoles 

Overexpression of CaERG11 

Not found 

SNPs identified in 

CkERG11 in 

resistant isolates 

Mild 

overexpression of 

CkERG11 

Overexpression of 

CpERG11 

SNPs reducing the 

inactivation of 

CtERG11 by azoles 

Overexpression of 

CtERG11 

SNPs inactivating CaERG3 or 

CaERG5/CaERG11 to bypass 

the inactivation of ergosterol 

biosynthesis by azoles 

SNPs inactivating CaERG3 or 

CaERG5/CaERG11 to bypass 

the inactivation of ergosterol 

biosynthesis by azoles 

Decreased expression of an 

acylCoA:sterol acyltransferase 

resulting in low sterol 

esterification 

- 

SNPs that inactivate 

CpERG11 or CpERG2 to 

bypass the inactivation of 

ergosterol biosynthesis by 

azoles 

- 

Increased activity 

of drug-efflux 

pumps 

Overexpression of CaCDR1, 

CaCDR2, CaMDR1, CaPDR16 

Increased activity of CaTac1, 

CaMrr1, CaCap1, CaUpc2 

Overexpression of CgAQR1, 

CgCDR1, CgFLR2, CgPDH1, 

CgQDR2, CgSNQ2, 

CgTPO1_1, CgTPO1_2, 

CgTPO3 

Increased activity of CaTac1, 

CaMrr1, CaCap1, CaUpc2 

Overexpression of 

CkABC1 and 

CkABC2 

Overexpression of 

CpMDR1 and CpCDR1 

Increased activity of 

CpUpc2 

Overexpression of 

CtCDR1 and 

CtMDR1 

Table 4. Summary of the mechanisms of resistance to echinocandins, polyenes and 5-flucytosine (5-FC) reported in resistant Candida clinical isolates based on 

results from [50,93-97,100-104,106-111]. 

  C. albicans C. glabrata C. krusei C. parapsilosis C. tropicalis 

Modification of 

drug 

target/pathway 

Echinocandins 

SNPs reducing the 

inactivation of 

CaGSC1 by 

echinocandins 

SNPs reducing the 

inactivation of CgFKS1 

and/or CgFKS2 by 

echinocandins 

SNPs reducing the 

inactivation of 

CgFKS1 by 

echinocandins 

SNPs reducing the 

inactivation of  

CgFKS1 by 

echinocandins 

SNPs reducing the 

inactivation of CgFKS1 

by echinocandins 

Polyenes 

SNPs inactivating 

ERG3 resulting in 

reduced ergosterol 

in the membrane 

SNPs inactivating 

ERG2, ERG6 or ERG11 

hypothesized to result 

in reduced ergosterol in 

- - 

SNPs inactivating 

CtERG11 

hypothesized to result 

in reduced ergosterol 



J. Fungi 2020, 6, 23 9 of 26 

 

the membrane in the membrane 

5-Flucytosine 

SNPs reducing the 

inactivation of 

CaFUR1 or CaFCA1 

by 5-FC 

Potential 

inactivation of 

CaFCY21 or 

CaFCY22 

SNPs reducing the 

inactivation of CgFUR1 

by 5-FC 

- 

SNPs reducing the 

inactivation of 

CpFUR1 by 5-FC 

Possible hyper 

activation of CtUra3 to 

increase formation of 

UMP 
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3.2. Antifungal Resistance Driven by Large-Scale Genomic Alterations 

A recent genomic analysis has unveiled an important role for the inactivation of the CgMSH2 

gene as a driver of resistance to azoles, echinocandins and amphotericin B in C. glabrata while 

colonizing the host [130]. The CgMSH2 gene encodes a protein involved in DNA repair and its 

inactivation (promoted by frameshift mutations in the coding sequence) leads to increased genetic 

diversity in the C. glabrata population. As such, isolates harbouring inactive CgMSH2 alleles rapidly 

acquired resistance to azoles, echinocandins or amphotericin B resulting from the rapid acquisition 

of beneficial mutations in CgPdr1, in CgFks1 or CgFks2 or in CgErg6 [130]. After this pioneering 

work, several epidemiological studies have focused their attention on the prevalence of resistant 

strains harbouring inactivated CgMSH2 alleles, the percentages observed ranging between 5% and 

17% [130-133]. Around 50% of the susceptible isolates examined in these studies were also found to 

harbour inactivated CgMSH2 alleles [130-133], suggesting that this mechanism does not per se 

assure antifungal resistance. Deletion of the C. albicans CaMSH2 gene was also found to result in 

drug resistance [134], however, up to now this mechanism has not been described to underlie the 

resistance phenotype in clinical isolates. The genomic plasticity exhibited by C. albicans and C. 

glabrata has also been found to contribute to increased drug resistance in these species. In specific, in 

azole-resistant clinical C. glabrata isolates it has been described the duplication of chromosomes that 

include the CgCDR1, CgPDH1 or CgERG11 genes, as well as the formation of mini-chromosomes 

harbouring several copies of genes encoding CgCDR1 or CgPDH1 [125,135]. The diploid nature of C. 

albicans has also been found to underlie the appearance of hyperactive alleles of genes involved in 

azole-resistance (e.g., CaERG11 and CaTAC1) [121,136-138]. More recently, mis-translation of serine 

tRNAs in leucine at CUG codons, a well known specific trait of C. albicans, has also been linked with 

an accelerated resistance rate to fluconazole [138,139] while loss of heterozygosity was reported to 

underlie resistance to flucytosine in C. tropicalis [140]. 

4. Novel Approaches for the Development of Anti-Candida Agents 

The persistent increase in the emergence of strains resistant to currently used antifungals has 

been paving the way for the development of new approaches that can be used to prevent growth of 

Candida spp. and that can be further considered as interesting alternatives as new anti-Candida 

therapies. The main results obtained in these different approaches are described in the following 

sections, together with a discussion on what are the current challenges or limitations in knowledge 

that still persist. 

4.1. Phytotherapeutics 

Systematic testing of compounds from natural sources including substances/extracts produced 

by animals, plants or microorganisms, have resulted in the identification of many molecules that 

inhibit growth of Candida cells. When produced by plants these substances are named 

phytotherapeutics, these being attractive since they are naturally perceived by consumers as less 

toxic and safer than common pharmaceuticals [141]. Currently, there is an increasing number of 

phytotherapeutics being identified as efficient against Candida species including extracts isolated 

from garlic (Allium sativum L., Tulbaghia alliace or Tulbaghia violacea), coconut (Cocos nucifera) or virgin 

coconut oil, mint (Mentha piperita L.) or sage (Salvia officinalis L.) [141],[142]. A frequent limitation of 

this type of approaches is the difficulty in isolating the molecules responsible for the observed 

inhibitory effect over Candida since frequently these natural extracts are complex and used without 

further processing. 

4.2. Redesign of “Old Antifungals” 

The “redesign” of common antifungals is also an approach that has been explored to obtain 

molecules with inhibitory potential against Candida. The most paradigmatic examples are the new 

formulations of amphotericin B, which include lipid-associated and liposomal formulations showing 

higher fungal targeting and reduced toxicity against the host [143]. Within the same line azole-like 
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molecules have also been obtained showing increased antifungal potency against all Candida species, 

compared to the efficacy exhibited by fluconazole [144]. These modified azoles, named ATTAF-1 

and ATTAF-2, share general structural features with triazole alcohols, however, their mode of action 

appears to differ from the one of fluconazole which is an important trait to sensitize resistant strains 

[144]. Further on, Shrestha et al. (2017) developed a series of 27 alkylated variants of fluconazole, 

some of which presented a low hemolytic activity, low cytotoxicity and strong inhibitory potential 

against several Candida species [145]. Although the range of minimal inhibitory concentrations 

obtained was fairly wide, these compounds proved efficient against both C. albicans and non-C. 

albicans species and were observed to target the ergosterol biosynthetic pathway by inhibiting the 

sterol 14a-demethylase enzyme instead of targeting the ERG11 gene [145]. 

4.3. New Compounds Obtained by Chemical Synthesis 

The synthesis of entirely new compounds obtained by chemical synthesis, either or not 

involving metallic elements, has also been largely explored to obtain compounds with anti-Candida 

potential. Table 5 provides a systematic overview on a large cohort these “new chemicals”. Many of 

those new chemicals have silver in their structure, which is interesting since silver has been used 

since the times of ancient Greece as an antimicrobial. Examples of the Ag-containing compounds 

synthesized include those containing camphorimines, tetraazoles, albendazoles or phenantrolines as 

ligands (Table 5) [146-149]. Complexes with other metal centers like copper, cobalt, nickel or iron; or 

even with metals not usually used as bioagents, such as tin, chromium, cadmium or lead [150-158], 

have also been synthesized and shown to display moderate anti C. albicans activity (Table 5). 

Polinuclear complexes (based on Cu, Cd or Ni), particularly those harbouring ferrocenyl derived 

ligands, were also reported to have high activity against C. albicans (Table 5) [159]. More recently the 

use of a Ru(III) perylene complex has also been reported to be interesting as anti-Candida agent 

through photodynamic inactivation [160]. Although some of these complexes revealed a marked 

potential to constitute novel anti-Candida agents, their mechanism of action remains elusive in most 

cases, being also necessary to investigate their ability to inhibit growth of strains that are resistant to 

currently used antifungals. Another aspect of relevance is the fact that in the majority of the studies 

performed the compounds were not tested against NACS or against clinical strains that are, in 

general, more difficult to inhibit than laboratory strains. 

4.4. Nanoparticles 

Considering the recent interest in the use of nanoscale materials as antimicrobial agents, due to 

their high surface area to volume ratio that gives them unique chemical and physical properties 

[161], a number of studies have focused on the development and exploration of silver nanoparticles 

(AgNPs) as anti-Candida agents [162-164]. In these studies, silver nanoparticles are synthesized using 

organic or inorganic reductive agents (e.g., silver nitrate or citrate) [162,163] which promote the 

formation of metallic silver (Ag0), followed by agglomeration into oligomeric clusters that eventually 

result in the formation of metallic colloidal silver particles [165]. The exact mechanism by which 

AgNPs exert toxicity against Candida spp. remains a bit elusive, although evidence has been 

obtained suggesting that they may perturb the cellular envelope causing a disruption of the plasma 

membrane potential and consequent damage and leakage of cell constituents [164]. Concerning this 

matter, an interesting result was obtained with camphorimine-based complexes, being 

demonstrated that C. albicans, but not C. parapsilosis, C. tropicalis or C. glabrata, were able to mediate 

the conversion of Ag(I) into AgNPs [146]. 

4.5. Use of Probiotics and Antimicrobial Peptides 

For a long time, it has been known that the use of probiotics can be beneficial for the treatment 

of mucosal candidiasis, specially, for vaginal candidiasis. In this sense, a few products are currently 

available in the market mostly based on the use of lactobacilli, considering the well-known track 

record of these species as probiotics [166]. A few examples of these products are described in Table 6. 
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Probiotics are defined as “live microorganisms that, when administered in adequate amounts, 

provide a health benefit on the host” [167]. In the vaginal tract, the microbiota is largely dominated 

by lactobacilli, with L. gasseri, L. jensenii and L. crispatus being among those most abundant [168,169]. 

A decreased abundance in these microbial species appears to correlate with increased activity of 

pathogens, including of C. albicans and C. glabrata [170,171]. These results support the long-standing 

use of probiotics in the treatment of vaginal candidiasis. The mechanisms by which these lactobacilli 

species inhibit growth of pathogens, and of Candida in particular, remains to be elucidated, as well as 

the genes that mediate this interaction. Nonetheless, the evidence gathered so far (obtained using 

lactobacilli species differing from those that are indigenous of the vaginal tract) suggest that 

production of lactic-acid-concomitant acidification of the vaginal pH is on the basis of the protective 

effect of lactobacilii against vaginal pathogens [172]. Although this can be hypothesized for bacteria 

that are generally sensitive to low pH, this is not the case of yeasts that grow very well under acidic 

pHs. Indeed, a recent study performed with the supernatant of vaginal lactobacilli species (L. 

crispatus, L. gasseri and L. vaginalis) showed no significant correlation between the amount of lactic 

acid present and the inhibition of Candida [173] and concentrations of lactic acid similar to those 

found to be present in the vaginal tract (even under conditions of eubiosis) were also found not to 

significantly affect growth of C. albicans or C. glabrata [174,175]. It thus remains to be established 

what is the contribution that lactic acid production may have in the inhibition of Candida and of 

other vaginal pathogens. Other mechanisms by which vaginal lactobacilli are hypothesized to 

control the activity of Candida species in the vaginal tract is by competing for adhesion sites in the 

epithelial cells, by secreting biosurfactants that may decrease fungal binding to host surfaces and by 

secreting to the environment hydrogen peroxide and bacteriocins [172]. Interestingly, it was recently 

shown that invasive candidiasis from the gut can be restrained by commensal bacteria [176] which 

opens the door to the development of probiotics not only for the treatment of vaginal candidiasis but 

also for patients that may be at a high risk of developing systemic candidiasis caused by commensal 

Candida populations found in the gut such as those subjected to massive invasive surgeries. 
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Table 5. Examples of reported complexes involving different metallic centers that were shown to exhibit interesting activity against C. albicans. 

Metallic 

Center 
Ligand MIC/Diameter of Inhibition of the Complex (or Ligand) against C. albicans*  Ref 

Ag 

Dicarboxylic acid 

Phenanthroline 

1–490 mM (ligand has antifungal activity at >1000 mM) 

0.9–1.7 mM (ligand has antifungal activity at 149.4 mM) 
[177] 

Phenanthroline 7.8 µg/mL (ligand has antifungal activity at 31.25 µg/mL) [178] 

Tetrazole nitrogen 0.62–1.25 µg/mL (information regarding the activity of the ligand was not provided)  [149] 

Phenanthroline 12–113 mM (ligand has antifungal activity at 5000 mM) [179] 

Benzimidazolydine 18 mm (ligand has no antifungal activity) [147] 

Cu 

Schiff base  4 µg/mL (information regarding the activity of the ligand alone is not provided) [180] 

Benzimidazolydine  12 mm (ligand has no antifungal activity) [147] 

Azo dye  11 mm diameter (10 mm attributable to the ligand) [153] 

Schiff base type  115 mM (ligand has antifungal activity at 245 mM) [154] 

Schiff base + 2,2′-bipyridine ancillary  57 mM (ligand has antifungal activity at 188 mM) [155] 

Chromone hydrazines 24.8 and 30.7 mm diameter (20.8 and 21.2 mm attributable to ligands) [156] 

Dendrimer  1 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [157] 

Ferrocenyl chalcone derivatives 17 and 21 mm diameter (12 and 19 mm attributable to ligand) [159] 

Tetradentate macrocyclic  22 mm diameter (16 mm attributable to ligand) [158] 

Co 

Schiff base type ligand 32 µg/mL (information regarding the activity of the ligand alone is not provided) [180] 

azo dye ligand 11 mm diameter (10 mm attributable to ligand) [153] 

Schiff base type ligand 57–75% inhibition (40–60% attributable to ligand) [148] 

Schiff base type ligand 125 mM (ligand has antifungal activity with 245 mM) [154] 

Schiff base type ligand 82 mM (ligand has antifungal activity at 188 mM) [155] 

Dendrimer ligand 0.6 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [157] 

Tetradentate macrocyclic ligand 22 mm diameter (15 mm attributable to ligand) [158] 

Ethylenediamine derivatives 62.5 µg/mL (information regarding the activity of the ligand alone is not provided) [181] 

Ni 

Bidentate azodye ligand 15.7 mm diameter (ligand has no antifungal activity) [151] 

Schiff base type ligand 129 mM (ligand has antifungal activity with 245 mM) [154] 

Schiff base type ligand + 2,2′-bipyridine 

ancillary ligand 
87 mM (ligand has antifungal activity at 188 mM) [155] 

Chromone hydrazone 22.5 and 25.6mm diameter (20.8 and 21.2 mm attributable to ligand) [156] 

Dendrimer ligand 0.6 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [157] 

Tetradentate macrocyclic ligand 19 mm diameter (15 mm attributable to ligand) [158] 
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Cd 
Bidentate azodye ligand 17.1 mm diameter (ligand has no antifungal activity) [151] 

Ferrocenyl chalcone derivatives 20 mm diameter (12 mm attributable to ligand) [159] 

Sn 
Dithiocarbamate derivatives 

 
2.5–250 µg/mL (information regarding the activity of the ligand alone is not provided) [150] 

 

Schiff base type ligand 135 mM (ligand has antifungal activity with 245 mM) [154] 

Schiff base type ligand + 2,2′-bipyridine 

ancillary ligand 
102 mM (ligand has antifungal activity at 188 mM) [155] 

Chromone hydrazine ligand 24.8 and 26.3 mm diameter (20.8 and 21.2 mm attributable to ligand) [156] 

Fe 

Thiazole derivatives ligand 18.9 mm diameter (11.9 mm attributable to ligand) [182] 

Ferrocenyl chalcone derivatives 17 mm diameter of inhibition zone (12 mm attributable to ligand) [159] 

Bidentate azodye ligand 19.6 mm diameter (ligand has no antifungal activity) [151] 

Ferrocenyl chalcone derivatives 15 mm diameter (12 mm attributable to ligand) [159] 

Ru Perylene ligand 125 mM (information regarding the activity of the ligand alone is not provided) [160] 

Pb Ferrocenyl chalcone derivatives 17 and 21 mm diameter (12 and 19 mm attributable to ligand) [159] 

Ba Ferrocenyl chalcone derivatives 13 mm diameter (12 mm attributable to ligand) [159] 

Pd Phenylphosphine ligand 0.5 µg/mL (information regarding the activity of the ligand alone is not provided) [183] 
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Table 6. List of probiotics and Candida spp. by which these probiotics show antagonistic activity. 

Probiotic Candida spp. 

Lactobacillus rhamnosus GG (ATCC 53103), L. rhamnosus LC705, 

Propionibacterium freudenreichii subsp. shermanii JS 

C. albicans, C. glabrata, C. krusei and C. 

tropicalis 

Lactobacillus casei and Bifidobacterium breve 

C. albicans, C. tropicalis, C. guillermondii, 

C. glabrata, C. krusei, C. kefyr and 

C. parapsilosis 

L. rhamnosus HS111, L. acidophillus HS101, and Bifidobacterium 

bifidum 

C. albicans, C. guillermondii, 

C. tropicalis, C. glabrata, 

C. dubliniensis, C. famata and C. 

parapsilosis 

L. acidophilus, L. rhamnosus, 

L. delbrueckii subsp. bulgaricus and S. thermophiles 
Candida spp. 

L. rhamnosus GR-1 and L. reuteri RC-14 C. albicans and non-C. albicans 

Lactobacillus fermentum LF10 and L. acidophilus LA02 
C. albicans, C. glabrata, 

C. parapsilosis and C. krusei 

Bifidobacterium and Lactobacillus (DanActive or yoPlus yogurt) C. albicans and non-C. albicans 

L. casei subsp. rhamnosus C. albicans and non-C. albicans 

L. reuterii ATCC 55730 and L. rhamnosus (ATCC 53103) Candida spp. 

L. acidophillus, L. rhamnosus, B. longum, B. bifidum, S. boulardii, 

and Saccharomyces thermophiles 
Candida spp. 

L. acidophilus, Bifidobacterium lactis, B. longum, and B. bifidum C. albicans and C. glabrata 

5. Conclusions 

Although extensive knowledge about the molecular mechanisms by which Candida spp. 

surpass the deleterious effects of antifungals has been collected, the translation of that knowledge to 

the understanding of which of these mechanisms play a role in the stressful environment of the host 

is still limited. In this review, we aimed at providing that picture, focusing what is actually described 

to mediate resistance in clinical isolates. The modification of the drug target and the overexpression 

of genes playing a detrimental role in antifungal tolerance determined by the adjustment of 

regulatory circuits (through modification of pivotal regulators in drug resistance such as CaTac1 or 

CgPdr1) and/or the occurrence of chromosomal rearrangements, comprise the vast majority of what 

is known to mediate antifungal tolerance in resistant isolates. However, there is still a road to pursue 

in this since the resistance of several resistant isolates cannot be explained by these mechanisms 

strongly suggesting that other antifungal-resistance genes remain to be identified. It is possible that 

the difficulty in mimicking in the laboratory the stressful environment of the host complicates the 

identification of these genes and, in this field, it is expected that extensive genomic analyses of 

resistant isolates may help to shed light on this. The full clarification of this panoply of resistance 

genes and mechanisms is essential not only to improve the success of treatments and improve the 

outcomes of candidiasis, but also to develop more efficient diagnosis tools that could rapidly 

provide clinicians a fast response on how to fine-tune treatments. It also seems clear that the 

development of non-conventional therapies, focused on biological targets other than those that are 

targeted by already used antifungals, is essential considering the persistent increase in the 

emergence of strains resistant to azoles and, less significantly, to echinocandins. Although much has 

been done in this field and promising results had been obtained, especially in the identification of 

new chemicals showing a robust anti-Candida effect, it remains to be established in many cases if 

indeed these compounds are able to sensitize antifungal-resistant isolates, and what their spectrum 

of activity against NACS is. In almost all cases it is also lacking the characterization of the 

toxicological effects of these drugs/compounds/probiotics in mammalian cells as well as their 

pharmacokinetic profile. Further investigation in this field is therefore essential to assure that 

alternative antifungals will be provide to the community in the mid-term. 
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