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Abstract: Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts
and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized
communities that are resistant to antimicrobials and environmental conditions. In recent years,
new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain
the most widely studied from the morphological and molecular perspectives. Biofilms formed by
yeast and filamentous fungi present differences, and studies of polymicrobial communities have
become increasingly important. A key feature of resistance is the extracellular matrix, which covers
and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell—cell
communication, microorganisms secrete quorum-sensing molecules that control their biological
activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro
techniques have been developed to study fungal biofilms, from colorimetric methods to omics
approaches that aim to identify new therapeutic strategies by developing new compounds to combat
these microbial communities as well as new diagnostic tools to identify these complex formations
in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.

Keywords: fungal biofilms; polymicrobial biofilms; resistance; omics approaches; drug discovery;
drug combination; in vitro techniques; in vivo techniques

1. Introduction

Biofilm formation by microorganisms, particularly bacteria, has been widely studied in recent
years. This form of growth prevails in nature compared to planktonic or free cells, and is a cause
of concern mainly in the clinic because of increased resistance to antimicrobials and environmental
conditions [1-4]. Biofilms formed by pathogenic fungi have gained attention in recent years and several
species among filamentous, yeast, and dimorphic fungi have been described as capable of developing
into communities [4-8]. This review aims to discuss the development of biofilms formed by yeast
and filamentous fungi, interactions among polymicrobial communities, resistance to commercially
available antifungals, and aspects of in vitro and in vivo methodologies and models.
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2. Yeasts and Filamentous Fungi Biofilms

Biofilms are sessile microbial communities that strongly adhere to surfaces and to each other and
are protected by a polymeric extracellular matrix (ECM) composed primarily of polysaccharides [9-12].
Cells here exhibit increased resistance and different phenotypes compared to planktonic or free cells
and are associated with the persistence of infections [4,13].

Pathogenic fungi can also adhere to abiotic surfaces such as prostheses and catheters; in particular,
yeasts take advantage of this condition to gain access to blood circulation, reaching the internal organs
of patients. This is alarming, as disseminated fungal infections have a high mortality rate [14].

Both yeast and filamentous fungi can form biofilms; however, studies of filamentous fungal
biofilms are limited compared to those of yeasts [12,15]. According to Harding et al. [12], this is
because for some time the biofilms formed by filamentous fungi did not fit the previous definitions of
biofilms related to bacteria. Thus, the authors proposed a model for biofilm formation by filamentous
fungi, suggesting that, despite the distinct morphology, this model was similar to bacterial and
yeast biofilm development. The stages of development of filamentous fungi biofilms are described
in Figure 1la and include propagule adsorption (I), involving contact of spores, hyphal fragments,
or sporangia to a surface; active adhesion (II), in which adhesins are secreted by spores during
germination and other reproductive structures; first microcolony formation (III), which involves
elongation and hyphal branching, forming a monolayer with the production of extracellular matrix;
second microcolony formation or initial maturation (IV), in which compact hyphae networks form
in three dimensions, covering by an extracellular matrix, and formation of water channels; final
maturation (V), in which fruiting bodies and other survivor structures are formed depending of the
fungi; and, finally, the dispersion or planktonic phase (VI), in which conidia and/or hyphae fragments
are released, beginning a new cycle. Another peculiarity of filamentous fungi is the secretion of
small proteins known as hydrophobins. These proteins are involved in the adhesion of hyphae to
hydrophobic surfaces and may be involved in biofilm formation [12,16].

Regarding yeasts, Candida albicans is the most studied model of biofilm formation and shows
distinct phases of development that are similar to those of bacterial biofilms [3,12,17]. The development
process involves fewer stages of development compared to filamentous fungi and includes the
adsorption of yeast cells to a surface (i); followed by initial adhesion (ii), formation of basal layers of
yeast with early development of hyphae and extracellular matrix (iii); biofilm maturation containing
a significant number of yeast, hyphae, pseudohyphae, extracellular matrix, and water channels that
allow the movement of nutrients (iv), and cell dispersion (v) (Figure 1b) [12].

In recent years, studies correlated to fungal biofilms have increased considerably and several
species have shown the ability to form these communities. Paracoccidioides brasiliensis is a dimorphic
fungus responsible for paracoccidioidomycosis, a systemic mycosis endemic in Latin America.
Sardi et al. [8] characterized the biofilms formed by this fungi in the yeast phase and found that
in vitro community formation was associated with increased gene expression of adhesins and enzymes
such as GP43, enolase, GAPDH, and aspartyl proteinase and decreased in phospholipase expression.

Histoplasma capsulatum biofilm was first described by Pitangui et al. [6]. This fungus also features
thermal dimorphism and is the cause of histoplasmosis, a respiratory and systemic mycosis whose
evolution depends on the survival and replication of yeast in alveolar macrophages. Therefore,
the authors investigated the biofilm formation of two clinical isolates in vitro, as well as their adhesion
and internalization to pneumocytes.
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Figure 1. Models of biofilm development in filamentous fungi (a) and C. albicans (b). The stages
of development are similar, although the morphology and number of stages are different. In the
first model (a), six stages were proposed by Harding et al. [12]: (I) adsorption, (II) active attachment,
(III) first formation of microcolony through germination and/or monolayer development, (IV) mycelial
development, (V) biofilm maturation, and (VI) dispersion of conidia and/or arthroconidia. The second
model corresponds to classical C. albicans biofilm development (b) which includes five stages,
such as in bacteria: (i) adsorption, (ii) adhesion, (iii) microcolony formation, (iv) mature biofilm,
and (v) dispersion. Modified from Harding et al. [12]. T. rubrum mature biofilm Costa-Orlandi et al. [7];
Pires et al. [18].

Dermatophytes are fungi that invade keratinized tissues producing dermatophytosis, one of
the most common dermatomycoses in human and animals [19,20]. Among dermatophytosis,
onychomycosis often relapses and involves long, sometimes ineffective treatment. Given this context
and the hypothesis of Burkhart et al. [21], which states that biofilm formation by dermatophytes can
explain dermatophytomas, Costa-Orlandi et al. [7] confirmed in vitro biofilm formation by two of the
most prevalent species worldwide: Trichophyton rubrum and T. mentagrophytes.

With respect to Histoplasma, Paracoccidioides, and Trichophyton, other studies are being carried to
characterize these biofilms, either to correlate the communities to the greater resistance to antimicrobials
or select probable biomarkers using “omics” approaches (unpublished data).

Additionally, with respect to pathogenic fungi, biofilms formed by Candida spp. have been
studied since the mid-1990s. In vitro experiments [3,18,22-28] are predominant compared to in vivo
experiments [29,30] and confirmed the heterogeneity of these biofilms composed of dense layers of
yeast blastopores, hyphal, pseudohyphae, and ECM [31,32]. Several genes are involved in the adhesion,
ECM production, quorum sensing, and morphogenesis of biofilms, particularly in C. albicans [15,33,34].
In addition, genetic analysis confirmed that both yeasts and hyphae have unique roles in biofilm
formation by this species [34]. Paramonova et al. [35] showed that most filamentation is directly
related to increasing the compressive force of biofilms, which makes them more resistant to adverse
conditions such as vortexing and sonication. In an study of non-Candida albicans Candida, Silva et al. [36]
analyzed the differences regarding the formation, morphology, and composition of the ECM of biofilms
formed by C. glabrata, C. parapsilosis, and C. tropicalis. Regarding the morphology, some biofilms of
C. parapsilosis were composed of both yeast and pseudohyphae, although biofilms formed by other
isolates were composed of only yeast cells. Finally, in C. tropicalis, most biofilms were composed
only of yeast cells, with few exceptions showing long hyphal filaments, while C. glabrata biofilms
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contained only yeast cells. With respect to the matrix composition, biofilms showed different amounts
of carbohydrates and proteins in the three species tested.

Aspergillus spp. are saprophytic and opportunistic fungi involved in several biotechnological
processes because they secrete enzymes, proteins, and metabolites and are involved in severe superficial
and systemic pathologies [37-39]. Aspergillosis is considered the second major cause of nosocomial
infection after C. albicans and shows a high mortality rate [39,40]. In immunocompromised or
immunocompetent individuals with previous pulmonary cavities, these fungi may cause aspergilloma,
invasive pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, and even systemic
dissemination [38,39,41]. Aspergilloma is a fungal mass showing characteristics of biofilms [40].
As with Candida biofilms, the biofilms formed by these filamentous fungi have been extensively
studied in recent years and can develop on abiotic surfaces [5,40,42]. A study by Mowat et al. [5]
showed that these biofilms reached maturation in 24 h. At maturation, the biomass density was
increased and channels developed between hyphae to allow the passage of fluids and nutrients [40,43].
The ECM is composed of «-1,3-glucans, melanin, hydrophobins, galactomannan, monosaccharides,
polyols, and antigens [40,44].

Additionally, biofilms formed by several other fungi have been studied including those formed
by Cryptococcus spp. [45-48]; Malassezia spp. [49]; Trichosporon spp. [50]; Fusarium spp. [51-53];
Scedosporium spp., Lomentospora prolificans [54]; and Coccidioides spp. [55], among others.

3. Polymicrobial Biofilms

Microbes rarely exist in single-species planktonic forms [56]. Most microorganisms live in complex
communities, known as polymicrobial biofilms [11,57]. Similarly to most communities, biofilms
are multicultural and well-engineered [58]. Interactions within these biofilms can be mutualistic,
commensalistic, or antagonistic and microorganisms have evolved highly defined responses to sense
and adapt to neighboring species [59,60].

In terms of human health, polymicrobial biofilms are prevalent throughout the human body,
both during healthy and disease conditions [58]. However, the clinical concern regarding the synergies
of polymicrobial biofilms is that the infection will be more severe and recalcitrant to treatment [61].
Microbial synergy is a cooperative interaction between two or more species that produces an effect
not achieved by an individual species alone [56,62-65]. These synergistic interactions are more severe
than infections with individual microorganisms [62], leading to increased antimicrobial resistance and
prolonging the time necessary for host recovery [58].

Genetic diversity of biofilm communities increases the fitness of the residing community;,
making the species better able to survive to environmental pressures [61,66], resulting in accelerated
growth [67], increased stress resistance [68,69], immune evasion [70-73], passive resistance [74],
and metabolic cooperation [75,76]. In bacteria, it was demonstrated that this occurs because of
an expanded gene pool that can be shared within the residents of the biofilm community [66,77,78].

Infections related to polymicrobial biofilms are most frequently observed in the urinary tract,
lung, inner ear, urinary tract, oral cavity, wounds, and abiotic devices [66,79]. Biofilms at these sites
can potentiate infection and induce a chronic inflammatory state, resulting in collateral damage to
host tissue. This fact and the structure of biofilms help to protect microbes from antimicrobials,
host immunity, and environmental factors [66].

In recent years, through the development of more sophisticated technologies, the understanding
of the importance of polymicrobial infection in human fungal disease has increased.
Fungal-polymicrobial interactions are important in a variety of disease states and niches including
respiratory system infections, formation of dental plaque, invasive disease, skin and mucosal infections,
and bloodstream infections [80].

Recent studies have shown that Candida rarely exists as monospecies and can colonize mucosal
surfaces and prosthetic materials, such as dentures and catheters, throughout the human body.
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In addition, polymicrobial communities consisting of aggregates of other fungi and bacteria are
highly prevalent and clinically important [81,82].

Oral candidiasis is one of the most well-defined fungal biofilm infections and is characterized
by complex biofilms, which interact with bacteria and the host [81,83,84]. The relationship between
Candida and streptococci is generally considered to be synergistic, where a streptococcal infection
interacts with the hyphal filaments of Candida via cell surface adhesin SspB interacting with the hyphal
cell wall protein Als3 [82,85-87]. Some studies showed that bacteria can enhance biofilm formation and
the pathogenicity of C. albicans [82,88]. In this interaction, streptococci provide Candida with nutrients
from the salivary pellicle [89], while Candida promote the survival of streptococci by lowering oxygen
tension levels to those more acceptable for streptococcal growth and providing nutrients to stimulate
bacterial growth [81].

Biofilms composed of Staphylococcus aureus and Candida albicans have been widely studied, as these
two organisms are often found together in different types of infections, where they show enhanced
virulence and resistance upon co-infection of hosts [64]. Staphylococcus aureus and Candida spp. are
two of the most prevalent bloodstream pathogens and are responsible for severe morbidity and
mortality in hospitalized patients. There is some evidence that they are commonly associated as
co-infecting organisms [90-93]. In addition to the bloodstream, C. albicans and S. aureus have been
co-isolated from various mucosal surfaces including the vaginal and oral mucosa in a biofilm mode
of growth [91,94-96]. According to Peters et al. [91], a proteomics approach to identify proteins
upregulated during a C. albicans—S. aureus interaction demonstrated that both species could induce
a stress response upon their initial interaction, particularly when Candida was still in the yeast form.
However, during biofilm maturation, some genes may be downregulated as a survival strategy,
enabling survival within the host.

Moreover, although poorly studied, there are some reports of Candida—Candida mixed biofilms.
Coco et al. [97] reported the isolation of C. albicans and C. glabrata co-infection from patients with
severe inflammation and hypothesized that pathogenic synergy occurred. Further studies confirmed
this synergy, in which C. albicans appeared to assist C. glabrata in invading in vitro reconstituted
epithelium [98]. In another model corresponding to the human vaginal epithelium, C. glabrata in
combination with C. albicans caused significant tissue damage compared to C. glabrata alone [99].

Recently, Martins et al. [26] reported the in vitro formation of a mixed biofilm containing
C. albicans and C. rugosa, an emerging fungal pathogen found in Latin America, particularly in Brazil.
Candida rugosa shows a lower susceptibility to fluconazole, amphotericin B, and echinocandins and is
frequently found in elderly patients with a capacity to form biofilm [100-105]. Kirkpatrick et al. [106]
also described mixed biofilms formed by C. albicans and C. dubliniensis and showed that C. albicans
had a distinct competitive advantage over C. dubliniensis under planktonic growth conditions, while
under biofilm growing conditions, C. dubliniensis was able to better withstand the rigorous competitive
pressures from C. albicans.

Other fungi species were also described invitro as part of polymicrobial biofilms.
Aspergillus fumigatus and other species of Aspergillus are commonly found to co-colonize with
Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, open skin wounds, and cardiac
implants [107]. Manavathu et al. [108] demonstrated in vitro that polymicrobial CF patient airway
infection with P. aeruginosa and A. fumigatus produced mixed microbial biofilm with structural and
functional characteristics differing from those of monomicrobial biofilms, which is a serious clinical
problem in CF patients and other patient groups prone to airway infection with P. aeruginosa and
A. fumigatus. Zheng et al. [107] demonstrated that phenazine-derived metabolites produced by
P. aeruginosa can act as signals that affect A. fumigatus and A. nidulans development, shifting from weak
vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient,
affecting biofilm formation.

Numerous studies have described co-infections of fungi and bacteria in different diseases.
As an example, the cystic fibrosis lung is a major site of polymicrobial infections, with bacteria
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such as P. aeruginosa, S. aureus, Burkholderia cepacia, Acinetobacter baumanii, Haemophilus influenzae mixed
with C. albicans, A. fumigatus, and Scedosporium species [80]. However, additional studies are needed to
understand how these interactions occur and to determine the involvement of biofilm communities in
these infections.

At other sites of infections, different polymicrobial interactions between fungi and bacteria
have been described. As an example, Candida interacting with Streptococcus and Lactobacilli;
Porphyromonas gingivalis at oral sites; Candida, Aspergillus, Mucorales, and Fusarium with Pseudomonas
and Staphylococcus in burn wounds and trauma sites; Candida and Cryptococcus with a wide range of
Gram-negative and Gram-positive bacteria in the lower reproductive tract; Candida with Gram-positive
and Gram-negative bacteria (typically Staphylococcus spp.) and interactions between dermatophyte
species in the cutaneous site and vascular catheters, Enterobacteriaceae and Enterococcus spp.
with Candida spp. in intra-abdominal site and Pseudomonas spp. and, finally, Enterobacteriaceae,
Escherichia coli and Enterobacter faecalis with Candida spp. in the urinary tract [80,109]. Gastrointestinal
tract and gut interactions between Candida spp. and E. coli, Helicobacter, Serratia marcescens, and
Salmonella enterica subsp. enterica serovar Typhimurium have also been reported [80,110].

The increasing number of fungal infections associated with the increase in descriptions of fungal
co-infections with bacteria and other microorganisms reveal the importance of further studies of the
mechanisms and consequences of polymicrobial biofilm formation.

4. In Vitro Methods to Study Biofilms

4.1. Conventional Methods

Biofilm-associated infections are a serious public health problem because this microenvironment
can reduce the efficacy and susceptibility to antifungal agents and avoid the host immune response.
Thus, the development of biofilms has been extensively studied. Several in vitro methods are used
to evaluation biofilm progression. The main characteristics assessed are cell adhesion, production of
ECM, biofilm architecture, mechanism of drug resistance to antifungal agents, cell phenotypes, and for
certain fungal species such as Candida albicans, yeast-to-hyphae transition [17,111,112]. The methods
described below are employed in studies of both biofilms formed by filamentous fungi and those
formed by yeasts.

Colorimetric assays are commonly used in studies of the development and susceptibility
of biofilms to antifungal drugs. Hawser and Douglas [24] were pioneers in studies of fungal
biofilm formation employing the methyltetrazolium assay (MTT (3-[4,5-dimethylthiazol-2-yl1]-2,5-
iphenyltetrazolium bromide)). MTT is a yellow soluble salt; in the presence of metabolic activity,
the salt is reduced to an insoluble purple formazan crystal. The same authors concluded that the
converted MTT was highly correlated with biofilm dry weights and could be applied to evaluate
fungal biomass. Since then, this technique has been widely accepted [111,113-115]. A disadvantage of
this technique was reported by Manavathu et al. [108] when using MTT to determine the effects of
antimicrobials on polymicrobial biofilms of A. fumigatus and P. aeruginosa. According to the authors,
although this method was useful for monitoring monospecies biofilms of A. fumigatus, it was difficult
to differentiate the contribution of each microorganism in the reduction of MTT compound when
mixed biofilm was evaluated.

XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide)
is another tetrazolium salt employed to analyze biofilm development and drug susceptibility. This salt
is converted to water-soluble colored formazan salt in the presence of metabolic activity by cellular
effectors, such as mitochondrial dehydrogenases [111,116]. Among colorimetric methods, XTT has
been the most widely used in recent years [5-8,46,48,117,118]. XTT is the method of choice employed
in susceptibility tests [114]. Compared to MTT, the XTT technique is advantageous because the amount
of formazan obtained as a product can be measured directly in the supernatant, while the MTT requires
another step involving cell lysis, in which cells must be treated with dimethyl sulfoxide before optical
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density measurement [111]. However, there are some disadvantages to the use of XTT. Studies of the
growth and metabolism of planktonic cells and biofilms of Candida reported that although there the
colorimetric signal is proportional to the number of cells, there may be variations when comparing
different strains of Candida. The authors stated that there may not be a linear relationship between the
number of microorganisms and colorimetric signal, suggesting that this quantification is only valid
after constructing a standard curve for each concentration of tetrazolium salt used. In addition, they
also stated that significant salt retention may occur when comparing microorganisms in planktonic or
biofilm forms.

In addition to MTT and XTT, other assays in microtiter plates for susceptibility testing and biofilm
characterization have been explored, such as Alamar blue/resazurin [119-121]; safranin [7,42,122];
crystal violet [7,31,119]; Alician blue [123,124], and DMMB (1,9-dimethyl methylene blue) [119,125]
(Table 1). Furthermore, scanning and transmission electron microscopes and confocal microscopy have
been used to study and detect biofilm cells and ECM [6-8,126-128].

Scanning electron microscopy (SEM) is a technique in which a sample is prepared by fixation,
dehydration, and drying, and the image is processed after coating the samples with a conductor
such as gold or carbon under a high vacuum. However, drying and dehydration can alter biofilm
morphology because of ECM collapse. Furthermore, artifacts can alter the images. Alternatively,
environmental SEM has emerged as a method of choice because the biofilm can be observed without
fixation and dehydration and the vacuum is moderate, preserving the morphology and structures of
the surfaces [128,129].

Transmission electron microscopy (TEM) is also employed to visualize biofilm architecture.
The preparation for TEM is similar to that of SEM. However, in this method, the biofilm is embedded
in a resin that allows the ECM to remain stable, unlike in SEM. One disadvantage of TEM is that it is
not possible to visualize the biofilm topography [128].

Confocal laser scanning microscopy (CLSM) is another tool used to analyze the biofilm
three-dimensional (3D) architecture and thickness. In addition, it is possible to verify the presence
of macromolecular compounds, such as polysaccharides, proteins, nucleic acids, and lipids [111,127].
Another advantage is that CLSM can be employed with or without fluorescence or with fluorescence
in situ hybridization (FISH) to evaluate alterations of specific compounds of fungal populations over
time and spatial relationships [130].

Among other microscopy techniques, which are often costly, scanning transmission X-ray
microscopy is associated with near-edge X-ray absorption spectroscopy [127]; CLSM in combination
with Raman microscopy (RM) [131]; episcopic differential interference contrast microscopy with and
without fluorescence; Hoffman modulation contrast microscopy; and atomic force microscopy [132]
have been used to examine biofilms in situ.

Table 1. Microtiter plates assay for susceptibility testing and biofilm characterization.

Microtiter Plates Assays Characteristics

MTT is a yellow soluble salt, which in the presence of metabolic activity, is reduced to an
insoluble purple formazan crystal. This method is used to determine the metabolic activity
of some microorganisms in planktonic and biofilm forms. Moreover, this method shows

excellent correlation with biomass determination by dry weight. Fast and convenient [24].

MIT

Tetrazolium salt (yellow) is reduced by the activity of fungal mitochondrial dehydrogenase
to formazan salt (orange), which is correlated with cell viability. It is also used to

XTT determine metabolic activity in the developmental stages of biofilms and in antifungal
susceptibility tests [46,116,118]. The method is simple and, reproducible, but some
disadvantages were reported by Khun et al. [116].
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Table 1. Cont.

Microtiter Plates Assays Characteristics

Reduction is dependent on metabolic activity. The methods are fast and simple and
measurement can be conducted spectrofluorometrically or spectrophotometrically.
Resazurin is the active principle of Alamar Blue. The reagents are nontoxic to humans and

Alamar Blue and fungi and the method is reproducible. Good correlation with XTT assay and

Resazurin CFU/mL [133,134]. Used for biofilm quantification. Blue dye resazurin is converted to
pink resorufin in the presence of metabolic activity. Nontoxic and soluble in
water [119-121].
Safranin Dye easy to use for ECM quantification Difficult interpretation; low-cost [7,42,122].
. Used for biomass quantification. CV stains living and dead cells, and thus it is not
Crystal Violet (CV) indicated to verify antifungal activity in biofilms [119]. Low cost and easy [31].
Alcian Blue Measures mass quantity of biofilm ECM [123,124].

1,9-Dimethyl Methylene

Blue (DMMB) Quantification of biofilm matrix [119,125].

4.2. High-Throughput “Omics” Technologies in Biofilms Research

Microbial biofilms involve complex regulatory systems that can be elucidated using “omics”
technologies. “Omics” approaches are powerful tools for quantifying differentially global variations
between two different biological conditions on a transcriptomic, proteomic, and /or metabolomics
scale and targeting for the discovery of novel therapeutics and/or biomarkers in the cell host-fungi
interaction [135].

In general, these high-throughput “omics” tools compare two biological systems based on
the abundance of messenger RNA transcripts (transcriptomic), proteins (proteomic), and other
biomolecular components (metabolomics). These tools began in the so-called post-genomic era
and were developed to overcome the limitations associated with previous genomic investigations
of organisms in question. Genomic sequencing reflects genetic information through techniques that
identify the correct nucleotide sequence in the organism's genome. In this context, aspects such as
sequence, number, and syntenia of the genes contained in the nucleus of a cell remain static during
the cell cycle; however there is a dynamic equilibrium between: (a) gene transcription, (b) protein
translation, and (c) production of metabolic byproducts according to the biological situation to which
a cell is subjected, thus defining different transcriptomes, proteomes, and metabolomes for the same
cell throughout its cellular differentiation [136].

Therefore, transcriptomics, proteomics, and metabolomics analyses can be employed to determine
differences between the transcriptional, translational, and metabolic signatures of a microorganism
in biofilms and in planktonic growth. This field of research revealed new concepts; in this context,
Azevedo et al. [137] suggested a new trend, so-called “biofomics,” an omics approach to the field
of biofilms. The goal of this approach is to gather in an on-line database a large set of omics data
generated from studies of a microorganism's ability to adhere to surfaces, communicate with its
neighbors, and form biofilms. Such collected data would be freely available to the scientific community
and identify a unique biofilm “signature” including important information such as environmental,
physiological, and mutational factors that affect the ability of a microorganism to develop biofilms.
This may positively impact systems biology and consequently the development of a new diagnostic
tool and/or therapeutic for resistance development.

Recent studies using high-throughput omics methods to evaluate biofilms have revealed
important information for the development of new therapies for biofilm-based fungi infections.
For instance, a recent study showed that C. albicans constitutes the most prevalent and pathogenic
species among all Candida species related to Candida bloodstream infections because of the species’
ability to form robust biofilms. Rajendran et al. [138] showed that clinical isolates of candidemia
may be stratified as high- or low-biofilm formers (high biofilm formers (HBF) and low biofilm
formers (LBF), respectively), resulting in a heterogeneous biofilm phenotype; according to its
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classification, this directly determines clinical outcomes and mortality. These authors found significant
differential gene expression between C. albicans LBF and HBF by comparative RNA-Seq analysis on
pre-characterized clinical isolates and emphasized the importance of the aspartate aminotransferase
pathway in biofilm formation, which may be exploited as a potential target.

Concomitantly, according to Otto et al. [139], modern proteomic techniques provide a detailed
description of the protein inventory of a cell and consequent changes in protein levels through
relative or absolute quantification. In this sense, pathogenic fungi such as Candida species and
C. neoformans have differential proteomes between planktonic and biofilm cultures as established
by several authors [28,140-143]. However, features of biofilms formed by other pathogenic fungi,
such as H. capsulatum, P. brasiliensis, and dermatophytes remain unknown. The findings of our group
revealed a substantial difference in the protein profile between H. capsulatum yeasts structured in
biofilms and planktonic growth, with more than 40 differentially expressed proteins identified by
mass spectrometry. Such proteins are involved in the metabolism of amino acids, nuclear proteins,
and translated proteins [10] and should be explored for the development of safer and more effective
drugs. In addition, Pires et al. [28] used a proteomics approach to compare the protein expression
of C. orthopsilosis planktonic and biofilm forms. According to these findings, differentially expressed
proteins were linked to several suitable mechanisms that adjust the catalytic properties of the enzymes.

Additionally, an analysis of the metabolic signature of C. albicans during biofilm development
has been published by Zhu et al. [27] who conducted gas chromatography-mass spectrometry and
identified 31 differentially produced metabolites between the biofilm and planktonic cells. This study
showed even that trehalose is involved in the formation of C. albicans biofilms, as the lack of this
metabolite resulted in abnormal biofilm formation and increased the susceptibility of biofilms to the
antifungal amphotericin B and miconazole.

In fact, advances in high-throughput DNA and RNA sequencing and mass spectrometric
quantification of proteins and metabolites, combined with computational tools, have enabled researchers
to obtain large amounts of data generated in these “omics” projects. Various research groups have
integrated “omics” datasets. This combination represents much more than the sum of each “omics”
analysis, generating data related to interactions that can occur among all classes of molecules in a cell.
Thus, an understanding of interactions on different levels, such as genomic, epigenomic, transcriptional,
proteomic, post-translational modification, and metabolic, enables the mapping and elucidation of
peculiar information regarding the behavior of a cell during the same biological process [144].

Muszkieta et al. [135] integrated three different “omics” methods, microarray, RNA sequencing,
and proteomics analysis, to compare the different transcriptomics and proteomics signatures of
A. fumigatus biofilms. According to the authors, although utilization of several integrated “omics”
methods remains challenging, such a combination provides potential information that answers
important biological questions. Therefore, comparison and integration of “omics” approaches in
different levels can provide exciting information for characterizing the microbial biofilm signature, such
as formation potential, physiological activity, and structure.

In conclusion, although there are challenges in biofilms research using “omics” technologies, these
approaches, whether isolated or integrated, provide promising results for future studies targeting
novel potential therapeutics and/or biomarkers for the diagnosis of fungi biofilm-associated infections.

5. In Vivo Models to Study Fungal Biofilms

Biofilm formation provides protection to fungal cells (stress, immune system, antifungal drugs).
Recently, different techniques based on morphologic and biochemical characterization have become
available for evaluating biofilms in vitro. However, biofilms must be studied using complex organisms.
The use of in vivo models provides important information regarding the influence of host factors on
biofilm formation. Some host factors have been found to affect biofilm formation. (1) Flow conditions:
some fungi species can form biofilm under static conditions, while other species produce biofilm under
different flow conditions, requiring the production of a large amount of ECM, reflecting increased
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antifungal resistance [145-147]. (2) Substrate: surfaces with certain topography and hydrophobicity
conditions favor biofilm formation to provide good adhesion conditions. Medical devices are
carefully designed to resist microbe adhesion; however, molecules present in host fluids can promote
biofilm formation in these devices. Moreover, biotic surfaces can present receptors that facilitate the
cell-microorganism link [147-149]. (3) Nutrient conditions: the availability of sugar, proteins, and metal
ions impact biofilm characteristics [147,150,151]. (4) Immune system: leukocytes and mononuclear
cells interact with biofilm [149,152]; different antibodies also interact with biofilm [153].

The use of medical devices (catheters, dentures, and subcutaneous implants) permits the adhesion
of fungal cells and formation of biofilms, making the eradication of infection difficult [154]. Candida spp.
are among the most studied yeasts in the context of biofilms. This yeast can grow as biofilm on biotic
surfaces during oral, oropharyngeal, and vulvovaginal infection [149,155]. Aspergillus fumigatus
can form biofilm during different clinical presentations like sinusitis, pulmonary aspergillosis, and
aspergilloma [38]. Based on this, models using medical devices to study in vivo biofilm were developed
to better understand biofilm life cycle and treatment. Models using only biotic surfaces have also
been described.

The vascular catheter model is one of the most widely used approaches for evaluating in vivo
biofilm formation. This model simulates biofilm clinical infections and host conditions such as
flow, nutrition, and immune system. In contrast, the surgical process for implanting the catheter is
laborious and invasive [147,156]. This in vivo model can be performed in different animal such as
mice, rats, and rabbits. The advantage of using mice is their low cost compared to other organisms.
However, the surgical procedures are more difficult to execute because of the diameter of the vessels.
The rabbit model is easier to manipulate, but more costly [156]. Microorganisms can access vascular
catheters through the skin, fluids, medicines, and other avenues, forming biofilm on the intraluminal
or extraluminal side of this device [157]. This model was also described in rats and reproduced
architectural structures as in vitro models [158]. Martinez et al. [159] used a vascular catheter model
in rats to assess the effect of catheters coated with chitosan, a crustacean exoskeleton polymer.
Promising results were obtained for the inhibition of Candida spp. biofilm formation and cell viability
decrease. The vascular catheter model using rabbits was first described by Schinabeck et al. [160] in
a study of biofilm formation and treatment. Amphotericin B liposomal was found to be effective for
eliminating biofilms and treating C. albicans infection associated with the catheter. Using the same
model, Ghannoum et al. [157] tested the efficacy of micafungin against Candida biofilms, revealing the
ability of this antifungal to eradicate the infection and inhibit biofilm growth.

Subcutaneous in vivo biofilm models possess advantages such as the ability to implant more
than one device per animal. Compared to other models, the procedure is fast, less aggressive, and
requires a shorter anesthesia period [29,147]. In addition, this system can mimic joint prostheses;
however, the model suffers from nutrient deprivation because of inconsistent fluid irrigation [161].
A subcutaneous rat model was developed to study C. albicans biofilm; this avascular location of the
catheters reduced the experimental procedure and the biofilm extracellular matrix was observed just
two days after infection [29]. Candida glabrata cannot produce hypha, which is considered an essential
phenomenon for C. albicans biofilm formation [15]. Based on this, Schinabeck et al. [160] demonstrated
in a rabbit subcutaneous catheter model that C. glabrata formed biofilm in vivo with half the thickness
of the C. albicans biofilm, despite that C. glabrata in vivo biofilm was susceptible to echinocandins but
not to fluconazole.

Mucosal tissues exhibit satisfactory conditions for biofilm growth, mainly because they provide
a nutrient-rich environment for microbial communities and because of the unique host-microbial
interactions that can affect both the host responses and biofilm development, an advantage of this
model compared to abiotic surfaces [149]. However, the recognition of many tissue infections
as biofilms remains a critical process [149]. Oral candidiasis was found to commonly affect
immunosuppressed patients [162]; moreover, denture stomatitis related to polymicrobial biofilm
including Candida spp. induces mucosal biofilms. Thus, immunosuppressed animals are used to
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simulate this model, inoculating the fungi using a swab on the tongue or sublingually [163]. A rat
model was demonstrated to be suitable for analysis of in vivo mucosal device-associated infections,
particularly given the cost of the animal; moreover, rats show great potential for mimicking denture
stomatitis as well as for evaluating mixed microorganism biofilm and the immune response [164].
Mouse experimental oral candidiasis was used to evaluate the effect of photodynamic therapy [165].
In another study, induction of oral candidiasis was performed in mice using a bioluminescent strain
of C. albicans to evaluate the action of the polyphenol lichochalcone-A. Longitudinal imaging and
histological analysis of mice infected with the bioluminescent strain and after treatment revealed the
antifungal efficacy of lichochalcone-A [166]. An oropharyngeal candidiasis model in mouse [163]
was used to demonstrate the in vivo efficacy of miltefosine, which was previously used in vitro and
efficiently inhibited biofilm formation and for oropharyngeal treatment [167].

The incidence of urinary catheter-associated infection is high during hospital confinement.
To study the involvement of Candida spp. biofilm in this infection, a urinary in vivo biofilm model was
developed. Rat and mice were used as models to study Candida spp. biofilm characteristics as well as
the importance of the biofilm in the persistence of the candiduria, biofilm antifungal efficacy, mutant
phenotypes, and new anti-adhesive materials for catheters [168,169].

Fusarium spp. can form biofilms on contact lenses, which is a risk factor for the development of
keratitis. Sun et al. [170] developed an in vivo model for contact lenses containing Fusarium spp. biofilm,
which were applied to the mouse cornea. Important features of Fusarium spp. biofilm formation in vivo
and the immune response were elucidated. Taking a different approach, Pinnock et al. [171] used ex
vivo corneas from both rabbits and humans to study C. albicans and F. solani biofilms as alternatives to
in vitro or in vivo models to study keratitis. Another approach was developed to simulate Fusarium spp.
keratitis by direct application to the cornea without contact lenses in a murine model using fluorescent
staining. This simple method enables detection of infection in early stages [172].

Despite the use of these mammalian models for studying in vivo biofilm formation and treatment,
the use of invertebrate models to determine biofilm characteristics has recently been encouraged because
of ethical issues related to mammalians models. The use of Galleria mellonella, an insect model, revealed
information regarding the virulence of Cryptococcus spp. planktonic and biofilm cells, demonstrating that
cells originating from biofilm killed G. mellonella larvae faster than planktonic cells [173]. The effectiveness
of acetylcholine for inhibiting C. albicans biofilm was studied in the G. mellonella model [174]. In addition,
the in vivo virulence of clinical strains of C. albicans capable of forming biofilms was evaluated in
G. mellonella, revealing the strong virulence of biofilm-producing strains [175].

Significant advances have been made in understanding biofilms and in their therapy by using
in vivo models. However, many aspects of biofilms remain unclear and in vivo studies are fundamental
for understanding biofilm-host interactions and developing anti-biofilm compounds/strategies.

6. Physical and Molecular Resistance in Fungal Biofilms

Among the defining characteristics of biofilms are their high resistance to antimicrobial agents and
production of ECM. The matrix protects and envelops the entire biofilm, providing an ideal structure
for cell cohesion and adhesion [176]. The ECM also retains water and nutrients derived from matrix
materials hydrolyzed by enzymes produced by microorganisms [176].

The most medically relevant function of the extracellular matrix is its ability to provide a physical
barrier between biofilm cells and immune system and often drugs used for treatment [9,154,177].
Fungus biofilms were reported to be up to 1000-fold more resistant to antifungal agents than planktonic
cells, but the mechanism of this resistance remains unclear [10,123].

Antifungal resistance is very complex and multifactorial. It may be inducible in response to
a drug, biochemical alterations, or an irreversible genetic change resulting from prolonged exposure
(Table 2). Specifically, alterations or overexpression of target molecules, active extrusion through
efflux pumps, limited diffusion, tolerance and cell density (quorum sensing), and the ECM are all
characterized mechanisms used by fungi to combat the effects of antifungal treatment (Figure 2).
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Table 2. Resistance mechanisms associated with biofilm formation. Adapted from Mathé and Dijick
[178] and Sardi et al. [179].

Resistance Mechanisms Effect References

. . Perumal et al. [180];
Cellular density Quorum sensing Seneviratne et al. [181].

Alteration in target levels; Associated with
Differential regulation drug target changes in target structure that make the Nailis et al. [182].
drug unable to bind to the target.

Upregulation drug efflux pumps Antifungal is pumped out of cells and thus

cannot perform its intracellular function. Nett et al. [183]

Persister cells B.ecause of t he dormant state (.)f thg LaFleur et al. [184]

persisters, antifungal targets are inactive.
Specific binding of antifungals to
Presence of a matrix f3-1,3-glucans, a major component of the Al-Fattani and Douglas [185];
esence o matrix, prevents antifungal agents from Mitchell et al. [177].
reaching their targets.
Diverse stress responses Pos§1ble indirect effects through th.e Diez-Orejas et al. [186]

regulation of other resistance mechanisms.

Planktonic cells generally depend on irreversible genetic changes to maintain a resistant
phenotype, while biofilms persist because of their physical presence and population density, providing
a nearly inducible resistant phenotype regardless of the defined genetic changes [10,187,188]. Further,

factors including pH, temperature, oxygen availability, and other environmental stresses alter the
biofilm architecture and possibly antifungal susceptibility [189].

ECM S\

% EfﬂuXM

Persisters
o
@ Overexpressed
o targets
Stress o M
O
Physiology

Figure 2. Scheme of the mechanisms and factors that promote fungal biofilm resistance, which are
common to several fungi. Adapted from Ramage et al. [189].

A defining characteristic of a biofilm is its ECM, which is self-produced and may contain proteins,
polysaccharides, lipids, nucleic acids, and other molecules [176,190] that can interact with each other
and with the cell surface to form a robust and protective network [191]. ECM composition varies across
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species and even growth conditions [176]; however, the ECM composition of many biofilms remains
unknown [176]. Functionally, the ECM can serve as a protective barrier against chemical and biological
antimicrobial agents, including many prescribed antifungal drugs [178,190]. In some instances, the
ECM can contribute to antifungal resistance by binding to antifungals, thereby preventing access to
their intended target at the surface or within fungal cells [192].

Quorum sensing is related to the mechanism by which microorganisms communicate and
coordinate their behavior through the secretion of signaling molecules [193,194]. Cells respond to
these quorum-sensing molecules (QSMs) through the expression or repression of quorum-dependent
target genes [10,195]. QSMs play a role in several mechanisms, including biofilm development,
morphogenesis, and limitation of cell population, among others. They are also important during the
infectious process, particularly for dissemination [194,196]. Farnesol was described for the first time
in C. albicans by Hornby et al. [197] as a QSM. Contact between C. albicans and exogenous farnesol
results in several responses, including activation of genes involved in drug resistance (CaFCR1 and
CaPDR16) [189,198]. Another study conducted by Sharma et al. [199] demonstrated that farnesol
modulated the action of drugs in C. albicans planktonic cells. In addition, Ramage et al. [200]
concluded that farnesol inhibits hyphae development during the initial phase of biofilm formation,
compromising the structure. Farnesol also affects many other microorganisms such as S. aureus,
S. cerevisiae, Aspergillus spp., P. brasiliensis, and Mycobacterium smegmatis [201,202]. The detection of
QSMs is of fundamental importance, as they have specific roles in biofilm physiology (Table 3).

Persisters represent a small subpopulation of cells that spontaneously enter a dormant,
non-dividing state. When a population is treated with an antimicrobial, normal cells die, while
persisters survive. When therapy is discontinued, the persistent cells can restore the biofilms, thus
explaining why biofilm infections are recurrent [203,204].

The molecular mechanisms that promote antifungal resistance in fungal biofilms are not
completely understood. Some studies have shown that efflux pumps contribute to azole resistance only
during the early phase of biofilm formation. In addition, membrane sterol composition contributes
to azole resistance, but this occurs during the intermediate and mature phases [205]. According to
Soto [206], the upregulation of drug efflux pumps also causes drug resistance in several biofilm-forming
microorganisms. These pumps are divided into two groups; the first is linked to ATP-binding cassette
transporters encoded by CDR-genes, while the second is composed of the major facilitator superfamily
encoded by MDR-genes [178]. Activation of drug efflux pumps occurs through the “expulsion” of
antifungal drugs after contact with the biofilm. The increases the expression of the CDR1 and MDR1
genes, in which has been correlated to the resistance of yeast to azole drugs. Some data regarding
biofilm-associated resistance have shown that the expression of efflux pump genes is increased during
the first hours of biofilm formation [178].

Table 3. Role of QSMs (quorum-sensing molecules) in yeasts and dimorphic fungi. Adapted from
Wongsuk et al. [194].

Organism QSMs Role of QSMs in Molds and Dimorphic Fungi References
Inhibited hyphal development Nickerson et al. [207]
Involved in morphogenesis Martins et al. [208]
! Inhibited biofilm formation Ramage et al. [200]
Farneso Induced apoptosis Shirtliff et al. [209]
C. albicans Antifungal activity Sardi et al. [10]
Modulated drug extrusion Sharma et al. [199]
Promoted germ tube formation Alem et al. [210]
Tyrosol Stimulated hypha production during the early stages of biofilm development Chen et al. [211]

Antifungal activity Cordeiro et al. [212]
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Table 3. Cont.

Organism QSMs Role of QSMs in Molds and Dimorphic Fungi References

. Inhibited conidiation
A niger Farnesol Reduced intracellular cAMP levels Lorek etal. [213]

Altered growth phenotype

A. fumigatus Farnesol Perturbed cell wall Dichtl et al. [214]

H. capsulatum Farnesol Inh1.b1ted b“’mn? formation Brilhante et al. [215]
Antifungal activity
Inhibited growth

P. brasiliensis Farnesol Delayed the dimorphic transition Derengowski et al. [216]
Antifungal activity

7. Conclusions

Biofilm formation by saprophytic and pathogenic fungi is of great concern. Despite recent
advances in the study of biofilms formed by species in the genus Candida, Cryptococcus, and Aspergillus,
reports of biofilm formation by other species are increasing. Therefore, an understanding of
the molecular mechanisms and key factors involved in establishing these infections is necessary.
In addition, interactions between biofilms of polymicrobial origin and the host should be prioritized
in studies, particularly those of recently described biofilms. Finally, the discovery of new treatment
alternatives capable of controlling or destroying these microbial communities is essential.
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