
Fungi
Journal of

Review

Exploitation of Aspergillus terreus for the Production
of Natural Statins
Mishal Subhan 1, Rani Faryal 1 and Ian Macreadie 2,*

1 Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320,
Pakistan; mishalsubhan@gmail.com (M.S.); ranifaryal@gmail.com (R.F.)

2 School of Science, RMIT University, Bundoora, Victoria 3083, Australia
* Correspondence: ian.macreadie@rmit.edu.au; Tel.: +61-3-9925-6627

Academic Editor: David S. Perlin
Received: 19 April 2016; Accepted: 26 April 2016; Published: 30 April 2016

Abstract: The fungus Aspergillus (A.) terreus has dominated the biological production of the
“blockbuster” drugs known as statins. The statins are a class of drugs that inhibit HMG-CoA reductase
and lead to lower cholesterol production. The statins were initially discovered in fungi and for many
years fungi were the sole source for the statins. At present, novel chemically synthesised statins are
produced as inspired by the naturally occurring statin molecules. The isolation of the natural statins,
compactin, mevastatin and lovastatin from A. terreus represents one of the great achievements of
industrial microbiology. Here we review the discovery of statins, along with strategies that have
been applied to scale up their production by A. terreus strains. The strategies encompass many
of the techniques available in industrial microbiology and include the optimization of media and
fermentation conditions, the improvement of strains through classical mutagenesis, induced genetic
manipulation and the use of statistical design.

Keywords: Aspergillus terreus; compactin; fermentation; industrial microbiology; lovastatin;
mevastatin; mutagenesis; optimization; polyketide

1. Introduction

Statins are polyketide compounds that are produced by some fungi during their secondary
metabolism [1]. The statins act as competitive inhibitors, specifically inhibiting HMG-CoA reductase,
a rate limiting step of cholesterol biosynthesis. Statins block the conversion of HMG-CoA to mevalonic
acid in the mevalonate pathway [1–3]. In this metabolic pathway, mevalonate is converted into a
number of hydrophobic molecules, sterol isoprenoids and nonsterol isoprenoids [4]. The statins reduce
total cholesterol level in serum, especially the low-density lipoprotein levels and are therefore used to
treat hypercholesterolemia [5,6].

The statins are the largest selling class of drugs throughout the world. Sales for statins in 2005
were $25 billion [6,7]. In addition to the ability to reduce the risk of cardiovascular morbidity and
mortality, statins can also prevent and reduce the development of peripheral vascular disease [8].
Statins not only reduce the LDL-cholesterol levels but also protect against atherosclerotic plaque
growth via their antithrombotic and anti-inflammatory effects [9–11]. Statins may further be used in
cases of hypertension, osteoporotic fractures, ventricular arrhythmia and prevention of Alzheimer’s
disease and Parkinson’s disease [12–15].

2. Discovery of Statins

The Japanese microbiologist Dr. Akira Endo pioneered the discovery of statins from the filamentous
fungi Penicillium (P.) citrinum and later from A. terreus in the 1970s. Among the statins, mevastatin was
the first to be investigated as a fungal secondary metabolite, later followed by lovastatin (monacolin K
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or mevinolin) [16,17]. In 1976, Sankyo and Merck & Co commenced collaborative research on
statins. Lovastatin was the first statin approved by United States Food and Drug Administration
as a hypercholesterolemic drug in August 1987 [18,19]. Many fungi such as Monascus (M.) ruber [20],
M. purpureus [21,22], M. pilosus, A. terreus [23,24], A. flavipes [25], A. fischeri, A. flavus, A. umbrosus,
A. parasiticus, Accremonium chrysogenum, P. funiculosum, Trichoderma (T.) viridae and T. longibrachiatum [26]
have been reported to produce lovastatin. Lovastatin is the statin of overwhelming interest because it
can be produced naturally and its levels can be scaled up using cheap raw materials, reducing the cost
of its production in comparison to chemically synthesized statins. According to data from IMS Health,
over 10 billion tablets have been distributed and more than 100 million prescriptions have been written
worldwide for lovastatin during the years 1988 to 2003. Lovastatin has been marketed for over 20 years
with more than 27 million patient-years of therapy [27].

Statins are divided into three different classes depending upon whether their synthesis is natural,
semi-synthetic or totally synthetic [19]. Natural statins are produced by direct fermentation of fungi
and include lovastatin and pravastatin. Semisynthetic statins include simvastatin that is produced by
direct alkylation of lovastatin. The methylbutyrate side chain is converted into a dimethylbutyrate
moiety [5,28]. Synthetic statins are different in structure from natural statins, but there is similarity
to natural statins in the HMG CoA-like inhibitory moiety. Chemically synthesized statins include
atorvastatin, rosuvastatin, fluvastatin and cerivastatin [2,19].

Lovastatin and simvastatin are inactive until the uppermost ring is opened by liver enzymes,
or by treatment with ethanolic NaOH. Atorvastatin, on the other hand, is produced in active form,
with the ring opened (see Figure 1 for examples of the structure of statins). Activated statins have
been shown to inhibit the growth of numerous fungi, including Saccharomyces cerevisiae, Candida spp.,
Aspergillus spp. and Cryptococcus spp. through inhibition of HMG-CoA reductase which depletes
ergosterol [29–33]. Ergosterol is the fungal equivalent of cholesterol. Both ergosterol and cholesterol
are essential for cell viability and preservation of membrane fluidity and both are products of a very
similar pathway.

J. Fungi 2016, 2, x 

lovastatin (monacolin K or mevinolin) [16,17]. In 1976, Sankyo and Merck & Co commenced 
collaborative research on statins. Lovastatin was the first statin approved by United States Food and 
Drug Administration as a hypercholesterolemic drug in August 1987 [18,19]. Many fungi such as 
Monascus (M.) ruber [20], M. purpureus [21,22], M. pilosus, A. terreus [23,24], A. flavipes [25], A. fischeri, 
A. flavus, A. umbrosus, A. parasiticus, Accremonium chrysogenum, P. funiculosum, Trichoderma (T.) viridae 
and T. longibrachiatum [26] have been reported to produce lovastatin. Lovastatin is the statin of 
overwhelming interest because it can be produced naturally and its levels can be scaled up using 
cheap raw materials, reducing the cost of its production in comparison to chemically synthesized 
statins. According to data from IMS Health, over 10 billion tablets have been distributed and more 
than 100 million prescriptions have been written worldwide for lovastatin during the years 1988 to 
2003. Lovastatin has been marketed for over 20 years with more than 27 million patient-years of 
therapy [27]. 

Statins are divided into three different classes depending upon whether their synthesis is 
natural, semi-synthetic or totally synthetic [19]. Natural statins are produced by direct fermentation 
of fungi and include lovastatin and pravastatin. Semisynthetic statins include simvastatin that is 
produced by direct alkylation of lovastatin. The methylbutyrate side chain is converted into a 
dimethylbutyrate moiety [5,28]. Synthetic statins are different in structure from natural statins, but 
there is similarity to natural statins in the HMG CoA-like inhibitory moiety. Chemically synthesized 
statins include atorvastatin, rosuvastatin, fluvastatin and cerivastatin [2,19]. 

Lovastatin and simvastatin are inactive until the uppermost ring is opened by liver enzymes, or 
by treatment with ethanolic NaOH. Atorvastatin, on the other hand, is produced in active form, with 
the ring opened (see Figure 1 for examples of the structure of statins). Activated statins have been 
shown to inhibit the growth of numerous fungi, including Saccharomyces cerevisiae, Candida spp., 
Aspergillus spp. and Cryptococcus spp. through inhibition of HMG-CoA reductase which depletes 
ergosterol [29–33]. Ergosterol is the fungal equivalent of cholesterol. Both ergosterol and cholesterol 
are essential for cell viability and preservation of membrane fluidity and both are products of a very 
similar pathway.  

 

Lovastain Simvastatin Atorvastatin 

Figure 1. Structure of a natural, semi-synthetic and totally synthetic statin. 

Statins have potential as antifungals; however, they are unlikely to compete with azoles and 
drugs that can efficiently and selectively target ergosterol and its biosynthesis in invasive fungal 
infections. The maximum plasma concentration of the drug is 10–40 ng/mL that can be achieved in 
clinical trials [34]. Several studies reported the higher MIC values of statins against fungal species 
ranging from 4 µg/mL to a value greater than 256 µg/mL. The MIC values for the growth inhibition 
of A. fumigatus was found to be 58 µg/mL (10 µM) and 0.4 µg/mL (1 µM) in case of atorvastatin and 
simvastatin, respectively [32]. Lovastatin and simvastatin have the ability to inhibit growth of 
Aspergillus spp. but at concentrations which are toxic to human cells [30,35]. At clinically achievable 
concentrations, the statins show no effect on the in vitro activities of azoles and amphotericin B 

Figure 1. Structure of a natural, semi-synthetic and totally synthetic statin.

Statins have potential as antifungals; however, they are unlikely to compete with azoles and
drugs that can efficiently and selectively target ergosterol and its biosynthesis in invasive fungal
infections. The maximum plasma concentration of the drug is 10–40 ng/mL that can be achieved in
clinical trials [34]. Several studies reported the higher MIC values of statins against fungal species
ranging from 4 µg/mL to a value greater than 256 µg/mL. The MIC values for the growth inhibition
of A. fumigatus was found to be 58 µg/mL (10 µM) and 0.4 µg/mL (1 µM) in case of atorvastatin
and simvastatin, respectively [32]. Lovastatin and simvastatin have the ability to inhibit growth of
Aspergillus spp. but at concentrations which are toxic to human cells [30,35]. At clinically achievable
concentrations, the statins show no effect on the in vitro activities of azoles and amphotericin B against
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the Aspergillus spp. [30]. The antifungal activity of fluconazole was studied in combination with
lovastatin against Candida (C.) albicans. Higher values of MICs were observed with lovastatin in
comparison to fluconazole. However, the MIC for fluconazole further decreased when amount of
lovastatin was increased in synergy against C. albicans [36]. Synergistic antifungal effects of statins and
azoles were studied against Saccharomyces cerevisiae ATCC 32051 and C. utilis Pr1–2. Statins increased
the activity of azoles at their sub-inhibitory concentrations (SICs) against the yeast strains. Thus the
co-administration of these antifungals can increase the potency and reduce the required doses of azoles
for fungal treatments, especially in cases of refractory infections [37].

It is also noteworthy that ring-opened forms of lovastatin and simvastatin inhibit the growth
of A. terreus [30], though the production of lovastatin does not pose a problem to A. terreus since
it is released outside the cell as the active beta hydroxyl form, possibly as a defense mechanism
during a secondary metabolism [38]. Bioassays have been performed for the qualitative screening of
lovastatin producers. As lovastatin has the ability to act as an antifungal agent, yeast growth inhibition
bioassays [39] and agar well diffusion bioassays using Neurospora crassa MTCC-790 as a test strain have
been studied [40]. Crude extracts from fungal isolates are loaded into the agar wells and ethyl acetate
is used as a control. Strains showing a clear zone of inhibition are selected [39,40].

The active form of lovastatin is converted into the inactive lactone form by the solvent extraction of
fermentation media which is less lipophilic compared to the hydroxyl form [41,42]. Lovastatin also has
the ability to transform further into methyl ester if methanol is used as a solvent [43,44]. That creates a
problem in screening for a high level production since bioassays become more complicated due to the
existence of different chemical forms. Thus, there is reliance upon more laborious chemical screening
to determine levels of lovastatin in cultures, extracts and fractions [39,45].

3. Exploitation of A. terreus for Statin Production

Filamentous fungi have the ability to produce secondary metabolites with complex chemical
structures. The discovery of new bioactive secondary metabolites and their upscale production is
always an aim of both pharmaceutical and agrochemical industries. Fungi are well-established sources
for such substances and are exploited to produce a large number of valuable compounds.

A. terreus is a filamentous ascomycota, a soil fungus that was originally discovered as a potent
producer of lovastatin in 1979. This is the only fungal isolate that has been utilized and commercialized
to produce lovastatin [46,47]. Biosynthesis of lovastatin depends not only on composition of culture
media like carbon and nitrogen sources, but also on the strain used and culture conditions [48].

Lovastatin production by A. terreus can be increased significantly by controlling the culture
conditions. Lovastatin production by A. terreus is favored by sub-optimal growth conditions [49].
There are also several other environmental factors that influence the production of lovastatin, such as
agitation, temperature, pH and moisture content. Agitation interacts with the culturing environments,
which in turn affects product formation [45,50,51]. More agitation results in the decrease of dissolved
oxygen and increases the shear stress during shake flask fermentation. Low supplementation of
dissolved O2 (DO) inhibit the product formation [49,51]. An optimum size of inoculum can increase
the levels of lovastatin. Large- and small-sized inocula have been reported to reduce the levels of
lovastatin [52]. Different sizes of inocula with spore counts ranging from 107 to 108 spores/mL were
studied. A spore count of 5 ˆ 107 spores/mL was found to be optimum for the maximum production
of lovastatin. Low and high levels of spore count decreased the lovastatin production. A further
increase in inoculum size did not increase the amount of lovastatin [52]. High moisture content also
decreases the level of lovastatin production due to decreased oxygen availability caused by excessive
replacement of air by water, while low levels of moisture content result in failure to reduce metabolic
heat during the fermentation process [53]. Optimisation of the pH can positively affect the production
of lovastatin during fermentation. The levels of lovastatin were increased at pH range of 7–8.5 but
a further increase in pH reduced the productivity [54–56]. Last but not the least, temperature is
considered as the most important factor influencing the productivity involving the activation and



J. Fungi 2016, 2, 13 4 of 13

induction of the enzyme required for lovastatin biosynthesis [49]. Different temperatures ranging from
25 to 30 ˝C were studied. The maximum production of lovastatin was achieved at 30 ˝C which was
found to be the optimum temperature [54]. Cultivation at optimum temperature results in high yields
of lovastatin [54,57,58].

3.1. Effect of Nutrients on Production of Statins

A. terreus has been reported to produce lovastatin in submerged (SmF) batch and fed-batch
fermentation along with the solid state fermentation (SSF). A summary of yields and conditions for
production of statins in SSF and SmF are shown in Tables 1 and 2 respectively.

Table 1. Solid state fermentation (SSF) of A. terreus species using raw substrates.

A. terreus Strain Solid Substrate Yield References

MTCC 279 Green peas, Millet, Ragi 389.34 mg/gds [59]
ATCC 74135 Rice straw 0.261 mg/g [60]

4 Wheat bran 9.7 mg/g [61]
20 Oat bran 9.5 mg/g [61]

PM3 Wheat bran 12.5 mg/g [62]
UV 1718 Wheat bran 3.723 mg/g [52]

* Lactose, Soybean meal 19.95 mg/g [63]
ATCC 20542 Rice powder, Glucose 2.9 mg/g [64]

gds, g of dry support; * name not given.

Table 2. Carbon and nitrogen sources in submerged fermentation (SmF) of A. terreus species.

A. terreus Strain Carbon Source Nitrogen Source Yield (mg/L) References

ATCC 20542 Lactose, Glycerol Yeast extract 161.8 [46]
Z15-7 Glycerol Corn meal, Sodium nitrate 916.7 [57]

MUCL 38669 Lactose, Glucose Peptonized milk, Yeast extract 212.5 [65]
LA414 Soluble starch Yeast extract 952.7 [66]
LA414 Soluble starch Sodium glutamate 523.9 [67]
LA414 Glycerol Yeast extract 937.5 [68]

ATCC 20542 Lactose Soybean meal 140 [69]
NRRL 255 Glucose, malt extract Milk powder, Soybean meal 920 [50]

ATCC 20542 Lactose Soybean meal 186.5 [23]
ATCC 20542 Lactose Soybean meal 80 [70]
ATCC 20542 Lactose Soybean meal 250 [51]

GD13 Lactose Soybean meal 1242 [71]
* Glucose Soybean meal 110.78 [59]

ATCC 20542 Lactose Yeast extract 83.8 [55]
* Dextrose Soy flour 100 [72]

20 Lactose Yeast extract 120 [73]
ATCC 20542 Crude glycerol Yeast extract 300 [74]

* Name not given.

Gulyamova et al. (2013) [36] reported the production of lovastatin by two strains of
Aspergillus terreus: A. terreus 4 and A. terreus 20. In both SmF and SSF, five different carbon sources
were tested, with the highest yields of lovastatin obtained using lactose as a carbon source. Wheat
bran and oat bran were optimised to be the best solid substrate for SSF [61].

Carbon and nitrogen both affect the production of lovastatin from A. terreus. According to several
studies it has been suggested that high yields can be achieved if nitrogen is the limiting factor. A. terreus
has the ability to metabolize different kinds of organic and inorganic-defined nitrogen sources. Among
them glutamate- and histidine-supplemented media have been reported to enable increased lovastatin
production [24,48]. A. terreus ATCC 20542 was used for the biosynthesis of lovastatin in optimised
culture conditions in SmF, resulting in a three-fold increase in lovastatin levels [47]. A. terreus DRCC 122
was used for the production of lovastatin in batch and fed-batch fermentations using corn steep liquor



J. Fungi 2016, 2, 13 5 of 13

and maltodextrin as nitrogen and carbon sources, respectively, increasing the levels of lovastatin [75].
Fermentation of A. terreus MIM A1 and A2 strains on soybean flour and glycerol has been reported to
produce lovastatin, mevastatin, pravastatin and monacolin J. 83% of lovastatin was associated with the
mycelium and 17% was free in the culture filtrate [76].

A. terreus has also been reported to accumulate simvastatin, derived from lovastatin, as a final
product of fermentation [77]. Gulyamova et al. (2014) described the composition of statins produced by
indigenous strain of A. terreus 20 in SmF. Statins were extracted from the biomass with acetonitrile after
centrifugation and samples were dried for analysis by LC-MS-MS. Lovastatin was detected in lactone,
acidic and methyl ester forms. In addition to lovastatin, monacolin L, simvastatin and pravastatin
were also detected [77].

Nutritional parameters for increased yields of simvastatin by A. terreus have also been reported.
An increase of the carbon/nitrogen ratio led to an elevated simvastatin titre in chemically defined
media [73]. This agrees with the nitrogen limitation results described above.

3.2. Feedback Inhibition Regulation Strategy

Product inhibition as a result of fermentation is a key element to be kept in mind during industrial
scale production. The biosynthesis of lovastatin by A. terreus involves feedback inhibition. Suppressing
this mechanism can greatly enhance the production of lovastatin in fermentation media; however, the
exact process is still unknown [47,66,70].

3.3. Effect of Other Additives

Secondary metabolism is usually triggered when primary metabolism is inhibited. Various
additives have been placed into culture to improve production of lovastatin. The effects of these
additives on lovastatin yields are summarised in Table 3.

Table 3. Effect of various additives on statin production by various A. terreus strains.

A. terreus Strain Additive (Concentration) Yield (mg/L) Reference

ATCC 20542 Polyketide Antibiotics (50 mg/L) 952.7 [66]
ATCC 20542 Itaconic acid (0.5 g/L) 953.3 [47]

PM3 CMC (1%) 240 [62]
MUCL 38669 Linoleic acid (320 µM) 212.5 [65]
MUCL 38669 Butyrolactone I (100 nM) 3100 [78]
ATCC 20542 B-group vitamins (0.5–5 mg/L) Unknown [79]
ATCC 20542 Divalent metal cations (5 mM) 524 [67]

The biosynthesis of lovastatin by A. terreus is always accompanied by the production of various
kinds of intermediate metabolites, especially acids such as itaconic acid, citric acid, pyruvic acid and
acetic acid. These acids can easily accumulate in the media and reduce the pH and thereby decrease the
amount of lovastatin produced. Low pH affects the formation of enzymes required for the synthesis of
lovastatin, so to overcome this effect different kinds of additives have been used [47,80].

Addition of different kinds of polyketide antibiotics resulted in increased production of lovastatin
by inhibiting intermediary compounds [66]. Lovastatin production was further increased by 9.2%
if 0.5 g/L itaconic acid was added to fermentation medium of A. terreus ATCC 20542, resulting in
feedback inhibition of undesired metabolites [47].

Patil et al. (2011) reported the effect of carboxy methyl cellulose (CMC) on production of lovastatin
by A. terreus PM3. The presence of CMC restricted the filamentous growth and resulted in pellet
formation, stimulating lovastatin production [62]. The impact of exogenous cell signalling molecules
has also been studied. The production of lovastatin was increased 1.8-fold upon addition of linoleic
acid, the precursor of oxylipin, from A. terreus during batch fermentation. Oxylipins are linoleic
acid-derived quorum sensing signalling molecules [65]. In recent studies butyrolactone I was added in
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the bioreactor, resulting in a 2.5-fold increase in both lovastatin and its own production. Butyrolactone
I is also a quorum-sensing molecule in A. terreus. The study suggested that butyrolactone I is a growth
phase-specific inducer for the lovastatin and an auto-stimulator on its own production [78]. The effect
of B-group vitamins on the biosynthesis of lovastatin by A. terreus ATCC 20542 was also reported.
Supplementation of fermentation media with nicotinamide, pyridoxine and calcium D-pantothenate,
separately and in mixtures increased the volumetric and specific production of lovastatin [79]. Metal
ions, including Zn2+, Fe2+, Mg2+, Ca2+, Cu2+ and Mn2+ can also alter the cell biochemistry if their
concentrations are too high or too low. They can affect cell growth and metabolite production. Among
the metal ions, Zn2+ and Fe2+ at concentration of 5 mM enabled the highest production of lovastatin,
523.9 ˘ 14.9 mg/L and 406.0 ˘ 7.8 mg/L respectively [67].

3.4. Mutagenesis for Strain Improvement

Wild-type A. terreus strains isolated from natural environments usually produce very low levels
of statins. Various kinds of strain improvement techniques have been applied to achieve high titres of
statins. Strain improvement not only increase the yields of desired metabolites but also removes the
unwanted co-metabolites, improves downstream processing by the alteration cellular morphology
facilitating the oxygen transfer and improving the utilization of raw sources of carbon and nitrogen [81].

Most of the methods used for the hyper-production of statins in A. terreus species include:

‚ Chemical mutagenesis, involving use of mutagenic chemicals such as ethyl methanesulfonate
(EMS) and N-methyl-N’-nitro-N-nitrosoguanidine (NTG) [45,82,83] and

‚ Physical mutagenesis, involving the use of radiation such as high radiation heavy ion beams and
ultraviolet radiation [57,71].

The improved yields following mutagenesis are listed in Table 4.

Table 4. Improved statin production through chemical and physical mutagenesis of A. terreus.

A. terreus Strain Mode of Mutation A. terreus Strain
after Mutation

Improved
Yield (mg/L) Fold Increase References

GD 13 UV EM 19 1424 7.5ˆ [71]
20452 EMS E354 60.3 4ˆ [82]

NRRL 265 UV UV-4 977.1 3.5ˆ [84]
MTCC 10831 UV + EMS SPUV002 663 1.8ˆ [83]
ATCC 20452 UV LA414 883.2 3ˆ [85]

CA99 Heavy-ion beams Z15-7 916.7 4ˆ [57]
AH6 UV CB4 58 1.16ˆ [86]
20451 EMS+UV+NTG DRCC 122 2200 1.73ˆ [75]

DRCC 86 EMS+UV LS-3031 40 1.38ˆ [45]

3.5. Systems Biology and Application of A. terreus Genome Knowledge

Genomic studies on Aspergillus spp. reveal that A. terreus is unique in possessing gene clusters
involved in the biosynthesis of lovastatin [87,88]. The pathway for lovastatin biosynthesis, shown in
Figure 2, involves the joining of two polyketides by a polyketide synthase system (PKS). This PKS
further comprises two domains, the lovastatin nonaketide synthase (LNKS) and lovastatin diketide
synthase (LDKS) [89–92].
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Figure 2. Pathway leading to lovastatin biosynthesis.

Systems biology approaches have allowed A. terreus MF22 to be genetically engineered to achieve
a nine-fold increase in lovastatin levels in fermentation broth [93]. Transcriptional profiles were
generated after the construction of genomic fragment microarrays from genome of respective strain.
Metabolite identification and profiling were done using HPLC-electrospray MS, quadrupole–time of
flight MS (TOF-MS) and NMR [93]. We consider that efforts involving systems biology have been very
few to date and that further genetic engineering could be performed to further increase the levels of
statin production.

3.6. Statistical Designing

Different kinds of statistical design models have been applied for the efficient and economic
production of statins by A. terreus. These designs are used as tools to select the key factors from a
multivariable system. Optimization of different parameters in a fermentation system leads to enhanced
production of desired compounds minimizing the error in that system. A one-factor-at-a-time (OFAT)
approach has been considered to be a conventional and time-consuming technique for optimization of
culture media [94,95]. Most of the methods that have been used so far include:

‚ Response surface methodology (RSM)
‚ Central composite design (CCD)
‚ Box´Behnken design (BBD)
‚ Plackett´Burman (PB)
‚ Taguchi design

A summary of yields after applying new methods based on models are outlined in Table 5.
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Table 5. Statistical approaches for media optimisation for production of statins by A. terreus.

A. terreus Strain Statistical Models Statins Yield Reference

ATCC 20542 BBD Lovastatin 186.5 mg/L [23]
Strain not given PB, CCD Mevastatin 170.4 mg/L [59]

ATCC 20542 PB, FD, RSM Lovastatin 100 mg/L [96]
MTCC 279 CCD Compactin 389 mg/gds [97]
MTCC 279 CCD Lovastatin 1467 mg/gds [97]
JX081272 Taguchi Design Lovastatin 255 mg/L [98]
UV 1718 RSM, CCD Lovastatin 372 mg/g [52]

RSM: Response surface methodology; CCD: Central composite design; BBD: Box´Behnken design;
PB: Plackett–Burman; FD: factorial design; gds, g of dry support.

Response surface methodology includes the set of mathematical and statistical calculations useful
for experimental designing of factors required for desirable responses and optimum conditions with
the least experimental trials [95,99,100]. Central composite design results in gathering a large amount
of information with a very limited number of experimental trials [72]. Box´Behnken design is an
optimization tool for the calculation of responses at intermediate levels of an experiment [101]. Yields
of the statins can be increased by inoculating older spores. Spore age was determined using modified
Box–Behnken design. The final yields of statins increased to 52% [23]. Goswami et al. (2013) used
Taguchi design for the optimization of media during production of lovastatin by A. terreus JX081272.
Signal-to-noise ratio was used to determine the optimum levels and interaction effects [98]. Syed and
Rajasimman (2015) reported the enhanced production of mevastatin by applying Plackett–Burman
and central composite design [59]. Improved production of lovastatin was observed with an increase
of 2.6-fold under optimum conditions as compared to the media before statistical optimization [52].
Three substrates, green peas, millet and ragi, were used in mixed SSF to produce statins in A. terreus
MTCC 279. Various combinations of these substrates were designed by applying central composite
design (CCD). Mixed substrates gave an 8.10-fold increase in compactin production in comparison to
single substrate fermentation [97].

Statistical designing is an efficient approach that can significantly reduce experimental efforts that
are not only required for optimisation studies but also includes scale-up and product development
studies [102,103]. It also helps in confirmation of output response with least variability in comparison
to conventional methods that are error prone and time consuming. The only drawback regarding the
statistical approach includes lack of its knowledge and expertise among biologists and chemists to apply
it in a multivariable natural system to achieve high levels with limited number of experimental trials.

4. Conclusions

The microbial production of statins has provided an excellent therapy for hypercholesterolemia
and led to the synthesis of novel statins by chemical synthesis. The use of A. terreus to achieve these
outcomes is an excellent example of the exploitation of a microbe for useful purposes. Employing
different kinds of optimization techniques and hyperproducers not only increase the yields but also
results in economic production of these compounds.
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