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Abstract: Trunk canker poses a major threat to the production of Chinese hickory tree (Carya cathayen-
sis Sarg.), which is primarily determined by Botryosphaeriaceae. In our previous work, we identified
Botryosphaeria dothidea as the predominant pathogen of this disease. However, it is still unclear
about corresponding gene families and mechanisms associated with B. dothidea’s pathogenicity on
Chinese hickory tree. Here, we present a comparative analysis of high-quality genome assemblies of
Botryosphaeria dothidea and other isolated pathogens, showing highly syntenic relationships between B.
dothidea and its closely related species and the conservative evolution of the Botryosphaeriaceae fam-
ily. Higher GC contents were found in the genomes of B. dothidea and three other isolated pathogens
(Botryshaeria cortices, Botryshaeria fabicerciana, and Botryshaeria qingyuanensis) compared to Macrophom-
ina phaseolina, Neofusicoccum parvum, Diplodia corticola, and Lasiodiplodia theobromae. An investigation
of genes specific to or expanded in B. dothidea revealed that one secreted glucanase, one orsellinic
acid biosynthesis enzyme, and two MFS transporters positively regulated B. dothidea’s pathogenicity.
We also observed an overrepresentation of viral integrase like gene and heterokaryon incompatibility
proteins in the B. dothidea’s genome. In addition, we observed one LRR-domain-containing protein
and two Sec-domain-containing proteins (Sec_1 and Sec_7) that underwent positive selection. This
study will help to understand B. dothidea’s pathogenicity and potential influence on the infection of
Chinese hickory, which will help in the development of disease control and ensure the security of
Chinese hickory production.

Keywords: Chinese hickory; Botryosphaeriaceae; high-quality genome assemblies; pathogenicity;
colonization

1. Introduction

The Botryosphaeriaceae family are worldwide pathogens that cause a range of disease
symptoms, including leaf spots, fruit and root rots, dieback, and cankers, in multiple
woody hosts [1–3]. They have diverse ecological roles as endophytic, saprobic, and plant
pathogenic species [4]. Botryosphaeria is the largest genus of Botryosphaeriaceae, with
Botryosphaeria dothidea being a typical species, followed by other genera including Diplodia,
Dothiorella/Spencermartinsia, Lasiodiplodia, and Neofusicoccum [5]. The symbolic life
cycle of B. dothidea is characterized by an endophytic/latent infection phase [4,6]. It exists
as an endophyte within the host plant, and its virulence is triggered by the host plant’s
physiological status in response to environmental stressors. This stimulation leads B.
dothidea to transition into a pathogenic state. Thus, the manifestation of symptoms in B.
dothidea infections appears to be influenced by the occurrence of a single environmental
stress event or a combination of environmental stress events [7,8]. This fungus can parasitize
living host plants and gains infection status under the stimulation of host or environmental
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stress, which results in obvious disease symptoms [9]. In addition to B. dothidea, its closely
related species, such as B. cortices, B. fabicerciana, and B. qingyuanensis, were also isolated
from multiple diseased host plants (like Malania oleifera, Mangifera indica, and so on) [10,11].
Moreover, M. phaseolina, which belongs to the Macrophomina genus of Botryosphaeriaceae,
is a globally distributed soil-borne fungus that causes diseases like dry root rot and charcoal
rot in various crops, like soybean and maize [12,13]. N. parvum is a representative species
of the Neofusicoccum genus of Botryosphaeriaceae and with worldwide distribution. This
fungus has been associated with dieback diseases in various plant species, including
grapevines, citrus, and almond trees, highlighting its significant economic impact on
agriculture [14,15]. D. corticola, an emerging canker pathogen from the Diplodia genus, has
garnered attention due to its association with oak species in various regions, including the
United States and Europe [16]. L. theobromae has a wide geographic distribution as the biotic
agent that induces copious necrosis and gummosis, eventually resulting in the reduced
vigor and lifespan of many economically important woody trees, including cacao [17] and
citrus [18].

Chinese hickory (Carya cathayensis Sarg.), a woody oil species belonging to the Juglan-
daceae family, has gained significant economic importance due to its production of edible
nuts. It is primarily distributed in the Lin’an district located in southeastern China [19].
However, trunk canker disease caused by B. dothidea continuously threatens Chinese hick-
ory production in this region and has already resulted in significant economic losses. The
pathogenic status of B. dothidea is activated by optimal temperatures (around 25 ◦C) during
this process [20]. In our previous work, colleagues collected samples of trunk canker
disease, encompassing 60% of the Chinese hickory tree yield in the Lin’an district [21].
Five Botryosphaeriaceae species (B. dothidea, B. qingyuanensis, B. cortices, B. fabicerciana, and
Lasiodiplodia theobromae) were isolated, and 89 of 96 isolates were identified as B. dothidea.
This revealed the dominant role of B. dothidea in trunk canker disease samples in the Lin’an
district, which might be related to its stronger colonization capacity or pathogenicity. The
associated mechanisms underlying this phenomenon remain unclear. Through comparative
genomics analysis, it will help us to unveil the evolutionary process of Botryosphaeriaceae.
More importantly, investigation of B. dothidea gene families associated with its pathogenicity
will promote understanding of the underlying molecular mechanism.

Although multiple sequenced genomes of B. dothidea were proposed [22], our lab
first proposed high-quality genome assemblies of B. dothidea coupled with other species
mentioned above [23]. Based on this work, we further present a comprehensive comparative
genome analysis of these species with the following objectives: (i) to investigate B. dothidea
pathogenesis-related genes that participate in the infection of Chinese hickory, especially
candidates associated with the formation of latent infection, and (ii) to explore specific
genes that might indicate B. dothidea’s advantage within the community inside trunk canker
disease of Chinese hickory.

The current control strategies for hickory trunk canker disease mainly rely on physical
or chemical measures, such as scraping off the canker lesions on the trunk surface. However,
they are confronted with issues of poor efficiency, which result from a lack of in-depth
understanding of the molecular mechanisms behind B. dothidea’s pathogenicity in Chinese
hickory. Through comparative genomics analysis, this study reveals pathogenicity-related
genes that are specific to or expanded in B. dothidea. It provides clues for the deepening
understanding of B. dothidea’s pathogenic mechanisms in hickory and may also aid in the
design of fungicides targeting these pathogenicity-related genes, thereby improving the
prevention and control efficacy of hickory trunk canker disease.

2. Materials and Methods
2.1. Fungal Growth Conditions, DNA Isolation, and Genomic Sequencing

B. dothidea strain BDLD16-7 (BDLA), B. cortices strain 16-35 (BCTK), B. fabicerciana
strain 18-2 (BFLG), and B. qingyuanensis strain 16-30 (BQTK) were originally isolated from
trunk canker samples of Chinese hickory trees in Lin’an, Zhejiang province, China. All
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strains were cultivated on potato dextrose agar (PDA) at 25 ◦C, and 10-day-old mycelium
was harvested. Genomic DNA and messenger RNA were extracted using a genome
DNA kit (FastPure Microbiome DNA Isolation Kit, Vazyme Biotech Co., Ltd, Nanjing,
China) and an Oligotex-dT mRNA kit (Qiagen Inc., Valencia, CA, USA), respectively. The
genomic DNA and mRNA were further purified and sequenced using Oxford Nanopore
Technology (ONT) and Illumina HiSeq4000 platforms owned by Biomarker Technologies
(www.biomarker.com.cn) (Beijing, China), respectively. Apart from the aforementioned
species, genome assemblies and corresponding annotations of Macrophomina phaseolina,
Neofusicoccum parvum, Diplodia corticola, and Lasiodiplodia theobromae were retrieved from
the NCBI or JGI genome websites.

2.2. Genome Assembly, Gene Prediction, and Functional Annotation

The genome assemblies of BDLA, BQTK, BCTK, and BFLG had been completed in our
previous work [23]. Here, we evaluated the completeness of the genome assemblies using
BUSCO v5.12 at the Ascomycota level. RepeatMasker v4.1.2 and RepeatModeler v2.0.1
were employed to detect, categorize, and mask repeats in the genome assemblies. The
BRAKER2 toolkit v2.1.5 was used to identify a gene model based on repeat-masked genome
assemblies, coupled with the support of external protein (fungi_odb10) and transcriptome
data evidence [24]. eggNOG v5 [25] was used to perform the functional annotation of
coding genes with an E-value threshold of 1 × 10−5.

2.3. Orthologs Identification and Species Phylogenetic Tree Construction

Ortholog construction was conducted using OrthoFinder v2.5.5 [26] with an E-value
threshold of 1 × 10−5 and an MCL inflation index of 2.0. Multiple alignments of single-copy
orthologs were conducted using MAFFT v7.490, and a maximum-likelihood tree of the
species in this study was constructed using IQ-TREE v2.0.7 with the default parameters
using the auto-detect model setting.

2.4. Identification of Rapidly Evolving Ortholog Families

Based on the ortholog families identified using OrthoFinder, CAFE (Computational
Analysis of Gene Family Evolution, version 5.0) was used to compare the sizes of the
ortholog families of each species to their respective most recent common ancestor (MRCA)
using fossil data for species divergence times obtained from the Timetree website (https:
//timetree.org/, accessed on 8 October 2023). Rapidly evolving ortholog families were esti-
mated with the best-fit global birth/death parameter (λ) set at 0.0001 and a p-value thresh-
old of 0.01. The ultra-metric tree of each ortholog family was generated using r8s v1.81.

2.5. Positive Selection Analysis

Protein codon alignments for each single-copy ortholog were generated using pal2nal
v14, and TrimAl v1.4 was applied to remove gaps within the codon alignments. dN/dS
ratios (ω) were calculated using the CodeML program of PAML v4.9e utilizing the branch
model (model = 2 and NSsites = 0). To pinpoint which B. dothidea genes underwent
positive selection pressure, branches represented by BDLA genes were designated as
foreground branches. Likelihood ratio tests (LRTs) were employed to compare the null
hypothesis (fix_omega = 1 and omega = 1) with the alternative hypothesis (fix_omega = 0
and omega = 0.7). The significance of LRT statistics was determined using a χ2 distribution.
The BDLA genes that underwent positive selection pressure were defined by false discovery
rate (FDR)-corrected p-values of <0.05 and dN/dS ratios (ω) higher than 1.

2.6. Detection of Horizontal Gene Transfer (HGT)

Genome-wide predictions of horizontal gene transfer (HGT) events in BDLA were
conducted using the AvP toolkit (https://github.com/GDKO/AvP, accessed on 30 October
2023) [27], which performed BLASTp searches against the Uniref100 database with an
E-value threshold of 1 × 10−5. Subsequently, the hits for each BDLA gene were compiled
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and categorized based on homologous similarity and the corresponding taxon, which was
used for the calculation of the Alien Index (AI) value. The software then utilized IQ-TREE
(with the default parameters) to construct phylogenetic trees, identifying candidates similar
to hits from distant taxa that might have been acquired through horizontal gene transfer
(HGT) events.

2.7. Synteny Analysis

DIAMOND v0.8.25 was employed for all vs. all BLASTp searches to detect homol-
ogous gene pairs between two corresponding genomes (with an E-value threshold of
1 × 10−5 and a -max-target-seqs value of 5). Subsequently, MCScanX was utilized to
explore intra- or inter-genomic collinearity, and genome annotations (density of protein-
coding genes, LS genes, and repeats) were also input. The visualization of the synteny
results was conducted using circus v0.69.

2.8. Prediction of Secretome and Small Cysteine-Rich Proteins (SCPs)

SignalP v5.0 (https://services.healthtech.dtu.dk/services/SignalP-5.0/, accessed on
28 September 2023) was used to identify signal peptides, and the transmembrane domains
of each protein were identified using TMHMM v2.0 (https://services.healthtech.dtu.dk/
services/TMHMM-2.0/, accessed on 26 September 2023). EffectorP v3.0 (https://effectorp.
csiro.au/, accessed on 29 September 2023) was used to predict the putative effectors of
the species in this study using the default parameters. Furthermore, SCPs were identified
using the criteria proposed in [28] (≤400 amino acids and ≥4 cysteine residues).

2.9. Plant Materials, Fungal Materials, and Inoculation Assays

Botryosphaeria dothidea BDLA16-7 was isolated from Chinese hickory trunk trees in
Zhejiang Province, China, showing typical symptoms of canker disease. BDLA16-7 was
cultured on potato dextrose agar (PDA) plates at 25 ◦C in the dark for three days. Then, the
mycelial blocks measuring approximately 5 mm × 5 mm were cut for inoculation assays.
Shallow incisions, about 2 mm in depth and 5 mm in length, were made on the trunks of
two-year-old hickory seedlings using a hole puncher. A single mycelial block was gently
pressed against each incision, and then the area was sealed with sterilized tape.

2.10. Validation of Gene Expression Using Quantitative qRT-PCR

RNA was isolated using the Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA,
USA), followed by cDNA synthesis with the Superscript IV Reverse Transcriptase cDNA
Synthesis Kit (TB Green® Premix Ex Taq™ II, Takara Bio Inc., Kusatsu, Japan) using 2 µg of
template RNA. All cDNA samples were subsequently diluted to a concentration of 20 ng−1

in preparation for qRT-PCR. Gene expression levels were assessed via qRT-PCR employing
a Bio-Rad Real-Time PCR System and SYBR Green as the fluorescent dye. The β-tubulin
gene from B. dothidea (BDLA_00007187) served as the internal reference gene. Primers
were generated using Primer3 (https://primer3.ut.ee/, accessed on 5 March 2024), and the
specificity of the sequences for the target genes was verified using the NCBI BLASTN web
platform (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 5 March 2024), with the
low complexity filter disabled. The aforementioned internal reference gene was utilized
to normalize the expression levels of the selected candidate genes. The CDS sequences of
β-tubulin gene, candidate genes, and their corresponding primers are provided in Table S9.

2.11. Construction of Deletion Mutants and Complemented Strains

Double-joint PCR was utilized for constructing the deletion vectors of candidate
genes. Genomic DNA of wild-type strain BDLA16-7 served as the template for amplifying
the sequences flanking the candidate genes. Concurrently, hygromycin resistance (HPH)
cassettes were cloned from the pKHT plasmid through amplification with HPH-F/R
primers. The amplicons were merged in the second round of PCR, of which the product
was used as the template for the final construct’s amplification using nested primers.

https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://effectorp.csiro.au/
https://effectorp.csiro.au/
https://primer3.ut.ee/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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PEG-mediated protoplast transformation was applied to introduce the vectors into the
wild-type BDLA16-7 strain. Selection of potential gene-deletion mutants was conducted
on PDA medium augmented with 100 µg/mL of hygromycin. For the complementation
assay, segments comprising the gene promoters, green fluorescent protein (GFP), and the
coding regions of the candidate genes were amplified and fused by double-joint PCR. The
resulting PCR products were transformed with XhoI-digested pYF11-RFP plasmid into
Saccharomyces cerevisiae XK1-25 employing the Alkali-Cation Yeast Transformation Kit (MP
Biomedicals, Solon, OH, USA). Recombinant plasmids were extracted from the transformed
yeast cells using the Yeast Plasmid Extract Kit (Solarbio, Beijing, China) and subsequently
propagated in the Escherichia coli strain DH5α. These vectors were then reintroduced into
the gene-deletion mutants through PEG-mediated transformation.

3. Results
3.1. Genome Assemblies of Eight Botryosphaeriaceae Species and Features of Note

The genomes of B. dothidea strain BDLD16-7 (BDLA), B. cortices strain 16-35 (BCTK), B.
fabicerciana strain 18-2 (BFLG), and B. qingyuanensis strain 16-30 (BQTK) were sequenced
using an Oxford Nanopore Technologies (ONT) platform with a sequencing depth higher
than 100× and were reported in our previous work [29]. Meanwhile, four species of
Botryosphaeriaceae with distinct lineages (M. phaseolina (MP); N. parvum (NP); D. corticola
(DC); and L. theobromae (LT)) were combined for a comprehensive comparison. The similar
genome sizes of six Botryosphaeriaceae species, except MP and DC, are provided in Table 1,
ranging from 43.69 to 45.98 Mb, and are close to the k-mer analysis results (Figure S1).
These results indicate larger genomes for these Botryosphaeriaceae species compared to
the average genome size of Ascomycota (36.9 Mb) [30].

Table 1. Genome features of genome assemblies of Botryosphaeriaceae species.

Species Contigs N50 (Mb) Assembly
Length

Repeat
Percent (%)

Predicted
Genes

GC Content
(%)

BDLA 15 3.86 45.98 8.2 13,052 52.27
BQTK 14 3.93 44.31 6.25 12,141 52.81
BCTK 13 3.96 45.13 8.46 12,910 51.9
BFLG 13 3.92 44.87 6.51 12,863 51.99
MP 75 4.83 50.55 17.92 14,845 36.4
NP 18 2.54 43.99 6.89 10,366 48.42
DC 181 0.46 34.99 5.06 10,839 43.23
LT 296 0.88 43.69 2.72 13,054 42.08

The assembly quality of BDLA, BQTK, BCTK, and BFLG varied greatly compared
to that of MP, NP, DC, and LT due to different sequencing technologies and the assem-
bly toolkit. For example, contig numbers ranging from 13 to 15 were found for BDLA,
BCTK, BQTK, and BFLG, with N50 values ranging from 3.86 to 3.96 Mb (Table 1). In con-
trast, MP, NP, DC, and LT were composed of 18 to 296 contigs, with N50 values ranging
from 0.46 to 4.83 Mb. Obviously higher GC contents of BDLA, BQTK, BCTK, and BFLG
(51.90% to 52.81%) were presented relative to MP, NP, DC, and LT (36.40% to 48.42%).
The completeness and accuracy of the genome assemblies and gene model predictions
within the species were determined via a Benchmarking Universal Single-copy Orthologs
(BUSCO) analysis with the ascomycota_odb10 database (1706 genes) as the reference. In a
genome-level BUSCO analysis, 1655 to 1674 complete genes of the 1706 single-copy genes
were predicted (Figure 1A), which was consistent with the result of a protein-level BUSCO
analysis (Figure 1B). This revealed the high completeness of the genome assemblies of the
species in this study.



J. Fungi 2024, 10, 299 6 of 20

J. Fungi 2024, 10, x FOR PEER REVIEW 6 of 21 
 

 

NP, DC, and LT were composed of 18 to 296 contigs, with N50 values ranging from 0.46 to 
4.83 Mb. Obviously higher GC contents of BDLA, BQTK, BCTK, and BFLG (51.90% to 
52.81%) were presented relative to MP, NP, DC, and LT (36.40% to 48.42%). The complete-
ness and accuracy of the genome assemblies and gene model predictions within the spe-
cies were determined via a Benchmarking Universal Single-copy Orthologs (BUSCO) 
analysis with the ascomycota_odb10 database (1706 genes) as the reference. In a genome-
level BUSCO analysis, 1655 to 1674 complete genes of the 1706 single-copy genes were 
predicted (Figure 1A), which was consistent with the result of a protein-level BUSCO anal-
ysis (Figure 1B). This revealed the high completeness of the genome assemblies of the 
species in this study. 

 
Figure 1. Genome assembly assessment and repeat sequence detection of Botryosphaeriaceae spe-
cies. Genome assembly assessment performed by BUSCO at genome level (A) and protein level (B). 
(C–F) provide distributions of repeat sequences across Botryosphaeriaceae species: (C) total repeat 

Figure 1. Genome assembly assessment and repeat sequence detection of Botryosphaeriaceae species.
Genome assembly assessment performed by BUSCO at genome level (A) and protein level (B).
(C–F) provide distributions of repeat sequences across Botryosphaeriaceae species: (C) total repeat
sequences; (D) class II DNA transposons; (E) class I retrotransposons of LTR subclass; and (F) class I
retrotransposons of LINE subclass.

3.2. Identification of Repeat Sequences and Protein-Coding Genes

We detected and subsequently masked repetitive elements within the genomes of
the eight Botryosphaeriaceae species. Similar repetitive contents were observed in BDLA,
BCTK, QTK, and BFLG (6.25% to 8.46%), but quite different to those of MP (17.92%), LT
(5.06%), and DC (2.72%) (Table 1, Figure 1C). Tandem repeats, low-complexity sequences,
and dispersed transposable elements are the main categories of masked repeats (Table S1).
DNA/TcMar-Fot1 is the dominant subclass family of the class II DNA transposon across
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BDLA, BCTK, BQTK, BFLG, MP, and NP (Figure 1D). For class I retrotransposons, the sub-
classes of LTR/Copia, LTR/Gypsy, and LINE/Tad1 are overrepresented across all species
(Figure 1E,F). Furthermore, we found that DNA/hAT-Charlie (class II DNA) transposon
elements are unique to the BDLA genome.

An ab initio pipeline, coupled with a known gene model dataset retrieved from Swiss-
Prot and transcriptome data, was employed for the genome annotations of BDLA, BQTK,
BCTK, and BFLG. The protein-coding gene counts per species ranged from 10,366 to 14,845,
with similar average length (from 1530 to 1757 bp) and gene density (0.24 to 0.31 genes per
kb) values (Table 2). Moreover, lower ratios of exons and introns in BDLA, BQTK, BCTK,
and BFLG indicate simpler gene structures compared to MP, NP, DC, and LT.

Table 2. Statistic of protein-coding genes in each Botryosphaeriaceae species.

Annotation Statistic BDLA BQTK BCTK BFLG MP NP DC LT

Average gene length (bp) 1660 1757 1601 1649 1750 1530 1747 1677
Total length of CDS (Mb) 18.51 17.71 18.1 18.26 20.15 13.21 17.23 19.5

% of genome covered by genes 47.13 48.14 45.79 47.27 51.38 36.06 54.13 50.11
Gene density (gene/kb) 0.28 0.27 0.29 0.29 0.29 0.24 0.31 0.3

Exons per gene 2.53 2.41 2.51 2.55 2.97 3.16 2.99 3.08
Introns per gene 1.53 1.42 1.51 1.55 1.96 2.16 1.99 2.08

3.3. Synteny Analysis of BDLA Genome Reveals Two Accessory Contigs and Lineage-Specific
(LS) Genes

We investigated the extent of the co-linearity of BDLA, BQTK, BCTK, and BFLG,
among which the BDLA genome showed high degrees of sequence identity and synteny
with BQTK, BCTK, and BGLG (Figure 2A). On the other hand, an intraspecies synteny
analysis showed only two pairs of syntenic blocks (contig Bd-9 and contig Bd-3; and contig
Bd-10 and contig Bd-4) in the BDLA genome (Figure 2B). This indicates a conservative evolu-
tionary history among these four Botryosphaeria species and limited gene duplication events
occurring after their divergence from the ancestral lineage. Moreover, two BDLA contigs,
Bd-12 and Bd-13, presented no syntenic blocks with closely related Botryosphaeria species,
which suggested that Bd-12 and Bd-13 might be accessory contigs of the BDLA genome.

Through syntenic comparison, Ref. [31] distinguished lineage-specific (LS) regions in
the selected genome, which included genes that play an important role in fungal pathogenic-
ity. Inspired by this, we extracted LS regions from the BDLA genome based on the genome
alignment between BDLA, BQTK, BCTK, and BFLG. In Figure 2B, it is evident that the
LS regions in BDLA are mainly distributed on the accessory contigs of Bd-12 and Bd-13.
Notably, these LS regions tend to cluster towards the contig terminals, exhibiting a high
repeat density but a lower GC content. In BDLA, a total of 501 genes exist in LS regions (LS
genes), with the highest count in Bd-13 (83 genes), followed by Bd-14 (59 genes) and Bd-04
(57 genes) (Figure 2C).

A Gene Ontology (GO) enrichment analysis of the LS genes showed that the en-
riched GO terms mainly include the biosynthesis process of nucleic acid and the metabolic
processes of nitrogen compounds, organic compounds, and cellular macromolecules
(Figure 2D). In total, 164 of 501 LS genes carry an annotated domain (Table S2). Among
them, 22 LS genes encode viral integrase (rve: PF00665), 9 encode zinc finger transcriptional
factors (zf-CCHC: PF00098), 8 encode orsellinic acid (OrsD: PF12013), 7 encode kinase (Pki-
nase: PF00069), 6 encode cytochrome P450 (p450: PF00067), and 2 encode major facilitator
superfamily proteins (MFS_1: PF07690) (Figure 2E).
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Figure 2. Synteny analysis of BDLA and investigation of genes within BDLA-specific regions.
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(D) GO enrichment analysis of BDLA genes within LS regions; (E) Pfam domain annotation of BDLA
genes within LS regions.

3.4. Ortholog Construction of Botryosphaeriaceae Species Uncovered Rapid Expanded Ortholog
in BDLA

We established orthologous relationships between BDLA, BCTK, BFLG, BQTK, MP, NP,
DC, and LT using OrthoFinder v2.5.5, and 96,176 (96.11%) of the 100,070 total genes were
assigned to 15,050 orthologs (Table S3), which ranged in size from 2 to 38 genes. Overall,
2122 genes (2.12%) were assigned to 657 species-specific orthologs (Figure 3A, Table S3).
Among them, 868 genes in MP were assigned to 261 species-specific orthologs, with LT,
NP, and DC following closely (Table S4). In contrast, only 21 to 37 genes were assigned to
species-specific orthologs in BDLA, BQTK, BCTK, and BFLG. In total, 6785 core orthologs,
comprising genes from each species in this study, were detected, and 6064 of them were
identified as single-copy orthologs (Figure 3A, Table S3). In addition to species-specific
and core orthologs, we also investigated multiple-species-involved (MSI) orthologs, which
included members of two to seven species. For instance, 378 two-species MSI orthologs of
BDLA suggest that genes from another species, apart from BDLA, were arranged in these
orthologs (Figure 3B). As a result, the ratios of the four-species (891), five-species (975),
six-species (1141), and seven-species (1758) MSI orthologs were higher than those of the
two-species (378) and three-species (375) MSI orthologs in BDLA. Similar conditions were
also found in other Botryosphaeriaceae species, which indicates conservative orthologous
relationships between these species and supports the synteny analysis results.

We established the phylogenic relationships of the Botryosphaeriaceae species in
this study using the detected single-copy orthologs. The phylogenetic tree was divided
into two clades: one clade included BDLA, BCTK, BQTK, and BFLG, indicating close
genetic relatedness, but displayed evolutionary distance from MP, NP, DC, and LT. In detail,
BDLA exhibited a close phylogenetic relationship with BQTK, while BCTK was grouped
alongside BFLG.
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Figure 3. Ortholog analysis and identification of rapidly evolving orthologs. (A) Orthologous
relationships between BDLA, BCTK, BFLG, BQTK, MP, NP, DC, and LT. (B) Analysis of species
associated with orthologs, which was used for their conservation. (C) Phylogenic analysis and
rapidly evolving orthologs of BDLA, BCTK, BFLG, BQTK, MP, NP, DC, and LT. Blue numbers
represent counts of expanded orthologs, and red numbers represent contracted orthologs. (D) GO
enrichment analysis of genes assigned to expanded orthologs in BDLA. (E) Pfam domain annotation
of genes assigned to expanded orthologs in BDLA.

We further detected rapidly evolving orthologs using CAFÉ v5.0, which helped ex-
plore the significant changes in these Botryosphaeriaceae species compared to their most
recent common ancestor (MRCA). The calculated lambda values were automatically set
to 0.0001, and orthologs with Viterbi p-values lower than 0.01 were defined as rapidly
evolving. In Figure 3C, 579 orthologs (+29 orthologs expanded/−550 orthologs contracted)
were detected in node <7>, the MRCA of BDLA, BCTK, BQTK, and BFLG; 377 orthologs
(+127/−250) were detected in BDLA; 676 orthologs (+55/−621) were detected in BQTK;
300 orthologs (+91/−209) were detected in BCTK; and 330 orthologs (+55/−275) were
detected in BFLG. However, more rapidly evolving orthologs were identified in MP (1772:
+551/−1221), NP (1772: +220/−2663), DC (1772: +139/−1614), and LT (1200: +573/−627).
This indicates less divergency in the genomes of BDLA, BCTK, BQTK, and BFLG.

To explore B. dothidea’s pathogenicity in Chinese hickory, genes arranged in rapidly
expanded orthologs in BDLA were subjected to a function enrichment analysis, and a total
of 296 BDLA genes were detected (Table S5). Twenty of these genes carry the domain
of Chromo (CHRromatin Organization MOdifier) (PF00385); eight genes are involved in
orsellinic acid biosynthesis (OrsD: PF12013); seven encode heterokaryon incompatibility
proteins (HET: PF06985); six encode cytochrome P450 (p450: PF00067); and five encode
major facilitator superfamily proteins (MFS_1: PF07690) (Figure 3D). A GO enrichment
analysis of these genes revealed that the enriched GO terms were mainly divided into
three categories (Figure 3E): (i) DNA metabolic processes (such as ‘DNA biosynthetic
process’ and ‘DNA polymerase activity’); (ii) nitrogen compound metabolic processes; and
(iii) aromatic or organic cyclic compound biosynthesis processes.
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3.5. Positively Selected Genes (PSGs) of BDLA may Be Involved in Response to Xenobiotic Stimulus

Positive selection genes (PSGs), with a non-synonymous/synonymous substitutions
ratio (ω = dN/dS) higher than 1, may contribute to the emergence of novel biological
functions [32]. To explore the PSGs of B. dothidea’s pathogenicity, we calculated the dN/dS
ratio for 6064 single-copy orthologs. The calculations were performed using the branch
model of the PAML (phylogenetic analysis maximum likelihood)-CODEML algorithm. In
this model, the genes of BDLA, BQTK, BCTK, and BFLG within each single-copy ortholog
were identified as the foreground branch, respectively. The PSGs were characterized by a
dN/dS ratio exceeding 1 and a chi2 value below 0.05. As a result, 32, 48, 25, and 27 PSGs
were identified in BDLA, BQTK, BCTK, and BFLG, constituting 0.53%, 0.79%, 0.41%, and
0.45% of the total single-copy genes (Figure 4A, Table S6).
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Figure 4. Investigation of positively selected genes in BDLA, BQTK, BCTK, and BFLG. (A) Proportion
of positively selected genes among all single-copy orthologs. Blue bars represent numbers of posi-
tively selected genes, and orange bars indicate their corresponding proportions among all single-copy
orthologs. (B) Venn diagram showing overlaps of positively selected genes in BDLA, BQTK, BCTK,
and BFLG. (C) Pfam annotations and dN/dS ratios of positively selected genes of BDLA and their
corresponding ortholog IDs. (D) GO enrichment analysis of positively selected genes of BDLA and
their corresponding average dN/dS ratios.

We compared orthologs containing the PSGs of BDLA, BQTK, BCTK, and little in-
tersection was observed (Figure 4B), which suggests their obvious sequence divergency.
Therefore, we subsequently focused on BDLA-specific PSGs. These PSGs were predomi-
nantly enriched in GO terms such as ‘response to chemical’, ‘cellular response to chemical
stimulus’, and ‘response to xenobiotic stimulus’, with an average dN/dS ratio ranging
from 592.06 to 726.35 (Figure 4C). Notably, one of the BDLA PSGs, BDLA_00004043-RA
assigned to OG0003604, carries the LRR_8 (PF13855) domain (Figure 4D, Table S6), which is
consistent with research on the NBS-LRR genes of Arachis duranensis and Arachis ipaënsi [33].
In addition, BDLA_00009721-RA and BDLA_00011736-RA, assigned to OG0005150 and
OG0007268, respectively, underwent positive selection pressure (dN/dS ratio of 1.76 and
70.2467) and carry Sec_1 and Sec7-N domains, which were reported to be involved in
SNARE complex assembly and vesicle trafficking regulation [34,35]. Moreover, coding
genes of one chitinase (OG0005721: BDLA_00008528-RA-containing domain of
Glyco_hydro_18) and one chitin biosynthesis enzyme (OG0004492: BDLA_00004853-RA-
containing domain of Chitin_synth_2) also had a dN/dS ratio of 999, which implies that
positive selection may affect the chitin metabolic process of B. dothidea.
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3.6. Predicted Secretome Comparison Gives Insight into BDLA-Specific Small Secret Cysteine-Rich
Proteins (Effectors)

Plant pathogens deploy an arsenal of secreted proteins to interfere with the plant
immune system, enabling the successful colonization of the host and infection [36]. BDLA,
BCTK, BFLG, and BQTK exhibited similar numbers of secreted proteins, ranging from 997
to 1049, and 807 to 1153 secreted proteins were found in MP, NP, DC, and LT (Table S7,
Figure 5A). The lengths of the identified secreted proteins in all species were primarily
distributed in the ranges of 100 to 400 amino acids (aa) and 400 to 1000 aa (Figure 5A).
Among these secreted proteins, there were fewer putative effectors in BDLA (83), BCTK (83),
BQTK (75), and BFLG (87) compared to the four other Botryosphaeriaceae species, ranging
from 78 to 130 (Table S7). A large proportion of the putative effectors were apoplastic
(Figure 5B), and almost all of them were small cysteine-rich proteins (SCPs) (Figure 5C,
Table S8), which suggests that these cysteine-rich effectors may confer B. dothidea’s ability to
overcome the immune system of its host [37]. The GO enrichment analysis of B. dothidea’s
putative cysteine-rich effectors provided the insight that these putative effectors are mainly
enriched in carbohydrate metabolism (such as pectin, galacturonan, and polysaccharide)
and the xenobiotic stimulus response (Figure 5D).

J. Fungi 2024, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 5. Secretome analysis of Botryosphaeriaceae species. (A) Counts of secreted proteins in each 
Botryosphaeriaceae species and their corresponding length distribution. Different colors represent 
sequence length intervals. (B) Distribution of lengths and categories of putative effectors in each 
Botryosphaeriaceae species. The numbers on the right represent sequence length intervals. (C) Pro-
portion of small secreted cysteine-rich proteins (SCPs) and their corresponding length distribution. 
The numbers on the right represent sequence length intervals. (D) GO enrichment analysis of B. 
dothidea’s putative cysteine-rich effectors. (E) Homologous search. Red dashed box marked secret 
proteins specific in BDLA. 

Homology searches were conducted for the secretomes of B. dothidea and other Bot-
ryosphaeriaceae species. As shown in Figure 5E, the BDLA secretome exhibited a signifi-
cantly higher identity with those of BCTK, BFLG, and BQTK compared to MP, NP, DC, 
and LT. Interestingly, we noticed that there were two groups of BDLA-specific secreted 
proteins, of which 22 were cysteine-rich and 6 were putative effectors. Through a BLAST 
search against the Pathogen Host Interactions (PHI) database (http://www.phi-base.org/, 
accessed on 10 November 2023), it was found that eight BDLA-specific SCPs may affect 
the pathogen’s virulence and five of them carry domains of Glyco_hydro_18, Glyco_hy-
dro_61, Glyco_hydro_16, Glyco_hydro_10, and Glycos_transf_1 (Table 3), which may 
play a role in carbohydrate metabolism and host cell wall degradation. 

  

Figure 5. Secretome analysis of Botryosphaeriaceae species. (A) Counts of secreted proteins in
each Botryosphaeriaceae species and their corresponding length distribution. Different colors rep-
resent sequence length intervals. (B) Distribution of lengths and categories of putative effectors
in each Botryosphaeriaceae species. The numbers on the right represent sequence length intervals.
(C) Proportion of small secreted cysteine-rich proteins (SCPs) and their corresponding length distri-
bution. The numbers on the right represent sequence length intervals. (D) GO enrichment analysis of
B. dothidea’s putative cysteine-rich effectors. (E) Homologous search. Red dashed box marked secret
proteins specific in BDLA.
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Homology searches were conducted for the secretomes of B. dothidea and other
Botryosphaeriaceae species. As shown in Figure 5E, the BDLA secretome exhibited a
significantly higher identity with those of BCTK, BFLG, and BQTK compared to MP, NP,
DC, and LT. Interestingly, we noticed that there were two groups of BDLA-specific secreted
proteins, of which 22 were cysteine-rich and 6 were putative effectors. Through a BLAST
search against the Pathogen Host Interactions (PHI) database (http://www.phi-base.org/,
accessed on 10 November 2023), it was found that eight BDLA-specific SCPs may affect the
pathogen’s virulence and five of them carry domains of Glyco_hydro_18, Glyco_hydro_61,
Glyco_hydro_16, Glyco_hydro_10, and Glycos_transf_1 (Table 3), which may play a role in
carbohydrate metabolism and host cell wall degradation.

Table 3. Annotations of BDLA-specific small secret cysteine-rich proteins (SCPs).

Gene ID Protein
Length

Cysteine
Proportion

SCP
Identification

EffectorP
Prediction PHI Annotation Pfam Domain Function Annotation

BDLA_00001985-RA 111 6.25 Y Apoplastic
effector - - -

BDLA_00002075-RA 227 0.88 Y - effector_(plant_
avirulence_determinant) Glyco_hydro_61 Fungal cellulose-binding

domain-containing protein
BDLA_00002749-RA 306 1.63 Y - - - -
BDLA_00003112-RA 189 1.05 Y - - - -

BDLA_00003469-RA 290 0.34 Y - reduced_virulence TB2_DP1_HVA22
Belongs to the type-B

carboxylesterase
lipase family

BDLA_00003643-RA 393 0.76 Y - loss_of_pathogenicity p450 Belongs to the cytochrome
P450 family

BDLA_00006476-RA 292 3.07 Y - - - -
BDLA_00007123-RA 140 4.26 Y - - - -

BDLA_00007170-RA 234 6.38 Y Apoplastic
effector - - -

BDLA_00007782-RA 102 0.97 Y Cytoplasmic
effector - - -

BDLA_00008471-RA 318 0.94 Y - - - -
BDLA_00008838-RA 128 3.88 Y - - - -
BDLA_00009176-RA 284 3.51 Y - - - -

BDLA_00009481-RA 136 1.46 Y - - SnoaL_2 Snoal-like polyketide cyclase
family protein

BDLA_00009719-RA 345 1.45 Y - reduced_virulence Glyco_hydro_10 glycoside hydrolase family
10 protein

BDLA_00009878-RA 124 1.6 Y - reduced_virulence Glycos_transf_1 Starch synthase catalytic
domain(ags1)

BDLA_00010018-RA 90 8.79 Y Apoplastic
effector - - -

BDLA_00011085-RA 73 8.11 Y Apoplastic
effector - - -

BDLA_00011913-RA 209 0.48 Y - reduced_virulence Lipase_GDSL_2 GDSL-like
Lipase/Acylhydrolase family

BDLA_00012014-RA 152 8.5 Y - - - -
BDLA_00012024-RA 287 0.69 Y - - Peptidase_S15 X-Pro dipeptidyl-peptidase

BDLA_00012709-RA 383 2.08 Y - reduced_virulence Glyco_hydro_16 glycoside hydrolase family
16 protein

BDLA_00012987-RA 233 2.56 Y Apoplastic
effector - - -

BDLA_00012997-RA 304 2.62 Y - - - -

BDLA_00013002-RA 270 1.48 Y - - DUF3455 Protein of unknown function
(DUF3455)

BDLA_00013015-RA 274 1.09 Y -
increased_virulence_

(hypervirulence)_
reduced_virulence

Glyco_hydro_18 Belongs to the glycosyl
hydrolase 18 family(CHT2)

3.7. Identification of Horizontal Gene Transfer (HGT) Events in BDLA Genome

Horizontal gene transfer is a process where genomic DNA segments are exchanged
between organisms that are not in a parent–offspring relationship, which may introduce
novel functions and improve the adaptive ability of the recipient organism [38]. We
performed a genome-wide HGT event prediction for BDLA to explore its pathogenicity
influenced by HGTs. The Alien Index (AI), comparing the best hits from closely related
taxa (ingroup) and distantly related taxa (donor) based on their BLAST E-values [39], was
calculated for each protein-coding gene of BDLA using the AvP toolkit [27], coupled with
support from phylogenetic evidence.

http://www.phi-base.org/
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As shown in Table 4, 42 HGT events were identified in BDLA. The most likely donor
species are bacteria for HGT_1 to HGT_7, fungi for HGT_8 to HGT_31, other eukaryotes for
HGT_32 to HGT_35, oomycota for HGT_36 to HGT_39, and viridiplantae for HGT_40 to
HGT_42. This indicates that genetic exchange between members of the B. dothidea fungus
community is particularly frequent. Among the fungi-derived genes, BDLA_00005439-RA
(HGT_16) is a putative cellulase (including a Glyco_hydro_7 domain) that may be involved
in host cell wall degradation. BDLA_00001191-RA (HGT_12) has GTPase activity with
the Ras domain, which may be involved in external signal transduction. Moreover, one
GDSL-like Lipase (BDLA_00002083-RA, HGT_22), one Peptidase (BDLA_00002724-RA,
HGT_23), one ctr copper transporter (BDLA_00007786-RA, HGT_10), one Jacalin-like lectin
(BDLA_00010741-RA, HGT_19), and one Molybdate transporter protein (BDLA_00007280-
RA, HGT_21) were also observed. The bacteria-derived HGTs included one thymidine
phosphorylase (BDLA_00012548-RA, HGT_5) and one Alkyl sulfatase (BDLA_00003435-RA,
HGT_6). Moreover, one Pyridoxal-phosphate-dependent enzyme (BDLA_00012074-RA,
HGT_36) was transferred from the oomycete kingdom.

Table 4. Annotations of HGT genes identified in BDLA.

Gene ID HGT
Event ID Pfam Domain Putative Function Best Hit on PHI-Base

(E-Value)
Most Likely

Donor

BDLA_00000792-RA HGT_1 Cupin_3 Protein of unknown
function (DUF861) - Bacteria

BDLA_00005852-RA HGT_2 - - Q9HV44; heat shock protein;
reduced virulence Bacteria

BDLA_00004793-RA HGT_3 - - A0A098DK85; protease;
unaffected pathogenicity Eukaryota

BDLA_00003727-RA HGT_4 HRI1 Protein HRI1 - Fungi

BDLA_00007369-RA HGT_5 Methyltransf_11 ubiE/COQ5
methyltransferase family - Fungi

BDLA_00007786-RA HGT_6 Ctr ctr copper transporter
family protein(ctr4)

B0XUP5; copper transporters;
unaffected pathogenicity Fungi

BDLA_00010862-RA HGT_7 Peptidase_M43 Pregnancy-associated
plasma protein-A

C5P3X6; Metalloproteinase;
reduced virulence Fungi

BDLA_00001191-RA HGT_8 Ras GTPase activity A0A139Y2L7; small GTPase;
reduced virulence Fungi

BDLA_00003074-RA HGT_9 Acetyltransf_7 Acetyltransferase
(GNAT) domain - Fungi

BDLA_00010710-RA HGT_10 EHN Epoxide hydrolase N
terminus - Fungi

BDLA_00010289-RA HGT_11 Zn_clus Oxidoreductase
NAD-binding domain

Q4W9X3; flavohemoglobins;
unaffected pathogenicity Fungi

BDLA_00005439-RA HGT_12 Glyco_hydro_7
Belongs to the glycosyl
hydrolase 7 (cellulase

C) family

G4ZRT3; conserved glycoside
hydrolase family 7
cellobiohydrolase;
reduced virulence

Fungi

BDLA_00011030-RA HGT_13 Abhydrolase_1 Serine aminopeptidase, S33
Q8PC98; effector protein;

effector (plant
avirulence determinant)

Fungi

BDLA_00007899-RA HGT_14 DAO FAD dependent
oxidoreductase - Fungi

BDLA_00010741-RA HGT_15 Jacalin Jacalin-like lectin domain P9WKQ1; extracellular
nuclease; reduced virulence Fungi

BDLA_00010678-RA HGT_16 DUF1349 Protein of unknown
function (DUF1349) - Fungi

BDLA_00007280-RA HGT_17 MFS_MOT1 Molybdate transporter of
MFS superfamily - Fungi

BDLA_00002083-RA HGT_18 Lipase_GDSL_2
GDSL-like

Lipase/Acylhydrolase
family

- Fungi

BDLA_00002724-RA HGT_19 Peptidase_S58 Peptidase family S58 - Fungi
BDLA_00007942-RA HGT_20 - - - HGT_complex

BDLA_00003219-RA HGT_21 RVT_2 Mitochondrial protein - NM_Eukaryota_
complex



J. Fungi 2024, 10, 299 14 of 20

Table 4. Cont.

Gene ID HGT
Event ID Pfam Domain Putative Function Best Hit on PHI-Base

(E-Value)
Most Likely

Donor

BDLA_00005227-RA HGT_22 - - - NM_Eukaryota_
complex

BDLA_00012074-RA HGT_23 PALP Pyridoxal-phosphate-
dependent enzyme

G2XJR0;1-
Aminocyclopropane-1-
carboxylate deaminase;

increased virulence
(hypervirulence)

Oomycota

BDLA_00008930-RA HGT_24 NAD_binding_8 FAD-binding domain
Q5GFD3; Mannitol

1-phosphate dehydrogenase;
unaffected pathogenicity

Oomycota

BDLA_00008949-RA HGT_25 Ank_4 spectrin binding
J9VLD1; Cyclin-dependent

protein kinase inhibitor;
reduced virulence

Bacteria

BDLA_00004977-RA HGT_26 - Podospora anserina S mat
genomic DNA chromosome - Bacteria

BDLA_00012548-RA HGT_27 PYNP_C thymidine phosphorylase
activity (TYMP) - Bacteria

BDLA_00003435-RA HGT_28 Lactamase_B Alkyl sulfatase
dimerization (MA20_17395)

U3M7S2; heat-sensitive alkyl
sulphatase; unaffected

pathogenicity
Bacteria

BDLA_00003351-RA HGT_29 - - Q8J286; copper transporting
ATPase; loss of pathogenicity Bacteria

BDLA_00006818-RA HGT_30 - -
J9VLD1; cyclin-dependent

protein kinase inhibitor;
reduced virulence

Eukaryota

BDLA_00008015-RA HGT_31 UDPGT Belongs to the OSBP family - Fungi
BDLA_00007233-RA HGT_32 - - - Fungi
BDLA_00010519-RA HGT_33 - - - Fungi
BDLA_00002024-RA HGT_34 - - - Fungi
BDLA_00008349-RA HGT_35 - - - Fungi
BDLA_00001002-RA HGT_36 - - - Fungi
BDLA_00009177-RA HGT_37 - - - Fungi
BDLA_00010857-RA HGT_38 - - - Fungi
BDLA_00004645-RA HGT_39 - - - Oomycota
BDLA_00012380-RA HGT_40 - - - Oomycota
BDLA_00012910-RA HGT_41 - - - Viridiplantae
BDLA_00002811-RA HGT_42 - - - Viridiplantae
BDLA_00001009-RA HGT_43 - - - Viridiplantae

The PHI base annotations revealed that BDLA_00008949-RA (HGT_3), BDLA_00010862-
RA (HGT_11), BDLA_00001191-RA (HGT_12), and BDLA_00010741-RA (HGT_19) might
affect pathogenicity. Notably, BDLA_00011030-RA (HGT_17) is a putative avirulence effec-
tor and carries a domain of serine aminopeptidase, which suggests that this gene might be
involved in the inhibition of the host immune system through its protease activity.

3.8. Secreted Glucanase, Orsellinic Acid Biosynthesis Enzyme, and MFS Transporters Play an
Important Role in Pathogenicity of B. dothidea

The bioinformatics analysis above identified several gene families that might be re-
lated to B. dothidea’s pathogenicity. Here, we performed qRT-PCR assays to validate the
expression level of genes assigned to these families. We found that one secreted glucanase
(BDLA_00012709), two secreted chitinase (BDLA_00008528 and BDLA_00004853), two
orsellinic acid biosynthesis enzymes (BDLA_00007003 and BDLA_00010036), three major
facilitator superfamily proteins (BDLA_00004985, BDLA_00007512 and BDLA_00010781),
one viral integrase (BDLA_00005840), and one LRR-containing protein (BDLA_00004043)
significantly upregulated during the infection stage. As Figure 6 shows, BDLA_00012709,
BDLA_00010036, BDLA_00007003, BDLA_00008528, and BDLA_00010781 were specifically
upregulated at 8 days post-inoculation (dpi). Meanwhile, BDLA_00004985, BDLA_00007512,
BDLA_00004853, BDLA_00004043, and BDLA_00015840 exhibited a consistent upregula-
tion trend in expression. Among them, one glucanase (BDLA_00012709), one orsellinic
acid biosynthesis enzyme (BDLA_00007003), and two MFS transporters (BDLA_00010781
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and BDLA_00004985) showed the highest upregulated expression level and were chosen
to evaluate their pathogenic ability on hickory trunk. Disease lesions caused by knockout
strains of these four pathogenic candidates were obviously smaller than those caused by
wild-type and their corresponding complemented strains (Figure 7). These results suggest
that glucanase, orsellinic acid biosynthesis enzymes, and MFS transporters play an im-
portant role in B. dothidea’s pathogenicity. According to the bioinformatics analysis above,
BDLA_00007003 and BDLA_00010781 were located in the lineage-specific (LS) regions of
B. dothidea (Table S2). BDLA_00004985 is assigned to ortholog group OG0000329, which
is specifically expanded in B. dothidea (Table S5). Moreover, BDLA_00012709 is one small
secret cysteine-rich protein specific in B. dothidea (Table 3) and is a putative virulence protein
according to the annotation based on the PHI database (Table S7).
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real-time PCR verification of expression of selected coding genes during infection stage.
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15 days post-inoculation (dpi); (B) lesion size on Chinese hickory trunk caused by each strain. a, b, c,
and d represent the significant difference (one-way ANOVA test, p < 0.01).

4. Discussion

Trunk cankers pose a significant threat to Chinese hickory production in the Lin’an
district of Zhejiang Province, China [21]. In our previous research, the majority of the
pathogenic isolates belonged to B. dothidea wild-type strain BDLA16-7. This highlighted
B. dothidea’s enhanced pathogenicity and host colonization abilities, particularly in Chi-



J. Fungi 2024, 10, 299 16 of 20

nese hickory. This motivated us to explore the potential mechanisms underlying this
phenomenon through comparative genomics between B. dothidea BDLA16-7 (BDLA) and
other closely related species.

Higher GC contents were observed in the genomes of BDLA, BCTK, BQTK, and BFLG
compared to MP, NP, DC, and LT. According to [40], increased GC contents in genomic
regions promote transcriptional activity. We speculated that in BDLA, BCTK, BQTK, and
BFLG, higher GC contents might be associated with genes related to their infection of
Chinese hickory.

Expectedly high degrees of sequence identity and synteny between BDLA, BQTK,
BCTK, and BFLG were described, which was consistent with [22]. This suggests a con-
served genomic structure and content among Botryosphaeria species, indicating gradual
evolution. This result contrasts with that of destructive filamentous fungi, such as Phy-
tophthora infestans and Magnaporthe oryzae, which can rapidly kill host plants, prompting
a rapid evolutionary ‘arms race’ and shaping divergent genomes among closely related
species [41,42]. However, we still found two specific contigs and other lineage-specific
(LS) regions in the BDLA genome, which include genes that may be related to B. doth-
idea’s stronger pathogenicity in Chinese canker. A significant proportion of BDLA genes
in LS regions were occupied by genes encoding virus integrase, which is responsible for
the viral replication that catalyzes the covalent integration of viral cDNA into the host
genome [43]. It is well known that mycoviruses can attenuate the growth and virulence
of B. dothidea [44]. However, our HGT analysis revealed that these virus integrases were
not acquired from viruses or other distant species. One possible explanation is that these
virus integrases originated from B. dothidea’s ancestors and might indicate to B. dothidea’s
pathogenicity by shaping the endophytic lifestyle of B. dothidea. Such integrases may be
found in retrotransposons [45,46]. Interestingly, we found that heterokaryon incompati-
bility (HI) proteins were expanded in BDLA as well. Heterokaryon incompatibility (HI)
is a non-self-recognition phenomenon in filamentous fungi, and it plays an important
role in limiting resource plundering and restricting viral transfer between strains [47,48].
Therefore, B. dothidea also possesses sufficient capability to restrict viral transfer. Taken
together, we speculate that there is a ‘viral-balance’ system in B. dothidea’s genome, which
suggests that B. dothidea may control the orderly integration of viruses or retrotransposons
into its genome for environmental adaptation. However, detailed mechanisms still need
further research in the future. Additionally, we also found that two MFS transporter coding
genes exists in LS regions and deleting one of them (BDLA_00010781) reduced B. dothidea’s
pathogenicity. Combined with previous studies [49,50], we proposed two possibilities:
(i) BDLA_00010781 is involved in fungal toxin secretion; (ii) BDLA_00010781 is important
for hyphal morphology and conidiation, which affect fungal pathogenicity.

An overrepresentation of genes was involved in orsellinic acid biosynthesis and carried
the orsD domain (PF12013) in the BDLA-specific gene set. Endophytic fungi can generate a
range of bioactive metabolites to protect the hosts against other pathogens and herbivores
in harsh environments for the purpose of nutrient absorption from host plants [51–53]. For
instance, interactions with bacteria induce Aspergillus nidulans to produce the archetypal
polyketide orsellinic acid [54]. In [55], the authors utilized orsellinic acid, a compound
isolated from the endophytic fungus Epicoccum Nigrum, to produce biocompatible green
silver nanoparticles. These nanoparticles exhibited significant antifungal activity against
Alternaria solani. In this study, we found BDLA_00007003, containing the orsD domain,
significantly upregulated since 3 dpi, and positively regulated B. dothidea’s pathogenicity.
It will be interesting to infer that this orsellinic acid biosynthesis coding gene might be
induced to inhibit its fungal competitors in diseased Chinese hickory samples.

An analysis of positively selected genes (PSGs) in BDLA revealed that these PSGs are
mainly involved in the response to xenobiotic stimuli. Specifically, BDLA_00003994-RA,
assigned to OG0003633, encodes one LRR-containing protein. In plants, this type of protein
is well known for regulating the immune system [56]. However, LRR-containing proteins
are also involved in development and pathogenicity in Phytophthora sojae [57,58]. Thus,
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the LRR-containing protein of BDLA may undergo selection pressure because it affects
B. dothidea’s development and pathogenicity. Meanwhile, one Sec_1-containing protein
and one Sec_2-containing protein of BDLA were also putative PSGs, and they may affect
protein trafficking.

The putative secretome of B. dothidea shows higher similarity with BCTK, BQTK,
and BFLG compared to MP, NP, DC, and LT. Small secreted cysteine-rich proteins (SCPs)
have been implicated as key virulence factors in fungal pathogens, contributing to the
establishment of colonization in host plants [59]. In the current study, we observed that
some of the BDLA-specific SCPs encode chitinase and have undergone positive selection.
This association may be related to the degradation of the cell wall in fungal competitors of
B. dothidea, considering the absence of chitin content in the host plants. We speculate that
this result may partially explain the dominant role of B. dothidea in diseased trunk samples.
Furthermore, we also noticed that one secreted glucanase, BDLA_00012709, might enhance
fungal pathogenicity by degrading the cell wall of the host.

In this study, we presented a high-quality genome assembly of B. dothidea and con-
ducted an in-depth analysis of the relationship between B. dothidea’s genome and its
pathogenicity in Chinese hickory. Using reported genomic data of B. dothidea [22], we iden-
tified and verified one glucanase and several chitinase that are pathogenicity-associated.
On the other hand, we noticed that orsellinic acid biosynthesis-associated enzymes of B.
dothidea may affect its competitiveness in the fungal community of the diseased samples,
which was not reported before. Two MFS transporters were also validated for their function
during the procession of B. dothidea’s infection. Moreover, we speculate that the viral inte-
grase and heterokaryon incompatibility proteins of B. dothidea may collaborate to regulate
the integration of viruses into the B. dothidea genome. This coordination could potentially
influence B. dothidea’s pathogenicity and affect shaping its endophytic lifestyle.

This study shed light on the evolutionary process of B. dothidea and other closely
related species isolated from diseased Chinese hickory trees, and several candidates might
be related to B. dothidea’s pathogenicity and colonization ability. However, the limitations
of this comparative analysis are (1) it will be difficult to predict genes located in complex
or high-repeat regions without the support of chromosome-level genome assemblies; (2)
functional annotations for each gene are based only on sequence similarity to known
domains, but they cannot identify key sites without in-depth experimental validation,
which sometimes is more critical to gene functions. Hence, in-depth elucidation of the
mechanisms is essential for a comprehensive understanding of B. dothidea’s pathogenicity
in the future.
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