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Abstract: Flow cytometry is commonly employed for ploidy determination and cell cycle analysis
in cryptococci. The cells are subjected to fixation and staining with DNA-binding fluorescent dyes,
most commonly with propidium iodide (PI), before undergoing flow cytometric analysis. In ploidy
determination, cell populations are classified according to variations in DNA content, as evidenced
by the fluorescence intensity of stained cells. As reported in Saccharomyces cerevisiae, we found
drawbacks with PI staining that confounded the accurate analysis of ploidy by flow cytometry when
the size of the cryptococci changed significantly. However, the shift in the fluorescence intensity,
unrelated to ploidy changes in cells with increased size, could be accurately interpreted by applying
the ImageStream system. SYTOX Green or SYBR Green I, reported to enable DNA analysis with a
higher accuracy than PI in S. cerevisiae, were nonspecific for nuclear DNA staining in cryptococci.
Until dyes or methods capable of reducing the variability inherent in the drastic changes in cell size
or shape become available, PI appears to remain the most reliable method for cell cycle or ploidy
analysis in Cryptococcus.

Keywords: ploidy determination; flow cytometry; propidium iodide; DAPI; SYTOX Green; SYBR
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1. Introduction

Isolates of Cryptococcus neoformans and C. gattii species complex typically exist as
haploid yeasts with 14 chromosomes. However, both species complexes are recognized for
their genome plasticity and frequent manifestation of variation in ploidy [1–4]. Aneuploidy
is particularly pronounced when yeasts adapt to severe environmental stress in vitro and
in vivo [5,6]. In addition, isolates resulting from mating between strains of genetically
divergent lineages, such as those of molecular type VN1 (serotype A) and VNIV (serotype
D) within the C. neoformans species complex, display notable ploidy variation [4,7]. Further-
more, polyploid cells (>4N), known as titan cells or giant cells, can be formed in vitro [8]
and in the lungs or brains of mice during infection [9–11]. Given the significance of deter-
mining ploidy levels in various molecular genetic research projects and the impracticality
of directly counting chromosomes in yeast cells, flow cytometry has become the standard
method for assessing DNA ploidy in Cryptococcus species.

Flow cytometry assesses the cellular DNA content of cells by staining with fluo-
rochromes such as propidium iodide (PI), 4′,6-diamidino-2-phenylindole (DAPI), or other
DNA-specific dyes. These dyes bind stoichiometrically to nucleic acids, and the staining
intensity is proportionate to the total DNA content [12–14]. PI and DAPI are commonly
employed in cryptococcal research [4,7,9,15–17]. PI intercalates nonspecifically between
bases in double-stranded nucleic acids, emitting red fluorescence when excited by blue
light [13,14]. As it also binds to RNA, the enzymatic digestion of RNA is necessary to
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assess nuclear ploidy during fluorescence measurement [13,14]. In contrast, DAPI is more
DNA-specific, binding nonintercalatively to repetitive AT-rich regions [18,19]. While useful
for ploidy determination and cell cycle analysis, DAPI may not yield absolute DNA values
or be suitable for comparing cells with varying AT base proportions [20].

Although PI remains the most widely used fluorochrome for DNA ploidy determi-
nation, its fluorescence intensity in stained samples was reported to be influenced by cell
size or shape in Saccharomyces cerevisiae [21]. When cryptococci are exposed to fluconazole
(FLC), there is a noticeable increase in cell size and changes in fluorescence intensity in
flow cytometry analysis [22]. In this study, we analyzed the ploidy status of cryptococcal
yeast cells exposed to fluconazole using propidium iodide (PI) and observed alterations
in fluorescence intensity unrelated to ploidy. In addition, we explored the use of other
fluorochromes, SYTOX Green [21] and SYBR Green I [23], which have been recommended
for more accurate DNA analysis in S. cerevisiae [21]. We found that both SYTOX Green
and SYBR Green were not useful for determining ploidy or analyzing the cell cycle in
cryptococci, as their binding is nonspecific to nuclear DNA.

2. Methods

Strains and culture conditions. Cryptococcus neoformans strain H99 was grown in YPD
broth to log phase at 30 ◦C. The log-phase cells were exposed to 32 µg/mL FLC for the
indicated time to compare with naïve cells and were processed for staining with various
fluorescent dyes.

Propidium iodide staining. PI staining was carried out according to established
methods [22]. In short, approximately 2 × 107 cells (1 OD600) were fixed in 70% ethanol
overnight at 4 ◦C, collected, and suspended in NS buffer [24]. Subsequently, the sample
was treated with RNase and stained with PI (Invitrogen, Carlsbad, CA, USA) at 37 ◦C
for 2 h. The PI-stained cells were analyzed by flow cytometry as previously detailed [22].
ImageStream® imaging flow cytometry analysis (Amnis Corporation, Seattle, WA, USA)
was performed on H99 cells either untreated or treated with 32 µg/mL FLC for 8 h and
stained with PI. Imperfect acquisition events (poor alignment, focus) as well as cell clumps
were eliminated by gating in post-acquisition analysis using the ImageStream® Ideas
software version 4. To compare the most similar populations possible, we also gated only
single (non-budding) cells.

SYTOX Green and SYBR Green I staining. The staining procedures for SYTOX Green
and SYBR Green I (Invitrogen, Carlsbad, CA, USA) followed the methods established in
the early 2000s [21,23]. Briefly, an approximate number of 2 × 107 cells were fixed in 70%
ethanol. For SYTOX Green staining, fixed cells were washed with H2O and resuspended in
RNase solution, boiled for 15 min, allowed to cool at room temperature and incubated for
2–12 h at 37 ◦C. The cells were collected, resuspended in protease solution, and incubated
for 15–20 min. Protease-treated cells were then added to SYTOX Green solution, sonicated,
and subjected to analysis by standard flow cytometry methods [21]. For SYBR Green
I staining, fixed and washed cells were incubated in RNase solution for 1 h at 50 ◦C.
Proteinase treatment was also performed at 50 ◦C for 1 h before staining with SYBR Green
I at 6 ◦C to 8 ◦C overnight in the dark to protect from light. Stained cells were sonicated
and subjected to flow cytometry analysis [23].

In addition, ethanol-fixed cells were stained with 3 µg/mL DAPI and subsequently
were subjected to flow cytometry analysis. For Hoechst 33258 or Hoechst 33342 (Invitrogen,
Carlsbad, CA, USA) staining, a final concentration of 10 µg/mL of the dye was added to
the cultures of live cells for 30 min and then were subjected to flow cytometry analysis.

3. Results and Discussions

We first examined PI-stained C. neoformans cells which had been exposed to flucona-
zole (FLC). The FLC-untreated sample displays the typical G1 and G2 peaks (Figure 1A,
blue color), while the sample treated with FLC displays increased fluorescent intensity
(Figure 1A, red color). The increased fluorescence intensity in the FLC-treated sample



J. Fungi 2024, 10, 296 3 of 7

correlated with the increased cell size inferred from the forward scatter plots (Figure 1B–D).
These results were similar to the previous observation that there is ambiguity in the flow
cytometric determination of the DNA content in fluconazole-treated C. neoformans cells
stained with propidium iodide [22]. However, ImageStream imaging flow cytometry analy-
sis after applying the nuclear mask method revealed that the presumed polyploidy status
in the FLC-treated samples was primarily attributed to an elevated cytoplasmic PI signal
unrelated to ploidy (Figure 2).
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Figure 1. FLC treatment causes changes in the flow cytometry patterns in PI-stained cells. H99 cells
grown to log phase were treated with 32 µg/mL of FLC for 8 h, stained with PI, and subjected to flow
cytometry. Doublets were removed by gating in post-acquisition analysis. (A) Histograms of FLC-treated
(red) and untreated control (blue). The FLC-untreated sample displays the typical G1 and G2 peaks.
The sample treated with FLC displays increased fluorescent intensity. (B–D) Dot plots displaying PI
fluorescence intensity (x-axis) and forward scatter area (y-axis). Untreated control (blue; B), FLC-treated
sample (red; C), overlay of the two populations (D). The increased fluorescence intensity in FLC-treated
sample is correlated with increased cell size inferred from forward scatter area (FSC-Area).
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imaging flow cytometric analysis was performed on H99 cells either treated or untreated with
32 µg/mL FLC for 8 h and stained with PI. (A) Histograms of FLC-treated (red) and untreated control
(blue) PI fluorescence intensity signal using software default mask. The “>2N” gate in the FLC-treated
condition is displayed to indicate that these cells appear to have DNA content >2N, which might
be putative “polypoid”. (B) New masks were created using “spot” function in the Ideas software to
isolate each cell’s nucleus from the surrounding cytoplasm. Sample images of a typical cell displaying
the brightfield image (i), default software whole cell (ii), nuclear (iii) and cytoplasmic masks (iv).
(C) Histograms of FLC-treated (red) and -untreated control (blue) histograms using nuclear mask
for the PI channel. The apparent putative >2N population in panel A disappears after applying
the nuclear mask. (D) Histogram display of fluorescence intensity signal. Left panel: whole-cell
fluorescence signal from the FLC-treated sample showing the “>2N” gated (orange) and the complete
set of FLC-treated events (red). Position of example cells x and y are highlighted. Right panel: nuclear
fluorescence signal from the FLC-treated sample showing the >2N gated (orange) and the complete
set of FLC-treated events (red). Position of example cells x and y are highlighted. (E) Analysis of two
representative cells from the FLC-treated sample. Cell x is from near the G2 peak and cell y is from
the “>2N” area in 2D. Brightfield (upper left panel) and fluorescence images (lower left panel) of each
cell. Fluorescence images are identically scaled for comparison. Table displaying the fluorescence
intensities of example cells x and y using whole-cell, nuclear, and cytoplasmic masks, respectively.
(F) Dot plots displaying area of cytoplasmic mask (y-axis) and area of nuclear mask (x-axis) in square
micrometers (left panel). Panels display untreated control (blue; center left), FLC-treated (red; center
right), >2N gated FLC-treated (orange; far right) and an overlay of the three populations (far left).
Positions of the example cells “x” and “y” are marked. (G) Dot plots displaying the fluorescence
intensity inside the cytoplasmic mask (y-axis) and the fluorescence intensity inside the nuclear mask
(x-axis). Panels display untreated control (blue; center left), FLC-treated (red; center right), >2N gated
FLC-treated (orange; far right), and an overlay of the three populations (far left). Positions of the
example cells “x” and “y” are marked. It is clear that the cells from the >2N gate have a larger area of
cytoplasm and cytoplasmic fluorescent intensity but do not have a clear increase in actual nuclear
fluorescence intensity.

The ImageStream system is a sophisticated flow cytometer capable of capturing fluo-
rescence signals and high-quality fluorescence images, facilitating multiparameter anal-
ysis [25]. Analyzing images with ImageStream necessitates creating masks that divide
the images into areas of interest (events/cells) and background. By default, the software
generates masks encompassing the entire cell. This default mask is similar to the signals
produced by flow cytometry.

Figure 2A demonstrates that the alteration in the fluorescence intensity pattern upon
the FLC treatment in the ImageStream analysis, when employing the software’s default
mask, closely resembles the pattern observed in conventional flow cytometry (Figure 1A).
The “>2N” gate in the FLC-treated condition is displayed to indicate that these cells appear
to have a DNA content exceeding 2N, potentially indicative of “polyploidy”. We then
used the spot function in the Ideas software to create a new mask to isolate each cell’s
nucleus from the surrounding cytoplasm. A further mask isolating each cell’s cytoplasm
was created by subtracting the nuclear mask from the whole-cell mask. Figure 2B shows
the sample images of a typical cell displaying the brightfield image (i), default software
whole cell (ii), nuclear mask (iii), and cytoplasmic mask (iv). The apparent putative >2N
population in panel A disappears after applying the nuclear mask (Figure 2C), suggesting
that the increased fluorescent intensity in the putative “>2N” area is in fact not due to a
ploidy change.

Two representative cells from the FLC-treated sample (cell x from near the G2 peak
and cell y from the “>2N” area in Figure 2D left panel) were selected to further illustrate the
effects of generating a mask using different methods in the Ideas software. The fluorescence
intensities of example cells x and y using the whole-cell, nuclear, and cytoplasmic masks
are displayed in the right panel of Figure 2E. It is evident that the cytoplasmic fluorescence
intensity is higher in cell y than in cell x, which contributes to the major fluorescent intensity
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increase observed in the whole cell. The dot plot analysis further demonstrates that the
cells from the >2N gate have a larger area of cytoplasm as well as cytoplasmic fluorescent
intensity but do not display a clear increase in the actual nuclear fluorescence intensity
(Figure 2F,G). To sum up, the cells in the >2N gate which could be interpreted as containing
higher ploidy are mainly the cells with increased cytoplasmic fluorescent intensity. These
findings suggest that determining ploidy in PI-stained cryptococcal cells displaying changes
in size or shape cannot solely rely on simple flow cytometry data.

In work with S. cerevisiae, PI-stained cells commonly exhibit increases in the coeffi-
cients of variations in fluorescence associated with an increase in cell size or changes in
morphology [21]. In our study, an imaging flow cytometry proved to be valuable in distin-
guishing the fluorescent signals of PI in the cytoplasm versus the nucleus. PI-associated
fluorescence shifts in flow cytometry, unrelated to ploidy changes, have also been docu-
mented in cryptococcal strains with specific gene mutations leading to alterations in cell
size [25,26]. This observation supports that an alteration in the cryptococcal cell size can
distort the ploidy status and emphasize the importance of examining cell morphology prior
to flow cytometry. The microscopic examination of cells would suffice to detect changes in
the size or shape of the cells. If microscopic examination was omitted, drastic alterations
in scatter values in flow cytometry may indicate changes in the cell size or shape. In such
cases, supporting cytological, genetic, or other evidence is essential before interpreting a
fluorescence shift as indicative of an alteration in ploidy.

To address the variability associated with PI staining in the FL-treated cells, we
explored alternative dyes, namely, SYTOX Green and SYBR Green I. These dyes are known
to bind to DNA/RNA without base specificity [13]. They are commonly used in bacterial
staining for viability [27] and in studies of S. cerevisiae’s cell cycle and ploidy. SYTOX Green
and SYBER Green 1 staining are considered superior for ploidy analysis in S. cerevisiae
because they reduce the variability associated with PI staining [21,23]. Unlike the case of
S. cerevisiae, however, the staining patterns of the cryptococcal cells with these dyes were
inconsistent in that some cells were successfully stained while others failed to be stained.
Furthermore, the dyes did not specifically label nuclear DNA in the RNase A-treated cells
and yielded unreliable flow cytometric data (Figure 3 and unpublished observations). This
was unexpected since SYTOX Green has a higher affinity to DNA than PI [21] at working
concentrations in other systems, and the stain readily penetrates the compromised plasma
membranes of alcohol-fixed cells. SYBR Green I [23] behaved similarly to SYTOX Green in
terms of the inconsistency in the staining pattern and showed no specificity for the nuclear
DNA of the cryptococcal cells (Figure 3). S. cerevisiae and Cryptococcus are phylogenetically
distanced yeasts with differences in cell wall and membrane compositions. In addition,
cryptococcal cells are surrounded by a thick polysaccharide capsule. We speculate that the
permeation of the two dyes is not as efficient as in S. cerevisiae due to these differences and
the results of inconsistent cell staining. The two dyes not being DNA-specific in stained
cryptococci is an enigma at this point and requires further study.

Although DAPI, Hoechst 33342, and Hoechst 33258 have been used for ploidy deter-
mination [13,14], all three of these dyes showed inferior G1/G2 signal separation compared
to PI (Figure 4). Moreover, the flow cytometric patterns of the DAPI-, Hoechst 33342-, and
Hoechst 33258-stained cryptococcal cells were all influenced by growth conditions as an
FLC treatment (Figure 4). These results indicated that the nuclear-DNA-binding dyes that
can be reliably used for ploidy determination or cell cycle analysis in cryptococcal cells
are more limited than for S. cerevisiae. Until the dyes or methods which can reduce the
variability inherent in the drawbacks discussed above become available, PI appears to
remain the most reliable method for cell cycle or ploidy analysis in Cryptococcus, provided
that the isolates manifest no drastic changes in size or shape.
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to flow cytometry. Histograms show FLC-treated (red) and -untreated control (blue) samples. Cells
were stained with PI (A), DAPI (B), Hoechst 3342 (C), and Hoechst 33258 (D).

In conclusion, the selection of DNA-binding dyes suitable for cryptococcal ploidy
determination or cell cycle analysis by flow cytometry is more limited compared to that for
S. cerevisiae. Although PI staining seems to be the most viable method currently available
for cryptococcal cell cycle or ploidy analysis, it is important to note that alterations in cell
size or shape may lead to distortions in the interpretation of ploidy status.
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contributed to writing the manuscript. All authors have read and agreed to the published version of
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