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Abstract: The fungal cell wall plays a critical role in regulating cellular integrity and communication,
and serves as a frontline defense against stress. It is also a prime target for the development of antifun-
gal agents. The cell wall is comprised of diverse polysaccharides and proteins and poses a challenging
target for high-resolution structural characterization. Recently, the solid-state nuclear magnetic reso-
nance (ssNMR) analysis of intact Aspergillus fumigatus cells has provided atomic-level insights into
the structural polymorphism and functional assembly principles of carbohydrate components within
the cell wall. This physical perspective, alongside structural information from biochemical assays,
offers a renewed understanding of the cell wall as a highly complex and dynamic organelle. Here,
we summarize key conceptual advancements in the structural elucidation of A. fumigatus mycelial
and conidial cell walls and their responses to stressors. We also highlight underexplored areas and
discuss the opportunities facilitated by technical advancements in ssNMR spectroscopy.

Keywords: cell wall; fungi; Aspergillus; solid-state NMR; carbohydrate; polysaccharide; chitin;
glucan; antifungal

1. Introduction

The fungal cell wall, an intricate and dynamic composite of polysaccharides and
proteins positioned outside the plasma membrane, serves as the frontline in the interaction
between fungi and their environment [1,2]. This organelle plays a pivotal role in governing
fungal survival, facilitating cellular communication, and influencing both fungal virulence
and the host’s immune response [2,3]. The carbohydrate components and their biosynthesis
are crucial targets of antifungal agents, with recent successes being exemplified by the
development of β-glucan inhibitors such as echinocandins and ibrexafungerp [4,5]. Our
understanding primarily relied on chemical assays delineating the linkage and composition
of carbohydrate components post-extraction and -isolation through enzymatic and chem-
ical digestion (e.g., alkali), coupled with imaging techniques for molecular localization
within the cell wall [6–8]. Within the cell wall of the widespread airborne pathogen As-
pergillus fumigatus, the alkali-insoluble portion, exhibiting fibrillar structures, encompasses
covalently linked β-glucans, chitin, and galactomannan [9] (Figure 1a). Additionally, a
small proportion of α-1,3-glucan has been detected within the alkali-insoluble fraction of A.
fumigatus cell walls [10]. The alkali-soluble fraction, characterized by amorphous molecules,
contains galactomannan, galactosaminogalactan, and α-1,3-glucans [11,12].

In the last five years, solid-state nuclear magnetic resonance (ssNMR) has played a cru-
cial role by offering distinctive insights into the physical characteristics, such as mobility and
packing interactions, as well as the structural complexity of cell wall polysaccharides [13].
This complements the existing knowledge, contributing to a renewed understanding of the
A. fumigatus cell wall [14,15]. The characterization of A. fumigatus was informed by ssNMR
studies conducted on various fungal species, particularly Cryptococcus species, pioneered by
Stark, Casadevall, and colleagues [16–18], along with prior investigations into diverse cell
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wall systems, including plant cell walls led by Hong and colleagues [19,20], and studies of
bacterial and algal extracellular matrices [21–25]. While only a few high-resolution ssNMR
studies on Aspergillus cell walls [10,26–30] and biofilms [31,32] have been conducted thus
far, the methodologies and comprehension of spectroscopic observables are established.
We are now poised to utilize these methods in order to investigate numerous unresolved
questions pertaining to cell wall structure and remodeling, offering insights into fungal
biology, environmental adaptation, and antifungal resistance. Hence, this review aims to
highlight recent advancements in our understanding of A. fumigatus cell walls, as well as to
identify key challenges and unanswered questions that warrant further exploration.
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and 3,6-Glcp (cyan) in β-glucans, 4-GlcNAc (orange) in chitin, and 3-Glcp in α-1,3-glucan (green). 
(b) Selective detection of molecules with distinct dynamics using intact A. fumigatus cells, with two 
spectra showing different signals. (c) Representative 2D 13C-13C correlation spectra, providing site-
specific resolutions for discerning various carbon sites in cell wall polymers, where each dot repre-
sents correlations between two different carbons within a single molecule. The top spectrum of pa-
rental strain shows signals of chitin (Ch), β-1,3-glucan (B), and α-1,3-glucan (A). The bottom spec-
trum of α-glucan-deficient mutant lacks signals of α-1,3-glucan, as highlighted using dashed line 
boxes. For example, A3-4 represents the cross peak between carbons 3 and 4 in α-1,3-glucan, which 
becomes absent in the mutant. (d) Organization of biomacromolecules within the cell wall of A. 
fumigatus mycelia. Panels (c,d) adapted from Chakraborty et al. Nat. Commun. (2021) [10]. 

Figure 1. Polymer structure and dynamics in A. fumigatus mycelia viewed by solid-state NMR.
(a) Simplified structural representation of key polysaccharides categorized based on their mobility
(mobile or rigid) and their alkali solubility (alkali-soluble: AS; alkali-insoluble: AI), with the key
linkage sites numbered. Sugar units with diverse linkages are color-coded for 3-Glcp (blue), 4-Glp
(magenta) and 3,6-Glcp (cyan) in β-glucans, 4-GlcNAc (orange) in chitin, and 3-Glcp in α-1,3-glucan
(green). (b) Selective detection of molecules with distinct dynamics using intact A. fumigatus cells, with
two spectra showing different signals. (c) Representative 2D 13C-13C correlation spectra, providing
site-specific resolutions for discerning various carbon sites in cell wall polymers, where each dot
represents correlations between two different carbons within a single molecule. The top spectrum
of parental strain shows signals of chitin (Ch), β-1,3-glucan (B), and α-1,3-glucan (A). The bottom
spectrum of α-glucan-deficient mutant lacks signals of α-1,3-glucan, as highlighted using dashed
line boxes. For example, A3-4 represents the cross peak between carbons 3 and 4 in α-1,3-glucan,
which becomes absent in the mutant. (d) Organization of biomacromolecules within the cell wall of
A. fumigatus mycelia. Panels (c,d) adapted from Chakraborty et al. Nat. Commun. (2021) [10].
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2. Indirect Assessment of Cell Wall Organization in A. fumigatus Mycelia

Mapping the arrangement of polymers within complex and heterogeneous polymer
composites, such as fungal cell walls, poses technical challenges. SsNMR offers a means
of indirectly deducing such pertinent information as demonstrated in recent investiga-
tions of A. fumigatus cell walls [10,27]. This is achieved by integrating information on
polymer dynamics, water interactions, and physical intermolecular arrangements, employ-
ing techniques previously developed for studying the structural properties of proteins
and polymers [33–36]. While maintaining the integrity of the fungal cell during ssNMR
measurements, distinct parts of the cell, the cell wall, and their constituent polymers
can be selectively examined (Figure 1b). This selectivity is achieved by leveraging dif-
ferences in rigidity or, more precisely, the physical parameters determined by molecular
rigidity. For instance, rigid molecules often display relatively slow relaxation rates ac-
companied by strong dipolar couplings. Consequently, these molecules can be selectively
detected utilizing relaxation filters or dipolar-based polarization techniques in either one-
dimensional or multidimensional formats, with the latter providing enhanced spectral
resolution (Figure 1c) [37].

In the mycelia of A. fumigatus, the rigid scaffolds feature the anticipated chitin mi-
crofibrils, but, unexpectedly, they also include α-1,3-glucan [26]. These α-1,3-glucans
exhibit intricate sub-nanometer packing with chitin, suggesting their deposition on chitin
microfibril surfaces or their entrapment between multiple microfibrils. Consequently, these
α-1,3-glucans are spatially confined and undergo rigidification (Figure 1d). Hydration
data validated this structural concept, revealing that the densely packed cores of α-1,3-
glucan and chitin exhibit limited water retention due to restricted accessibility to water
molecules [26].

It should be noted that the interactions observed in current ssNMR studies of fun-
gal cell walls are non-covalent physical contacts occurring at the sub-nanometer scale
between two molecules. This distinction is crucial when contrasting them with the cova-
lent bonding patterns of polysaccharides, which were determined through the chemical
and spectroscopic analyses of carbohydrate components extracted from the fungal cell
wall [6,8,9].

The prevailing notion has involved β-glucans as the primary crosslinking polysac-
charide, connecting galactomannan and chitin in A. fumigatus cell walls [6,9,38]. However,
ssNMR data demonstrates that the number of observed interactions between β-glucan and
chitin is lower than those involving α-1,3-glucan and chitin [26]. Additionally, the ssNMR
data reveals a dual distribution of β-glucans, present in both rigid and mobile phases
within the cell walls of A. fumigatus hyphae [26]. Instead, the revised model proposes
that, although certain β-glucans are covalently attached to chitin microfibril terminals, a
significant portion does not fold onto the chitin surface. Instead, they maintain an extended
structure, projecting into the open space, and therefore contributing to the formation of
a matrix that regulates water activity and porosity within the cell walls (Figure 1d). Re-
markably, galactomannan, a crucial polysaccharide within the chemically characterized
galactomannan-β-glucan-chitin core, was observed to exhibit high mobility. Consequently,
this remains associated with structural proteins and galactosaminogalactan, residing pre-
dominantly on the surface and mobile layer of the cell wall [10].

3. Morphotype Transition in A. fumigatus Conidia

The structural organization of the A. fumigatus cell wall underwent significant rear-
rangement during the conidial morphotype transition, primarily influenced by composi-
tional changes in α- and β-glucans. Recent findings by Loquet, Aimanianda, and colleagues
indicated that the molar ratio between β-1,3-glucan and α-1,3-glucan in the rigid phase
was approximately 3:1 in dormant conidia, and this ratio changed to almost 1:1 in swollen
conidia, and then restored to around 3:1 in germinating conidia [27]. Throughout these
transitions, the chitin content remained constant, with 12% of rigid carbohydrates in the
cell wall. Sequential observations revealed a stiffening of the cell wall polysaccharide
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network and an increase in the water retention of glucans, transitioning from the dor-
mant state to swollen conidia and then to germinating conidia [27]. These changes are
indicative of intricate remodeling within the A. fumigatus cell walls. In dormant conidia,
α-1,3-glucan and β-1,3-glucan are localized in the inner cell wall and shielded from the
external environment by RodA rodlets. Swelling leads to the disruption of the RodA layer
and melanin, facilitating higher water accessibility to both α- and β-glucans [27]. Under
germinating conditions, the appearance of galactosaminogalactan in the mobile phase and
the embedding of chitin into the inner layer of cell walls were also found crucial [27].

Irrespective of the conidia’s state, α-1,3-glucan consistently exhibits superior hydration
within the rigid segment, surpassing both chitin and β-glucans [27]. This stands in contrast
to the findings in mycelial cell walls, where α-1,3-glucan consistently appears as the most
dehydrated and rigid molecule [10]. The discrepancy indicates that the association of
α-glucan and chitin, and the subsequent stiffening of α-glucan, represents a distinctive
structural characteristic during mycelial development. This also serves as molecular-level
evidence of fungi’s remarkable structural dynamics, illustrating how the same molecule
can engage in diverse roles within the cell wall architecture as needed.

4. Structural Complexity of Invisible Polysaccharides in Chemical Assays

The first novel structural concept posits that structural complexity exists not only at
the level of chemical diversity, as characterized by linkage analysis, but also at a more
localized level, encompassing factors such as conformation (e.g., torsional angles) and
hydrogen bonding. Such structural complexity observed in the native cell evident within
native cellular environments greatly exceeds that found in extracted or dissolved molecules,
where conformational distribution is diminished or even absent. In the dissolved state,
such as in solution NMR, the rapid molecular tumbling averages out the conformational
diversity of molecules, resulting in the same set of signals for chemically identical molecules.
In their native physical state within the cell, conformational diversity is observable in solid-
state NMR as peak multiplicity. As a result, solution NMR chemical shifts typically exhibit
strong correlation with solid-state NMR values for highly dynamic matrix components,
such as pectin in plant primary cell walls [39] and the three-fold xylan in secondary plant
cell walls [40]. The same is not true, however, for rigid and fibrillar components, such as
chitin in fungi and cellulose in plants [29,41]. A more in-depth exploration of the complexity
of the structure and chemical shifts observed in cellular carbohydrates can be found in
a recent review [42], and the NMR fingerprint of fungal carbohydrate can be accessed
here [43].

Using chitin as an example, this chemically simple polymer, composed of β-1,4-
linked N-acetylglucosamine (GlcNAc) units, was traditionally perceived as being uniform.
However, ssNMR spectroscopy revealed 45 distinct chitin forms (each with a distinct
conformation or variations in hydrogen bonds) in various fungal samples, including the
mycelia of Aspergillus (A. fumigatus, A. nidulans, and A. sydowii) and Rhizopus species, as
well as Candida cells (Figure 2a,b) [29]. In the case of the A. fumigatus mycelium alone, six
clearly identified chitin forms featuring well-defined signals, along with two minor forms
with ambiguous carbon sites, were resolved (Figure 2c) [26,29]. Consistently, a separate
investigation of A. fumigatus conidia also revealed the presence of 5–10 distinct chitin
subtypes (Figure 2c) [27]. Each form corresponds to a unique set of chemical shifts for
carbon sites, reflecting variations in local structures.

Principal component analysis (PCA) of chemical shift data derived from 45 chitin
forms present in fungal cell walls, along with 17 model allomorphs determined using
isolated and purified materials, revealed notable structural differences [29]. This suggests
that macromolecules within cellular contexts do not adopt exact structures, as observed
in their purified forms. Notably, fungal chitin exhibited a closer alignment with the α-
allomorph y antiparallel chitin packing, contrasting the β-allomorph characterized by
parallel packing. Furthermore, changes in chitin structure were observed following antifun-
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gal treatments with amphotericin B (AmB) and caspofungin, as well as exposure to high
salt conditions [29].
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Figure 2. Structural polymorphism of chitin in A. fumigatus mycelia and conidia. (a) Representative
spectral regions of chitin C3-C4 and C5-C4 correlations in A. fumigatus mycelia. Peak multiplicity
is evident especially for the C3-C4 cross peaks, where each signal represents a unique conformer.
(b) PCA analysis of 45 chitin forms from six fungal species, and comparisons with the literature data
from model allomorphs (α, β, or γ-chitin). (c) Representative 2D 15N-13C correlation spectra of A.
fumigatus conidia (top: dormant; middle: swollen; bottom: germinating), showing peak multiplicity
for expected regions (yellow) of chitin signals. Panels (a,b) adapted from Fernando et al. Front. Mol.
Biosci. (2021) [29]. Panel (c) modified from Lamon et al. Proc. Natl. Acad. Sci. USA (2023) [27].

This observed structural heterogeneity has not been fully correlated with our current
understanding of cell wall biosynthesis complexity. A. fumigatus possesses eight chitin
synthase (CHS) genes, distributed across the structurally distinct families 1 and 2, with
evidence from functional genomics suggesting cooperative interactions between these gene
families [44]. These genes comprise four members in Family 1 (CHSA in Class I, CHSB
in Class II, and CHSC and CHSG in Class III) and four members in Family 2 (CSMA in
Class V, CSMB in Class VII, CHSF in Class IV, and CHSD in Class VI) [44,45]. In C. albicans,
individual CHS genes have been linked to distinct chitin microfibrils and their specific
localizations in the cell wall [46]. Therefore, it is also of great interest to investigate whether
any of the NMR-identified chitin forms in A. fumigatus are essential for fungal growth, and
if they are directly associated with specific CHS gene types or particular morphologies of
chitin microfibrils.

Analogous complexity was also identified in α-1,3-glucan, particularly in A. fumigatus
mycelia exposed to caspofungin [47,48]. This exposure led to an augmentation in the
abundance of two minor forms of α-1,3-glucans [47], showing distinct chemical shifts at
carbon 3, the glycosidic linkage site, particularly when compared to the predominant form
found in wild-type A. fumigatus and its mutant strains [10], thus suggesting variations in
their helical screw conformations. Similarly, three distinct types of α-1,3-glucan signals
were also identified in the dormant conidia of A. fumigatus [27]. However, the potential
correlation between these structural variations and the three α-1,3-glucan synthase (AGS)
genes present in A. fumigatus remains unclear [49].

β-glucans are recognized for their intricate linkage patterns, e.g., branched β-1,3/1,6-
glucan, linear β-1,3-glucan, and terminal β-1,3/1,4-glucan in A. fumigatus (Figure 1a) [6].
The diversity in linkages was primarily characterized using chemical analysis, and is
presently distinguishable based on distinct ssNMR chemical shifts. As of now, there
has been no observed conformational polymorphism in β-glucans within A. fumigatus
mycelia or conidia [10,27]. This absence is unexpected for any biopolymers in native and
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heterogeneous biomaterials, where diverse conformations are typically anticipated and
observable via NMR, particularly when interacting with rigid molecules such as chitin. This
is possibly linked to the absence of spatial constraints for the majority of β-glucans, which
enables them to undergo motions that render conformational distributions undetectable
in ssNMR spectra. This hypothesis finds support in the substantial broadening of β-
glucan signals when exposed to cryogenic temperatures (~100 K) during dynamic nuclear
polarization (DNP) measurements [30]. This broadening of β-glucan peaks is ascribed to
the restriction of motion and the entrapment of all conformations at low temperatures,
while chitin partially maintains its linewidth, owing to its crystalline nature.

5. Tracking Aspergillus’ Structural Responses to Stress

Recently, we have assessed the structural implications on the A. fumigatus cell wall
in response to compensatory reactions undertaken by fungi to address internal stressors.
This investigation involved comparing the parental strain of A. fumigatus with four mu-
tants, each lacking a specific polysaccharide in the cell wall—namely chitin, α-1,3-glucan,
galactomannan, or galactosaminogalactan [10]. Common changes observed in all mutants
included a decrease in cell wall thickness, an increase in polymer rigidity, and a decline in
water accessibility. The disrupted cell wall biosynthesis likely contributed to the reduced
thickness, while the latter two changes appear to be strategies employed to maintain struc-
tural integrity in response to the absence of specific polysaccharides. Interestingly, upon
the removal of any of these components, A. fumigatus exhibited a complete reconfiguration
of the biosynthesis of the remaining carbohydrate components [10]. This contrasts with
plants, where a deficiency in the biosynthesis of a single carbohydrate may not significantly
affect the content of the other cell wall carbohydrates.

The noteworthy structural dynamics observed in fungi, particularly the ability to swap
the role of an individual carbohydrate with another, necessitates a heightened level of
caution in the utilization of mutants to assess the structural function of cell wall polysac-
charides. While a mutant displaying a phenotype change, such as growth defects, serves as
evidence of the role of a specific polysaccharide, the absence of defects does not necessarily
imply that the polysaccharide is nonessential in the wild-type cell wall. Instead, it indicates
that the function of the polysaccharide can be fulfilled by other components due to the
inherent structural flexibility of fungi. This phenomenon is exemplified by α-1,3-glucan,
which stabilizes the rigid core of the A. fumigatus mycelial cell wall via its interaction
with chitin [10,26]. Despite this crucial role, the AGS mutants lacking α-1,3-glucan did
not exhibit growth defects [50,51]. Under α-1,3-glucan depletion, β-glucan synthesis in-
creased, and chitin microfibrils became tightly packed in order to fortify the cell wall for
survival [10].

Two additional investigations were carried out to assess how Aspergillus cell walls
respond to external stressors, including changes in osmotic pressure and exposure to an-
tifungal agents [28,47]. The initial study focused predominantly on a distinct Aspergillus
species, A. sydowii, which is recognized as a model halophile which is capable of thriving in
high-salt conditions [28]. Although A. sydowii shares strikingly similar NMR fingerprints
with A. fumigatus, a notable distinction lies in the low content of α-1,3-glucan and the preva-
lence of chitosan in A. sydowii, though the former partially reappears when transitioning
from low-salt to high-salt conditions. A. sydowii’s response to osmotic pressure induced by
a hypersaline environment was found to be multifaceted [28]. The fungus demonstrated an
enhancement in chitin biosynthesis while concurrently reducing β-glucan synthesis, result-
ing in the production of more rigid, thicker, and less permeable cell walls. The cell surface
also exhibited an increased positive charge, which is attributed to the heightened content
of galactosamine GalN, a cationic sugar residue of galactosaminogalactan (see chemical
structure in Figure 1a), which facilitated enhanced surface adherence and intermycelial
adhesion, thus presenting adaptive strategies to counteract challenging environments.

SsNMR has also been used to examine the restructuring of A. fumigatus cell walls
when exposed to caspofungin treatment [47], revealing a strategy that bears resemblance
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to the approach utilized by A. sydowii in coping with hypersaline conditions. When β-1,3-
glucan was largely depleted from the cell wall via caspofungin inhibition, A. fumigatus
exhibits the enhanced production of chitin, thus augmenting cell wall rigidity and re-
ducing water permeability. Additionally, the fungus relies on alternative carbohydrates,
predominantly chitosan and novel forms of α-glucans, as crucial buffering molecules to
uphold cell wall structural integrity in the absence of β-1,3-glucan, as well as to generate
thicker cell walls [47]. These strategies seem to represent consistent adaptations across
various Aspergillus species to counteract unfavorable environments; nevertheless, further
investigations are essential to confirm these findings and to comprehend the structural
mechanisms underpinning caspofungin paradoxical growth [52–54].

Essentially, ssNMR can serve as a pivotal tool for elucidating how fungi adapt to both
antifungal treatments and diverse environmental challenges, which aligns with the pursuit
of two of the five major unresolved questions concerning the fungal cell surface, as high-
lighted in a recent perspective article [55]. It is also noteworthy that recent ssNMR studies
by Rienstra, Burke, and colleagues have determined the high-resolution structure of ampho-
tericin B sterol sponges that encapsulate cholesterol and ergosterol [56,57]. This discovery
served as the structural basis for the development of a new polyene with high antifungal
potency against Aspergillus strains, but with low toxicity against human renal cells [56].
We anticipate that structural findings on A. fumigatus cell walls provided by ssNMR will
also elucidate the mechanisms behind the inefficacy and resistance observed with current
antifungals, thereby facilitating the development of improved wall-targeting antifungals.

6. Ambiguity in Assessing Protein and Lipid Components

Signals from carbohydrates, proteins, and lipids coexist in most solid-state NMR
spectra, yet lipids and proteins are often understudied in the context of fungal cell walls
due to the complexity of discerning their specific locations within the cell. The lipid and
protein signals observed could stem from diverse origins, including those associated with
cell walls (e.g., glycosylphosphatidylinositol-anchored proteins) [58,59], rodlets [60,61],
plasma membranes, membrane proteins, and intracellular organelles. Additional chemical
methodologies, such as cell wall isolation or carbohydrate extraction, are imperative for
identifying lipids and proteins associated with the cell wall. For example, studies on Cryp-
tococcus revealed that extracted melanized cell walls were associated with lipids [17,62],
and subsequent spectral editing approaches on whole cells identified three key lipids in the
cell: triglycerides, sterol esters, and polyisoprenoids [63]. Investigations into A. fumigatus
mycelia demonstrated signals in alkali-insoluble fractions, indicating the covalent associa-
tions of polysaccharides with hydrophobic amino acids, such as valine [10]. The valine sig-
nals disappeared in mutants which lacked galactomannan and galactosaminogalactan [10],
revealing the role of these two carbohydrates in stabilizing cell wall proteins. Further
investigations, however, are needed to isolate and identify these protein–carbohydrate
complexes. In addition, signals which are suggestive of triacylglycerol were observed
in A. fumigatus conidia cells, but their specific association with cell wall polysaccharides
remains to be elucidated [27]. Overall, careful consideration is warranted when interpreting
the ssNMR signals of lipids and proteins, given their broad distribution across various
cellular compartments.

7. Perspectives

The application of solid-state NMR techniques, coupled with biochemical findings,
has enhanced our understanding of the physical characteristics of seven primary polysac-
charides and their unaltered arrangement within native A. fumigatus cell walls. Chitin
imparts rigidity to the cell wall, allowing molecules associated with it to attain partial
rigidity, including α-1,3-glucan and β-glucans [26]. β- and α-glucans constitute the flexible
matrix within the cell wall, with β-glucans facilitating water binding in A. fumigatus mycelia
and α-glucans regulating water activity in A. fumigatus conidial cell walls [10,26,27]. The
structural diversity of β-glucans, including linear β-1,3-glucan, terminal β-1,3/1,4-glucan,
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and branched β-1,3/1,6-glucan, is vital for maintaining molecular complexity and matrix
formation. The latter two forms of glucans persist even in the absence of β-1,3-glucan; this
is due to caspofungin treatment and interactions with other polysaccharides (α-1,3-glucan
and chitin) to reinforce cell wall stability [47]. Although the level of chitin deacetylation is
typically low in A. fumigatus mycelial and conidia samples [10,27], chitosan content may
increase in response to stress [28,47]. Galactomannan is covalently linked to β-1,3-glucans,
which are sometimes further cross-linked to chitin [9], but are the most mobile components
within this polysaccharide complex [10]. Instead, it predominantly protrudes into the outer
layer, along with galactomannan, in order to bolster the structural proteins within the
cell wall [10]. Galactomannan plays a crucial role in preserving the charge of the cell wall
surface, particularly for the mycelial cell wall and germinating conidia [10,27]. It also acts as
a masking molecule, concealing β-glucans that are embedded deeper within the structure.

Certain structural motifs, such as α-1,4-glucose residues found in α-glucan (a minor
component) [6] and melanin, the aromatic-rich pigment closely associated with A. fumigatus
cell walls, have not yet been evaluated using solid-state NMR (ssNMR). In addition,
the galactomannan in A. fumigatus possesses a complex chemical structure, featuring a
linear backbone composed of α-1,2-linked mannotetraose repeating units, bridged via
α-1,6-linkage [64,65]. Some of the α-1,2-linked mannose residues of the backbone are
further branched at C-6 and C-3 positions by galactofuran sidechains consisting of several
(on average, 4 to 5) β-1,5-galactofuranose units [65]. This structural elucidation was
achieved via the solution NMR analysis of extracted galactomannan. Solid-state NMR
has only resolved signals from the predominant structural units, such as the repeating
β-1,5-galactofuranoses in the side chains and the α-1,2-linked and 1,6-linked mannoses
in the backbone, while the branching sites remain unresolved. The functional role of the
galactofuranose sidechains of galactomannan remains unclear as well. To elucidate the
functional principles of these biomolecules, a combination of ssNMR with carefully selected
mutants may be necessary.

Furthermore, some structural insights into Aspergillus cell walls derived from biochem-
ical and genomic data do not entirely correspond with ssNMR observations. A recent study
encountered challenges in correlating transcriptomics data, reflecting the expression levels
of various cell wall-related enzymes (such as synthases, transferases, glucanases, chitinases,
hydrolases, etc.), with the final cell wall structure observed via NMR [28,66]. This suggests
that the construction and modification of the cell wall are more intricate than we currently
understand, and additional, unexplored pathways may also influence the resulting cell
wall structure. These aspects permit further investigation.

Due to its biophysical nature, in-depth ssNMR analysis often demands extensive time,
typically between one and several years. Consequently, its effectiveness in analyzing the
chemical structure of carbohydrates is relatively restricted, instead favoring the utilization
of solution NMR and chemical approaches. The primary advantage of ssNMR lies in
in its ability to examine intact cells and its unique capability to provide insights into
the atomic- and molecular-level interactions, dynamics, and other physical properties
of cell wall macromolecules. Additional challenges are presented by the demanding
isotopic enrichment (e.g., with 13C and 15N). These factors may restrict sample preparation
conditions and the quantity of samples that can be analyzed, often presenting challenges
in accurately aligning the sample conditions with those analyzed in other assays, thus
potentially resulting in discrepancies. One approach to address these challenges is the
utilization of 1H detection methods [67,68], recently applied to 13C/15N-labeled fungal
materials, as demonstrated by Baldus, Wösten, and colleagues in S. commune [69–71]. Once
we become thoroughly acquainted with the carbohydrate NMR fingerprints, these methods
could be directly applied to unlabeled fungal materials since 1H is present at 99.99% natural
isotopic abundance. Additionally, sensitivity-enhancing techniques like DNP have been
employed with success on various unlabeled biomaterials [72,73], including Aspergillus
mycelia and conidia [30]. These technical advancements will streamline and expedite the
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assessment of cell walls in Aspergillus and numerous other fungal species, across diverse
biological, environmental, industrial, and biomedical contexts.
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