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Abstract: Aging is a complex biological process that is influenced by both intrinsic and extrinsic
factors. Recently, it has been discovered that reactive oxygen species can accelerate the aging process,
leading to an increased incidence of age-related diseases that are characteristic of aging. This review
aims to discuss the potential of mushrooms as a dietary intervention for anti-aging, focusing on their
nutritional perspective. Mushrooms contain various bioactive compounds, including carbohydrates,
bioactive proteins, fungal lipids, and phenolic compounds. These compounds have shown promising
effectiveness in combating skin aging and age-related diseases. In vitro and in vivo studies have
demonstrated that treatments with mushrooms or their extracts can significantly extend lifespan
and improve health span. Furthermore, studies have aimed to elucidate the precise cellular and
molecular mechanisms of action and the structure–activity relationship of mushroom bioactive
compounds. These findings provide a strong basis for further research, including human clinical
trials and nutritional investigations, to explore the potential benefits of mushrooms in real-life anti-
aging practices. By exploring the anti-aging effects of mushrooms, this review aims to provide
valuable insights that can contribute to the development of broader strategies for healthy aging.

Keywords: Mushrooms; anti-aging; age-related disease; cellular mechanisms; bioactive compounds

1. Introduction

The global population is currently experiencing a significant expansion of aging
populations compared to previous years. This trend is reflected in the increase in average
life expectancy at birth, which has risen by 6.2 years from 65.3 years in 1990, to 71.5 years in
2013. Additionally, individuals who reach the age of 60 can now expect to live for another
22 years on average [1]. By the year 2040, it is projected that the average life expectancy
will increase by 4.4 years for both men and women. Men can expect to live an average
of 74.3 years, while women can expect to live an average of 79.7 years. However, these
numbers may vary depending on individual health conditions [2]. As the population ages,
there has been a noticeable increase in the prevalence of chronic degenerative diseases such
as neurodegenerative and cardiovascular diseases, diabetes, and cancer. These diseases
contribute to up to 70% of global mortality each year, including premature deaths occurring
between the ages of 30 and 70 [1]. It is important to note that, while aging is often
accompanied by deteriorative changes and an increased risk of functional declines or
diseases, aging itself is not considered a disease. The focus of anti-aging strategies is not
to reverse or halt the aging process, but rather to promote healthy aging and reduce the
incidence of age-related diseases. The World Health Organization recommends adopting
healthy dietary habits, engaging in regular physical activity, and controlling tobacco use as
effective measures to alleviate or prevent the incidence of chronic diseases. By following
these guidelines, the risk of developing age-related diseases can be reduced [3].
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There is growing evidence to suggest that healthy aging can be promoted by con-
suming nutraceuticals and following various dietary patterns, such as caloric restriction,
intermittent fasting, a Mediterranean diet, an Okinawan diet, and a Nordic diet. These di-
etary patterns have been evaluated for their negative correlation with aging and age-related
conditions and diseases [4,5], which has led to a search for anti-aging components from food
sources and an investigation of the underlying mechanisms of anti-aging pathways. Bioac-
tive compounds derived from plant sources, including fruits and vegetables, roots, seeds,
and edible flowers, have been suggested to exert anti-aging effects. These compounds
include certain polysaccharides, phenolic compounds, and peptides [6,7]. In recent years,
mushrooms—filamentous fungi with fruiting bodies—have also been shown to possess
enormous pharmacological attributes that are valuable for healthy aging. These attributes
include anti-oxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-
cancer properties [8–11].

Mushrooms are nutritious foods that are rich in carbohydrates and proteins, with
a lower content of lipids [12]. In addition to their nutritional value, mushrooms contain
various bioactive compounds, such as β-glucans, lectins, and linolenic acids, which can
be isolated through different extraction methods. These compounds confer a variety
of pharmacological activities and may enhance the immune system and strengthen the
biological function of the body [13]. Regular intake of mushrooms or their extracts may
help alleviate age-related diseases. This review focuses on the anti-aging properties of
mushrooms from the perspective of aging and age-related diseases, with a brief introduction
of the major bioactive compounds found in edible and medicinal mushrooms.

2. Aging
2.1. Aging and Age-Related Diseases

Aging is a complex process that involves the time-dependent accumulation of diverse
deleterious changes in cells, tissues, organs, or systems that increase vulnerability to chronic
illness and death [14,15]. Nine candidate hallmarks of aging have been identified and
classified, including primary hallmarks (genomic instability, telomere attrition, epigenetic
alterations, and loss of proteostasis), antagonistic hallmarks (deregulated nutrient sensing,
mitochondrial dysfunction, and cellular senescence), and integrative hallmarks (stem cell
exhaustion and altered intercellular communication), all of which are correlated with each
other [16]. The antagonistic hallmarks exert positive effects at low levels but negatively
affect the organism at high levels [16]. For example, reactive oxygen species (ROS) are
important signaling molecules that play a role in regulating cellular functions, but excessive
levels can lead to oxidative damage and contribute to aging. The primary hallmarks
are the contributors to molecular damage during aging, while the integrative hallmarks
are signs of failure of cellular homeostasis and metabolism mechanisms to ameliorate
the damage. These hallmarks are interconnected with each other and could serve as a
guidance to decipher the mechanistic molecular basis for prolonging health span and
development of strategies for longevity, such as stem-cell-based therapies, epigenetic drugs,
anti-inflammatory drugs, and dietary restrictions [16].

The free radical theory of aging, proposed in 1956 by Denham Harman [17], is a
widely accepted theory of aging. The theory postulates that the aging process is triggered
by the initiation of free radical reactions, leading to increased generation of free radicals by
damaged mitochondria with increasing age [18]. Major sources of free radical reactions
in mammals include non-enzymatic reaction of oxygen, ionizing radiation, cytochrome
P-450 system, respiratory chain, phagocytosis, and prostaglandin synthesis, which lead
to the accumulation of oxidative damage and may shorten the lifespan. Several defenses
that alleviate the damage of the reactions include DNA repair mechanisms, superoxide
dismutase, glutathione peroxidase, and anti-oxidants (e.g., carotenes and vitamin E) [15,19].

ROS are byproducts of oxidative metabolism that can induce cellular defense mech-
anisms against oxidative invasion at low doses, potentially prolonging health span and
lifespan. However, long-term excessive exposure to ROS can lead to the oxidation of
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nucleic acids, proteins, and lipids, causing damage to macromolecules and mitochondrial
dysfunction. This can disrupt cell homeostasis and result in cellular death [20]. ROS pro-
duction is driven by progressive mitochondrial dysfunction with increasing age, creating a
positive feedback loop of ROS generation and oxidative damage accumulation [18]. Concur-
rently, oxidative stress arises due to excessive ROS levels and limited anti-oxidant defense
capability, leading to cellular senescence and a shortened lifespan. The accumulation of
oxidative damage to macromolecules and mitochondria contributes to detrimental conse-
quences, such as pathophysiological changes, functional decline, and accelerated aging,
which are associated with age-related conditions such as inflammation, cardiovascular
diseases, neurodegenerative diseases, autoimmune diseases, and cancer [21].

It is important to note that aging itself is not a disease. Age-related diseases can
be considered “symptoms” of aging, initiated by minor disturbances that are intensified
via vicious positive feedback loops, destabilizing the physiology of an organism and
potentially leading to destruction (i.e., mortality) if no negative feedback loops are in
place [22]. For example, low-grade inflammation can intensify in chronic inflammation,
leading to decreased muscle mass, decreased physical activity, and excess fat deposition.
This can further contribute to obesity, diabetes, and cardiovascular problems. Eventually,
cardiovascular diseases can arise and worsen the physiological status of an individual
by triggering chronic inflammation. To minimize cumulative damage to different organs
and maintain cell function for healthy aging, interventions that can interrupt or break the
vicious cycles of age-related diseases can be implemented, including medications, lifestyle
adjustments, and dietary management (Figure 1).
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2.2. Aging and Dietary Intervention

The lifestyle of an individual is closely linked to their health span and lifespan. One
of the main ways to modify lifestyle for better health maintenance and to reduce the
incidence of age-related diseases is through dietary management. Unhealthy dietary habits
and lifestyle can accelerate the aging process by causing molecular and cellular damage.
For example, a sedentary lifestyle, combined with a “Western diet”, that is high in energy
but lacking in nutrition, has been associated with reduced lifespan and increased occurrence
of age-related conditions such as obesity, type 2 diabetes, and cancer [23]. On the other
hand, caloric restriction (CR) has been shown to slow down the rate of aging and extend
health span. CR involves reducing total energy intake by 20% to 40% while ensuring
optimal nutrition, compared to an ad libitum diet. This approach has been demonstrated
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to extend lifespan and health span in various experimental models, including yeast, fruit
flies, mice, nonhuman primates, and even humans [24–26].

According to the theory of aging, CR enhances longevity by reducing oxidative dam-
age and increasing resistance to oxidative stress through specific signaling pathways.
The stress caused by CR, such as nutrient deprivation, activates defense mechanisms
against oxidative damage, thereby slowing down the aging process [27]. CR also affects
physiological pathways that may mediate anti-aging effects, such as the insulin-like growth
factor-1 and insulin signaling pathways, the mammalian target of rapamycin (mTOR) path-
way, and the sirtuins pathway [24,28,29]. Previous studies have demonstrated the potential
of implementing CR as an anti-aging regimen, as adherence to this dietary management
reduces biomarkers associated with the development of age-related diseases, including
cardiovascular diseases, autoimmune disorders, neurodegenerative diseases, diabetes, and
cancer [29–31]. Therefore, CR can be considered as the mechanistic foundation for healthy
aging strategies involving dietary intervention, which can prolong lifespan and maintain
physiological function for an extended health span.

Despite the potential benefits of CR, it can be challenging for individuals to adhere
to it in the long term due to various pitfalls and health concerns, such as hypotension,
osteoporosis, slower wound healing, depression, and irritability [32]. As a result, scientists
have explored alternative diet regimens and studied different dietary patterns that may
offer similar benefits to CR but are more feasible for humans to sustain. One such approach
is intermittent fasting, which shares the same concept as CR. Intermittent fasting activates
cellular pathways that enhance the body’s intrinsic defense against oxidative stress, pro-
motes the removal of damaged molecules, and facilitates tissue repair and growth. It also
helps to suppress inflammation and improve stress resistance [33,34].

In addition to dietary modifications, researchers have developed anti-aging drugs that
mimic the effects of CR. Examples include rapamycin and metformin, which have shown
promising effects in various model organisms and clinical trials. Rapamycin delays aging by
inhibiting mTOR, thereby maintaining the normal functioning of mitochondria and stem cells.
Metformin, on the other hand, affects telomere length, reduces oxidative damage to DNA,
and modulates the synthesis and degradation of age-related proteins [35,36]. However, it is
important to note that there are concerns and side effects associated with the use of these drugs.
For instance, rapamycin may lead to nephrotoxicity and thrombocytopenia, while metformin
may cause vitamin B12 deficiency and lactic acid accumulation [37,38]. Therefore, there is a
need to explore naturally occurring compounds that have significant anti-aging effects with
minimal side effects.

Nutraceuticals and dietary supplements are also viable alternatives for anti-aging and
extending health span. Examples include curcumin, quercetin, ginseng, and medicinal
mushrooms, which exhibit anti-inflammatory, immunomodulatory, and antioxidative
effects [39–41]. A diet rich in fruits and vegetables, which provide a significant number of
nutraceuticals and phytochemicals, is crucial for maintaining overall health. Interestingly,
mushrooms, although not classified as animals or plants but as part of the fungal kingdom,
are often considered as vegetables. They are low in calories, sodium, and fat, while being a
valuable source of fiber, phenolic compounds, β-glucans, selenium, glutathione, B vitamins,
and vitamin D. These components serve as protective agents against oxidative damage,
which accelerates aging [12]. Medicinal mushrooms have also been used for centuries in
traditional therapies, like Chinese medicine and Indian Ayurveda medicine, to alleviate
symptoms of various diseases [42]. The bioactive compounds found in mushrooms may
contribute to their anti-aging effects through various physiological pathways involved in
aging and age-related diseases.

2.3. Ageing, Mental Health and Gender

Gender and mental health can significantly impact ageing experiences. Gender influ-
ences ageing in various ways, including health outcomes, social roles and expectations, and
economic status. Women are more likely to experience depression, anxiety, and stress due
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to factors such as caregiving responsibilities, hormonal changes, and discrimination [43].
Women also tend to report higher levels of loneliness and social isolation in later life. In
contrast, men may experience social isolation and mental health issues due to societal
expectations of masculinity, which can lead to reluctance in seeking help for mental health
problems [44].

Gender differences in health outcomes are well-documented, with women living
longer but experiencing more chronic health conditions than men. Women are more likely
to experience osteoporosis, urinary incontinence, and depression than men. Women also
experience menopause, which can lead to physical and psychological symptoms [45].
Men, on the other hand, are more likely to experience heart disease, stroke, and certain
types of cancer. Biological factors such as sex hormones, genetics, and lifestyle factors like
diet, exercise, and smoking influence gender differences in health outcomes [46].

Gender roles and expectations can influence ageing experiences [47]. Women are often
expected to take on caregiving roles for children, spouses, or ageing parents, which can
lead to stress and impact their own health and well-being. Women may also face ageism
and discrimination in the workplace, leading to financial insecurity in later life. Men, on
the other hand, may experience pressure to maintain their independence and financial
stability, leading to social isolation and mental health issues [43,44,48].

Gender differences in economic status can also impact ageing experiences.
Women often earn less than men over their lifetimes, leading to lower retirement sav-
ings and financial insecurity in later life. Women are also more likely to work part-time or
take career breaks to care for children or ageing parents, which can impact their pension en-
titlements. This can lead to poverty and social exclusion in later life [47,49]. Mental health
issues, such as depression, anxiety, and cognitive impairment, can also impact ageing
experiences. Depression is a common mental health issue among older adults and can
lead to social isolation, physical illness, and suicide. Anxiety can affect quality of life and
daily functioning. Cognitive impairment, including dementia, can result in memory loss,
decision-making difficulties, and loss of independence and increased caregiving needs [50].

Studies have shown that gender and mental health can interact to influence ageing
experiences [28,36,43,44,51,52]. Women with depression may be more prone to physical dis-
ability and cognitive decline in later life compared to men with depression.
Similarly, men with higher levels of anxiety may be more likely to experience cognitive
decline than women with anxiety [43]. Addressing gender and mental health in ageing
policies and practices is crucial to ensure that older adults receive appropriate support and
services. This includes promoting gender equity, addressing mental health stigma, and
providing accessible and affordable mental health care for older adults [22].

3. Components of Mushrooms and Their Anti-Aging Effects

Mushrooms have long been recognized for their nutritional value and potential health
benefits. Edible mushrooms are not only rich in protein, fiber, vitamins, and minerals but
also have low levels of fat, making them highly nutritious [53,54]. They contain all the
essential amino acids and have a higher protein content compared to most vegetables,
making them particularly beneficial for vegetarians. In addition to their nutritional value,
edible mushrooms, as fungi, have the ability to produce a wide range of chemical com-
pounds known as mycochemicals. These mycochemicals can act as bioactive substances
with various advantages for human health [55]. Mushrooms have been found to contain
significant levels of mycochemicals that serve as bioactive compounds, offering a range of
health benefits against aging and age-related diseases [53,54].

3.1. Bioactive Compounds in Mushrooms

Bioactive compounds extracted from mushrooms have been extensively studied for
their ability to enhance cellular functions and provide health benefits. The following text
summarizes four representative categories of bioactive compounds found in mushrooms:
carbohydrates, proteins, lipids, and phenolic compounds.
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3.1.1. Carbohydrates

Carbohydrates derived from mushrooms have been extensively studied for their anti-
tumor, anti-inflammatory, and immunomodulatory activities [56,57]. Numerous monosac-
charides found in mushrooms, including arabinose, fructose, fucose, galactose, glucose,
mannose, mannitol, rhamnose, trehalose, and xylose, have been identified as exhibiting
these activities. They primarily achieve this through the activation of cytokines, such as
interferons and interleukins, and involve cellular pathways that include dendritic cells,
natural killer cells, neutrophils, and cytotoxic macrophages [57,58]. β-Glucans, the main
type of carbohydrates found in mushrooms, have been shown to possess antioxidative,
anti-cancer, immunomodulatory, and neuroprotective properties. They are considered
potent agents for stimulating the immune system and protecting against carcinogens,
pathogens, and toxins [59–64]. The biological activity and health benefits of β-glucans
isolated from mushrooms, particularly in relation to immune health, are crucial for healthy
aging. Supplementation with mushroom carbohydrates, which contain β-glucans, could
be an effective strategy for anti-aging. Table 1 provides a list of various mushrooms that
contain bioactive carbohydrates.

Table 1. Bioactive carbohydrates in selected mushrooms.

Mushrooms Common
Names Bioactive Compounds Source and Yield Bioactivities References

Agaricus
bisporus

Button
mushroom

Heteropolysaccharide Abnp1001, Abnp1002,
Abap1001, Abap1002

Concentrated industrial wastewater of A.
bisporus; 0.989 mg/g, 1.849 mg/g, 0.128 mg/g,

and 0.68 mg/g (Abnp1001, Abnp1002,
Abap1001, Abap1002)

Hepatoprotective [65]

Heteropolysaccharide AcAPS, AcAPS-1,
AcAPS-2, AcAPS-3, with rhamnose and

glucose as major monosaccharide
Dried fruiting body; yield n.s.

Hepatoprotective,
nephroprotective,

antioxidative
[66]

Polysaccharide extracts, main components n.s. Whole mushroom; yield n.s. Anti-tumor, im-
munostimulatory [67]

Heteropolysaccharide/Mannogalacoglucan
mannose, galactose, glucose

Freeze-dried fresh fruiting body; 41.4% yield
(w/w dry weight) Anti-tumor [68]

β-glucan Dried fresh fruiting body; yield n.s. Immunostimulatory [69]

Fructose, mannitol, trehalose
Fresh fruiting body; 5.79% (white mushroom)

& 4.27% (brown mushroom) (w/w fresh
weight)

n.s. [70]

Calocybe
indica

Milky
mushroom Polysaccharide extracts, main components n.s. Fresh fruiting body; 3.27% (w/w dry weight) Anti-oxidant,

neuroprotective [71]

Flammulina
velutipes

Enoki/Golden
needle

mushroom

Polysaccharide extracts, main components n.s. Base of stipe; yield n.s. Anti-tumor [72]

Polysaccharide extracts, main components n.s. Fresh whole-mushroom; yield n.s. Neuroprotective [73]

Fructose, mannitol, sucrose, trehalose Fresh fruiting body; 8.29% (w/w fresh weight) n.s. [70]

Ganoderma
lucidum

Ling Zhi

Polysaccharide extracts, main components n.s. Mycelia; 71.99% (w/w dry weight)

Anti-inflammation,
ameliorating

insulin resistance,
suppressing lipid

accumulation,
regulation of gut

microbiota

[74]

Polysaccharide extracts, main components n.s. Commercialized spray dried mycelia; 91.48%
(w/w dry weight)

Improving
intestinal barrier

functions
[75]

Arabinose, galactose, glucose, xylose Whole mushroom; yield n.s. Anti-tumor [76]

Polysaccharide extracts, main components n.s. Dried conidial powder; 2% (w/w dry weight,
crude extracts)

Promote cognitive
function and neural

progenitor
proliferation

[77]
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Table 1. Cont.

Mushrooms Common
Names Bioactive Compounds Source and Yield Bioactivities References

Lentinula
edodes

Shiitake
mushroom

Glucose, galactose, mannose, arabinose Fruiting body; 1.3% (w/w dry weight,
purified polysaccharide cLEP1)

Therapeutic to
cervical carcinoma [78]

Rhamnose Residue/byproduct; yield n.s. Anti-inflammatory,
anti-oxidant [79]

Pyranose, β-D-glucans (β-(1→3)-D-glucose
as backbone & β-(1→6)-D-glucose as side

chains)
Dried fruiting body; 0.76% (w/w dry weight) Anti-tumor [80]

Mannogalactoglucan-type polysaccharides
WPLE-N-2, WPLE-A0.5-2 Fruiting body; yield n.s. Anti-cancer, im-

munomodulatory [81]

Lentinan (β-(1,3)-glucan with β-(1,6)
branches)

Dried fruiting body (commercial product);
2.6% (w/w dry weight) Anti-tumor [82]

Mannitol, trehalose, arabinose
Dried powder; 23.3% (mannitol), 13.2%
(trehalose), 1.79% (arabinose) (w/w dry

weight)
n.s. [83]

Pleurotus
eryngii

King oyster
mushroom

Mannose, glucose, galactose Fresh whole-mushroom; 5.4% (w/w dry
weight) Anti-tumor [84]

Heteropolysaccharides, novel fractions
PEPE-1, PEPE-2, PEPE-3 (mannose, glucose,

galactose, xylose)
Fresh mushroom residue; yield n.s. Anti-tumor [85]

Mannose, glucose, galactose Fresh whole-mushroom; 28.3% (w/w dry
weight) Immunomodulatory [86]

Pleurotus
ostreatus

Oyster
mushroom

Crude polysaccharide extracts Fresh whole-mushroom; 61% (w/w)
Alleviation of

cognitive
impairment

[87]

Crude polysaccharide extracts Fresh whole-mushroom; 63.98% (w/w) Regulation of
dislipidemia [88]

Homogeneous polysaccharides, fractions
POMP1, POMP2, POMP3 Mycelia; yield n.s. Anti-tumor [89]

n.s., not specified; Abnp, Agaricus bisporus polysaccharides between 5 kDa and 100 kDa; Abap, Agaricus bis-
porus polysaccharides under 5 kDa; AcAPS, purified fractions of acidic-extractable polysaccharides; WPLE,
mannogalactoglucan-type polysaccharides from Lentinus edodes; POMP, Pleurotus ostreatus mycelium polysaccharide.

3.1.2. Proteins

Compared to other food sources, mushrooms contain higher levels of bioactive pro-
teins such as lectins, ribosome inactivating proteins, fungal immunomodulatory proteins,
and laccases, which possess various biological activities (Table 2) including antioxidative,
immunomodulatory, anti-inflammatory, and anti-cancer properties [90]. Lectins are non-
immune proteins or glycoproteins that bind to specific carbohydrates on cell surfaces,
acting as nutraceuticals with immunomodulatory, anti-tumor, and anti-proliferative prop-
erties [90]. Other mushroom proteins, such as laccase, fungal immunomodulatory protein,
and ribosome inactivating proteins, have distinct bioactive activities. Laccases are consid-
ered multicopper oxidases implicated in processes such as pathogenesis, morphogenesis,
and immunogenesis of an organism [90]. Fungal immunomodulatory proteins purified
from mushrooms, such as Ganoderma lucidum, Ganoderma tsugae, Poria cocos, and Trametes
versicolor, have been suggested as potential adjuvants for tumor therapy due to their struc-
tural similarity to human antibodies and their ability to suppress tumor metastasis and
invasion [91–95].

The ribosome inactivating protein family acts as rRNA N-glycosylase, inactivating 60S
ribosomal subunits through an N-glycosidic cleavage that eliminates one or more adenosine
residues from rRNA to inhibit protein synthesis [112]. Members of the ribosome inactivating
protein family, such as trichosanthin, luffin, ricin, and abrin, have been of considerable interest
due to their potent activity against viral infections and their potential use as immunotoxins
for cancer treatment by conjugating with monoclonal antibodies [113–115]. However, it is
noteworthy that some mushroom ribosome inactivating proteins may be hazardous and pose
adverse effects on health. For instance, hypsin from Hypsizigus mamoreus has been reported to
increase in vitro cell death [116]. Therefore, it is important to elucidate the structure-functional
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properties of mushroom proteins as they may be toxic to humans when consumed. Table 2
lists various bioactive proteins derived from mushrooms.

Table 2. Bioactive proteins in mushrooms.

Mushrooms Common
Names

Bioactive
Compounds/Substances * Bioactivities References

Agaricus bisporus Button mushroom Lectin Immunomodulatory [96]

Cerrena unicolor Mossy maze polypore Laccase Anti-tumor [97]

Coprinus comatus Shaggy mane/chicken
drumstick mushroom Laccase Anti-viral [98]

Flammulina velutipes Enoki/Golden needle
mushroom

FIP Anti-inflammatory [99]

RIP Anti-viral [100]

Ganoderma applanatum Artist’s conk Lectin Anti-tumor [101]

Ganoderma lucidum Lingzhi Laccase Anti-viral [102]

Ganoderma tsugae Hemlock reishi FIP Immunomodulatory [103]

Hypsizygus marmoreus Jade mushroom RIPs (hypsin, marmorin) Anti-fungal, anti-tumor [104,105]

Inonotus baumii Sanghuang Laccase Anti-tumor [106]

Macrolepiota procera Parasol mushroom Lectin Anti-tumor [107]

Pleurotus cornucopiae Golden oyster Laccase Anti-viral, anti-tumor [108]

Pleurotus eryngii King oyster mushroom Laccase Anti-viral [109]

Pleurotus ostreatus Oyster mushroom Lectin Immunomodulatory [110]

Sparassis latifolia Cauliflower mushroom Lectin Anti-fungal, anti-bacteria [111]

* Include various categories and sub-categories of proteins. FIP, fungal immunomodulatory protein. RIP, ribosome
inactivating protein.

3.1.3. Lipids

Although mushrooms have a low fat content ranging from 0.1% to 16.3%, they are a
good source of high-quality essential fatty acids such as oleic acid (1–60.3% of total fatty acids
in 100 g), linoleic acid (0–81.1% of total fatty acids in 100 g), and linolenic acid (0–28.8% of
total fatty acids in 100 g) [117]. Table 3 summarizes the lipid profiles of various mushrooms in
terms of the content of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and
polyunsaturated fatty acids (PUFA). Mushrooms are good sources of unsaturated fatty acids, as
observed in a study by Günç Ergönül et al. [118] who investigated the fatty acid compositions
of six wild edible mushroom species and found that unsaturated fatty acids predominated
over saturated ones. In most nutritional characterization studies, mushroom fatty acids are
commonly determined using gas-liquid chromatography coupled with a flame ionization
detector. However, the sample extraction method used prior to measurement may impact the
final outcome of lipid profiles. For instance, a study by Sinanoglou et al. [119] investigated the
lipid profiles of Laetiporus sulphureus using different combinations of extraction methods and
two individual solvents and found variations among the four combinations [119]. Ergosterol,
the major sterol found in mushrooms, accounts for the major lipid component of fungal
extracellular vesicles as well [120]. Ergosterol extracted from medicinal mushroom Ganoderma
lucidum has been shown to exert anti-oxidant effects and reduce the risk of cardiovascular
diseases while extending lifespan [55,121,122]. Compared to lipids from animal sources,
edible mushrooms are advantageous due to their high levels of polyunsaturated fatty acids,
which may regulate various physiological functions in age-related diseases, such as decreasing
blood pressure and triglyceride levels, and reducing the risks of age-related cardiovascular
diseases, arthritis, and neurodegenerative diseases [64,123]. Therefore, mushrooms may play a
significant role in human nutrition and anti-aging regimens based on their fatty acid profiles.
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Table 3. Lipid profiles in mushrooms.

Mushrooms Common Name Total SFA
(% of Total FA)

Total MUFA
(% of Total FA)

Total PUFA
(% of Total FA)

Measurement
Techniques References

Agaricus blazei Almond mushroom 24.4 2.0 73.6 GC-FID [83]

Agaricus
bisporus

White button
mushroom 20.3 1.4 78.3 Capillary

GLC-FID
[70]

Brown button
mushroom 18.4 1.8 79.8

Agrocybe
cylindracea Poplar mushroom 28.1 2.83 69.1 Capillary

GLC-FID [124]

Boletus
reticulatus Summer cep 21.1 40.3 38.4 GLC-FID [118]

Coprinus
comatus

Shaggy
mane/Lawyer’s cap 23.8 11.4 64.8 Capillary

GLC-FID [124]

Flammulina
velutipes

Enoki/Golden
needle mushroom

18.5 7.2 74.3 Capillary
GLC-FID [70]

20.7 18.6 60.7 GLC-FID [118]

Lactarius
deliciocus Saffron milkcap 20.8 42.0 37.3 Capillary

GLC-FID [124]

Lactarius
salmonicolor Salmon milkcap 19.0 19.6 61.6 GLC-FID [118]

Lentinus edodes Shiitake mushroom
16.7 3.5 79.8 GC-FID [83]

15.1 2.9 82.0 Capillary
GLC-FID [70]

Pleurotus eryngii King oyster
mushroom 17.4 13.1 69.4 Capillary

GLC-FID [70]

Pleurotus
ostreatus

Oyster mushroom 17.0 13.6 69.4 Capillary
GLC-FID [70]

21.8 11.4 66.5 GLC-FID [118]

Polyporus
squamosus Dryad’s saddle 25.2 34.3 40.6 GLC-FID [118]

Russula
anthracina - 23.7 53.3 22.9 GLC-FID [118]

Laetiporus
sulphureus Sulphur polypore 21.6 17.6 60.8 GC-FID,

TLC-FID [119]

Suillus collinitus - 17.5 34.4 47.4 Capillary
GLC-FID [124]

Tricholoma
myomyces

Grey knight
mushroom 15.8 46.3 37.8 Capillary

GLC-FID [124]

SFA, saturated fatty acid. MUFA, monosaturated fatty acid. PUFA, polysaturated fatty acid. GC-FID, gas
chromatography coupled with flame ionization detector. GLC-FID, gas-liquid chromatography coupled with
flame ionization detection. TLC-FID, thin layer chromatography–flame ionization detection.

3.1.4. Phenolic Compounds

Phenolic compounds found in mushrooms are typically considered secondary metabo-
lites. The most prominent phenolic compounds in mushrooms include heteroglycans,
lectins, phenolic acids (such as ferulic, gallic, and cinnamic acids), flavonoids (including
hesperetin, quercetin, kaempferol, and naringenin), steroids, alkaloids, tannins, chitinous
substances, terpenoids, and tocopherols. These compounds exhibit various biological
activities, including anti-oxidant, anti-tumor, anti-inflammatory, anti-hyperglycemic, anti-
osteoporotic, anti-tyrosinase, and anti-microbial effects, primarily due to their strong
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antioxidative properties [125–128]. Some of the preferred mushroom species for extracting
phenolic compounds include Agaricus brasiliensis (almond mushroom), Cantharellus cibarius
(chanterelle), Lactarius indigo (indigo milk cap), Inonotus obliquus (chaga mushroom), and
Melanoleuca cognate [126,129–131]. Table 4 provides a summary of representative phenolic
compounds extracted from various mushroom species.

Table 4. Extractable phenolic compounds in mushrooms.

Phenolic
Compound Categories

Phenolic
Compounds Mushroom Sources References

Phenolic acids

Ferulic acid Agaricus brasiliensis, Agrocybe aegerita, Calocybe
indica, Cantharellus cibarius [126,127,132–134]

Gallic acid

Agaricus brasiliensis, Agrocybe aegerita, Calocybe
indica, Cantharellus cibarius, Ganoderma lucidum,
Pleurotus citrinopileatus, Pleurotus pulmonarius,

Russula aurora

[126,130,132–138]

Cinnamic acid Amanita crocea, Ganoderma lucidum, Pleurotus
ostreatus, Suilus belinii [135,139–141]

Caffeic acid
Calocybe indica, Cantharellus cibarius, Hyphodontia

paradoxa, Inonotus obliquus, Pleurotus citrinopileatus,
Pleurotus pulmonarius,

[127,130,133,134,142,143]

p-Coumaric acid
Agaricus brasiliensis, Agaricus subrufescens, Amanita

crocea, Hyphodontia paradoxa, Laccaria amethystea,
Melanoleuca cognate, Pleurotus ostreatus

[56,126,129,139,140,142,144]

p-Hydroxybenzoic acid
Agaricus brasilensis, Amanita crocea, Cantharellus

cibarius, Lactarius indigo, Lentinus edodes,
Melanoleuca cognate, Suillus belinii

[126,129,134,138,139,141]

Fumaric acid Agaricus brasiliensis [126]

Vanillic acid Morchella esculenta (L.) Pers., Russula emetic [136,137]

Syringic acid Hyphodontia paradoxa, Morchella esculenta (L.) Pers. [129,130,136,142]

Protocatechuic acid

Agrocybe aegerita, Calocybe indica, Cantharellus
cibarius, Hyphodontia paradoxa, Inonotus obliquus,
Melanoleuca, Morchella esculenta (L.) Pers., Suillus

belinii, Russula emetic

[129,130,132–
134,136,137,141,142]

Rosmarinic acid Hyphodontia paradoxa, Russula aurora, Russula emetic [137,142,145]

Flavonoids

Quercetin Ganoderma lucidum, Laccaria amethystea, Pleurotus
citrinopileatus, [135,143]

Kaempferol Ganoderma lucidum, Lactarius indigo [135,146]

Hesperetin Calocybe indica, Ganoderma lucidum [133,135]

Naringenin Calocybe indica, Ganoderma lucidum [133,135]

Catechin Laccaria amethystea, Russula emetic [137,144]

Myricetin Cantharellus cibarius, Lactarius indigo [134,146]

Procyanidin Lactarius indigo [146]

Rutin Pleurotus citrinopileatus, Russula emetic [137,143]

Tannins Tannic acid
Agaricus silvaticus, Hydnum rufescens, Meripilus

giganteus, Pleurotus citrinopileatus, Pleurotus
ostreatus, Pleurotus tuber-regium(fries)

[147–149]

Tocopherols

α-Tocopherol Agaricus bisporus, Boletus badius, Lepista inversa,
Pleurotus ostreatus, Russula delica [150,151]

β-Tocopherol Laccaria laccata [150]

γ-Tocopherol Clitocybe alexandri [150]

δ-Tocopherol Lepista inversa [150]

4. Effects of Mushrooms and Their Anti-Aging Properties

Indeed, numerous studies have investigated the composition of mushrooms and their
potential anti-aging effects. Various components extracted from mushrooms, including
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polysaccharides, phenolics, terpenes, lipids, vitamins, and minerals, have been found
to possess anti-oxidant, anti-wrinkle, and anti-aging properties [152,153]. However, it
is important to note that the anti-aging effects of mushrooms are primarily focused on
skin aging and age-related diseases. The following provides an overview of these two
aspects. The disruption of the collagen and elastin network in the skin due to excessive
oxidative stress or free radicals is a characteristic of aging. As a result, anti-aging cosmetics
are developed to repair and maintain the skin barrier. Many studies have highlighted
the potential of bioactive compounds derived from mushrooms to serve as anti-aging
ingredients in serums, topical creams, and other cosmetics, primarily due to their anti-
oxidant and anti-wrinkle properties [10,58,154–162]. These compounds can help protect
the skin from oxidative damage, reduce the appearance of wrinkles, and improve overall
skin health.

4.1. Anti-Oxidant Activity

Oxidative stress is a condition that occurs when there is an imbalance between the
production of ROS and the body’s ability to neutralize them with anti-oxidants. ROS can
damage cellular components, including DNA, proteins, and lipids, leading to cellular dys-
function and aging. Mushrooms have been investigated for their potential anti-oxidative
properties and their ability to mitigate oxidative stress [163,164]. The anti-oxidant activity
of mycochemicals derived from mushrooms plays a significant role in the defense and re-
pair systems against oxidative damage and free radicals, which accelerate the aging process.
Extracts from shiitake mushrooms (Lentinula edodes) have been found to act as inducers of
anti-oxidant enzymes, such as glutathione peroxidase and superoxide dismutase. These en-
zymes stimulate the conversion of myofibroblasts to fibroblasts, reversing fibrosis and
protecting the skin from oxidative damage [154]. Furthermore, L-ergothioneine, isolated
from shiitake mushrooms, has been shown to scavenge free radicals, particularly those
affecting the mitochondrial membrane, thus reducing oxidative stress on the skin [155].
L-ergothioneine, a thiourea derivative of histidine, is found in high concentrations in vari-
ous mushrooms, including Pleurotus ostreatus (oyster mushroom), Pleurotus eryngii (King
oyster mushroom), brown Agaricus bisporus (brown button mushroom), and Grifola fron-
dose [155]. Additionally, mushroom glucan, extracted from Phellinus ribis and the somatic
hybrid mushroom of Pleurotus florida and Calocybe indica var. APK2, has been found to
activate immune cells and act as an anti-aging and anti-oxidant agent for the skin [156,157].
The anti-oxidant properties of mushrooms have also been demonstrated by Ganoderma
lucidum (lingzhi) and Phellinus linteus (black hoof mushroom) in both in vitro assays and
in vivo when consumed as food [58,158].

Mushrooms are rich in various anti-oxidants, including phenolic compounds, polysac-
charides, and ergothioneine, that can scavenge free radicals and reduce oxidative damage.
For example, polysaccharides from mushrooms such as Grifola frondosa (maitake), Agaricus
blazei (almond mushroom), and Pleurotus ostreatus (oyster mushroom) have been shown
to possess potent anti-oxidant activity [155,165,166]. A study retrospectively examined
37 participants who underwent a dietary intervention featuring daily consumption of 100 g
of A. bisorus for 16 weeks [165]. Significant improvements in serum markers associated
with inflammation and oxidative stress were observed after 16 weeks, including increases
in ergothioneine levels and oxygen radical absorption capacity and reductions in oxidative
stress-inducing factors carboxymethyllysine and methylglyoxal, suggesting potential anti-
inflammatory and anti-oxidant benefits of A. bisporus consumption [165]. Ethanolic extract
of oyster mushroom demonstrated potent radical-scavenging activity. At a maximum
concentration of 10 mg/mL, the extract showed the highest level of radical-scavenging
activity, with scavenging rates of 56.20% and 60.02% observed for hydroxyl and superoxide
radicals, respectively [151]. The results show great potential of oyster mushroom as a read-
ily available source of natural anti-oxidants for dietary supplementation or pharmaceutical
use. Ergothioneine, also found in various mushrooms like Pleurotus eryngii (king trumpet
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mushroom) and Lactarius deliciosus (saffron milk cap), has been shown to have powerful
anti-oxidant properties and reduce oxidative stress [84,87,151,167].

Mushrooms have also been found to protect against oxidative stress-induced damage
to mitochondria, the organelles responsible for energy production within cells.
For instance, polysaccharides from Cordyceps sinensis (caterpillar fungus) have been shown
to enhance mitochondrial function and reduce oxidative damage in aging mice [39,168,169].
This suggests that mushroom bioactive compounds may help preserve mitochondrial
function and mitigate age-related decline. Mushroom bioactive compounds can modulate
signaling pathways involved in oxidative stress. For example, polysaccharides from mush-
rooms such as Ganoderma lucidum (lingzhi) and Lentinula edodes (shiitake) have been found
to inhibit the production of ROS and increase the activity of anti-oxidant enzymes, such as
SOD and CAT [77,158,170,171]. By regulating ROS production and anti-oxidant enzyme
activity, mushrooms may help reduce oxidative stress and associated tissue damage.

4.2. Anti-Wrinkle Effects

One of the primary signs of skin aging is the formation of wrinkles, which is primarily
caused by the loss of structural proteins in the dermis and elastase-induced degradation of
elastin, leading to the expression of matrix metalloproteinases [159]. Lee, Lee, Kim, Yoo
and Yang [10] discovered that Clitocybin A, an isoindolinone derived from the Korean
mushroom Clitocybe aurantiaca, exhibited scavenging activity against ROS and inhibitory
effects on elastase in human primary dermal fibroblast-neonatal cells. This suggests the
potential of clitocybin A as an effective ingredient in anti-wrinkle cosmetic products.
Similarly, the extract of the mycelium of the pine mushroom (Tricholoma matsutake) was
found to inhibit elastase activity and the expression of matrix metalloproteinases in human
fibroblasts [160]. In addition to the factors mentioned above, targeting the pro-inflammatory
enzyme cyclooxygenase-2 (COX-2) may also be a strategy for anti-wrinkle treatments.
COX-2 is associated with the production of ROS and inflammation in normal skin tissue.
Therefore, COX-2 inhibitors are applied in anti-wrinkle cosmetics [161].

Notably, several bioactive compounds extracted from mushrooms have been found
to effectively inhibit COX-2 activity. Stanikunaite, Khan, Trappe and Ross [161] reported
that the ethanol extract of fruiting bodies of the truffle-like fungus Elaphomyces granulatus
exhibited a 68% inhibition of COX-2 activity at a concentration of 50 mg/mL in mouse
macrophages (RWA 264.7). Further investigation led to the identification of two bioactive
compounds in E. granulatus, namely syringic acid and syringaldehyde acid, which were
suggested to be responsible for the COX-2 inhibitory property [161]. Moreover, an extract
of Ganoderma lucidum containing spores and fruiting bodies in a ratio of 30:8 was found to
attenuate UV-induced epidermis thickening and inhibit the expression of COX-2 in non-
tumor skin tissues of mice. This highlights the potential of the extract as a key component
in cosmetic products for skin maintenance [162].

4.3. Immunomodulatory Effects

Immunosenescence refers to the gradual deterioration of various components in the
immune system due to natural age advancement, which can lead to irregular immune
responses against viruses or pathogens and increased vulnerability to illnesses such as
chronic inflammation, autoimmune diseases, and cancer [172]. Reinforcing the immune
system is essential for longevity. Extracts of the medicinal mushroom Agaricus blazei
Murill have been found to enhance the functions of phagocytic cells [8], contributing to
anti-tumor effects by strengthening innate immunity. When exposed to A. blazei Murill
extracts, the phagocytic cells interact and remove invasive pathogens, further triggering
innate and adaptive immune responses through the release of chemokines and cytokines.
Short-term oral supplementation of the extracts at doses of 0.5–5% has been shown to exert
an immunostimulatory effect characterized by increased secretion of cytokines in whole
blood [173]. 1,3-β-Glucans found in medicinal mushrooms are effective in stimulating the
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immune system by modulating T cells, macrophages, and natural killer cells, along with
the production of cytokines [174].

Several edible mushrooms, including Agaricus bisporus, Flammulina velutipes, Lenti-
nus edodes, Pleurotus florida, and Trametes pubescens, have been found to possess anti-
inflammatory properties, as assessed by levels of lipopolysaccharide and interferon that
activate macrophages, indicating their immunomodulatory ability [9,175,176]. Addition-
ally, the secondary metabolite lectin purified from Latiporus sulphureus could promote
immune cell proliferation and phagocytosis and activate cytokines, suggesting its potential
immunopotentiation in pharmacology and functional foods [177]. The use of cultured
Sanghuang mushroom (Inonotus sanghuang) extracts at doses of 8 mg/kg or 16 mg/kg
in immunodeficient mice has exhibited immunoregenerative functions, suggesting the
potential of these extracts as an alternative for nutraceutical medicine concerning cancer
chemotherapy [178]. From a more recent point of view, the bioactivity of mushrooms is
closely related to its interaction with the gut microbiota, where gut microbial metabolites
play a key role in bridging the gap between immunomodulatory effect of mushrooms and
the host after consumption. Vlassopoulou et al. [179] selected Pleurotus eryngii as a substrate
for in vitro fermentation using gut microbiota sampled from healthy elderly volunteers.
The fermentation supernatants, which comprised a group of gut microbial metabolites,
were subjected to cellular assays in U937-derived human macrophages. Interestingly,
improved immune response was observed in treatment of gut microbial fermentation
supernatants from each individual, characterized by altered gene expression and levels
of pro- and anti-inflammatory cytokines in the macrophages, and further verified using
peripheral blood mononuclear cells of the volunteers [179]. Boulaka et al. [180] also as-
sessed the immunomodulatory property of P. eryngii through in vitro fermentation using
fecal sample collected from both male and female elderly subjects. While not observed
in pre-fermentation supernatant treatment, post-fermentation supernatant exhibited pro-
tective effects against mitomycin C-induced DNA damage for human lymphocytes in a
dose-dependent manner, suggesting its significant role in maintaining genome integrity
via metabolites-gut microbiome-host interaction during aging, which attributes to im-
munomodulatory and anti-oxidant activities [180].

4.4. Cardioprotective Effects

The circulatory system is essential for the transportation of oxygenated blood and
nutrients to tissues and organs. The aging process can significantly impact the cardiovascu-
lar system, leading to the development of cardiovascular diseases such as hypertension,
cardiac hypertrophy, atherosclerosis, myocardial infarction, and stroke [181]. One of the
factors responsible for high blood pressure and cardiac hypertrophy is the vasopressor
octapeptide angiotensin II (Figure 2b), which is converted from angiotensin I in the pres-
ence of angiotensin I converting enzyme [167]. D-glucopyranose mannitol extracted from
the mushroom Pleurotus cornucopiae (Tamogi-take mushroom) has been found to alleviate
hypertension in spontaneously hypertensive rat models by inhibiting angiotensin I convert-
ing enzyme and lowering blood pressure [167,182]. Similarly, bioactive peptides extracted
from the fruiting body of Tricholoma matsutakei also disrupt the function of angiotensin
responsible for hypertension [183]. Atherosclerosis, a disease commonly associated with
hypercholesterolemia, high levels of low-density lipoprotein (LDL) (Figure 2a), and low
levels of high-density lipoprotein (HDL), is prevalent among older populations and poses
risks of stroke. Regularly consuming mushrooms has been shown in various animal stud-
ies to have significant benefits in reducing hypertension, atherosclerosis, dyslipidemia,
inflammation, and obesity [184,185].

Several mushrooms with medicinal properties, including Hypsizygus marmoreus (bunashimeji),
Grifola frondosa (maitake), and Pleurotus eryngii (eringi), show potential in treating atherosclero-
sis [186,187]. In an atherosclerosis mouse model, the application of mushroom extracts decreased
the incidence of atherosclerosis lesions, suggesting their potential use in treatment [187]. In a
rat model fed a high-cholesterol diet, oral administration of Pleurotus florida powder extracts in-
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creased fecal lipid excretion while effectively decreasing serum triglycerides, total cholesterol, LDL,
and very low-density lipoprotein levels when compared to control mice [186]. Additionally, the
ethanol extract of lion’s mane mushroom and hot water extract from the mycelia of Cordyceps
sinensis (caterpillar fungus) can enhance lipid metabolism by suppressing platelet aggregation,
lowering LDL levels, and increasing HDL levels, acting as therapeutic agents for atherosclerosis
and potentially decreasing the risk of myocardial infarction [61,188].
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Figure 2. Schematic illustration of effects of mushroom extracts against cardiovascular diseases
regarding lowering blood LDL and blood pressure. (a) Application of mushroom extracts de-
crease LDL levels and inhibit platelet aggregation. (b) Application of mushroom extracts inhibit
ACE activity similarly to ACE inhibitors, thus leading to vasodilation and lower blood pressure.
ACE, angiotensin converting enzyme. LDL, low-density lipoprotein.

4.5. Neuroprotective Effects

Brain aging is a significant risk factor for neurodegenerative diseases and cognitive
decline, including dementia, Alzheimer’s disease (AD), and Parkinson’s disease (PD).
Excessive oxidative stress is a major contributor to brain aging. Research has been con-
ducted on the effects of mushroom extracts on the oxidative state of the brain during
aging. For example, an aqueous extract of Agaricus blazei was found to maintain the ROS
levels in the brain of rats at a level that did not accelerate brain aging when administered
daily at a dose of 50 mg/kg [189]. However, long-term and continuous treatment with the
extract showed a tendency to be less effective in rats aged above 12 months, suggesting
that intermittent treatment with short-term doses may be more beneficial [189]. In experi-
ments using the roundworm Caenorhabditis elegans, an ethanolic extract of cloud ear fungus
(Auricularia polytricha) attenuated glutamate-induced cytotoxicity and increased the expres-
sion of anti-oxidant enzyme genes, promoting longevity and health in the worms [190].
This suggests that cloud ear fungus could serve as a natural source of neuroprotective and
anti-brain-aging agents.

Figure 3 illustrates the neuroprotective properties of lion’s mane mushroom in four
preclinical study models. Ethanol extracts of H. erinaceus demonstrated neuroprotective
effects in mouse hippocampal neurons and microglia, protecting against oxidative damage
and inflammation [191]. In the context of PD, H. erinaceus and Grifola frondosa (maitake
mushroom) extracts have shown anti-aging effects in yeast by reducing α-synuclein toxicity



J. Fungi 2024, 10, 215 15 of 34

and levels of ROS, as well as lowering α-synuclein membrane localization [192]. H. erinaceus
has also shown beneficial effects in improving cognitive function and behavioral deficits in
animal models of AD, as well as enhancing recognition memory and inducing neurogenesis
in frail aging mice [193,194]. While studies have indicated the neuroprotective effects of
edible and medicinal mushrooms, it is important to carefully verify their efficacy and
potential adverse effects in human trials as the effects may vary.
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experimental models. CAT, catalase; GSH, glutathione; MAPK, mitogen-activated protein kinase;
PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; ROS, reactive oxygen species; Ras/PKA,
Ras protein/protein kinase A; Sod1, Cu/Zn superoxide dismutase; Gpx, glutathione peroxidase.
Symbol ↑ denotes increase; symbol ↓ denotes decrease.

4.6. Anti-Diabetic Effects

According to recent research, age-related type 2 diabetes is primarily caused by patho-
logical changes in pancreatic beta cells. These changes include decreased proliferation
and regeneration potential, disrupted transcriptome and proteostasis, increased accumu-
lation of senescent cells, and the impact of systemic environmental stress. These factors
result in the loss of functional cell mass and impaired insulin secretion and action [195].
Mushrooms, specifically polysaccharides like β-glucans, have been found to play a role
in restoring pancreatic function. They boost insulin secretion by pancreatic beta cells,
lower blood glucose levels, and improve the insulin response in peripheral tissues [196]. Ex-
opolysaccharides isolated from cultured mycelium of Phellinus baumii and Tremella fuciformis
(snow fungus) have shown blood glucose-lowering effects in mice with obesity-induced
diabetes [197].

Various mushroom-derived extracts and bioactive compounds, including glycoproteins
and β-glucans from Agaricus blazei (almond mushroom), polysaccharides from Phellinus linteus
(black hoof mushroom), lectins from Agaricus bisporus (white button mushroom), and extracts
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from Pleurotus osteratus (oyster mushroom) and Ganoderma lucidum (lingzhi), have demonstrated
blood glucose reduction abilities in diabetic animal model [198–201]. Notably, lectins from
white button mushrooms have been found to promote the proliferation of islet beta cells in
mice with partial pancreatic removal, suggesting their potential use in the treatment of type
2 diabetes [201]. Furthermore, a retrospective study suggested that the consumption of white
button mushrooms may be correlated with anti-inflammatory and anti-oxidant health benefits
in individuals predisposed to type 2 diabetes [165]. Figure 4 provides an overview of the
mechanisms underlying the antidiabetic activities of mushrooms.

Figure 4. Schematic illustration of anti-diabetic properties of mushroom. Application of mushroom
extracts or mushroom-derived bioactive compounds may improve insulin secretion and response
by promoting pancreatic beta-cell proliferation, which increases performance of glucose take up by
cells and lowering blood glucose. MBC, mushroom-derived bioactive compounds. Red dashed line
indicates inhibitory effects while green dashed lines indicate promoting/strengthening effects.

4.7. Beneficial for Age-Related Diseases

Mushrooms are not only valued for their nutritional content but also considered func-
tional foods that can enhance biological function and promote overall health [13,202,203].
Additionally, mushrooms have been found to possess pharmacological and medicinal
properties that can be beneficial in age-related diseases. These properties include im-
munomodulatory, anti-inflammatory, anti-cancer, anti-diabetic, and neuroprotective effects,
among others [13,202,204]. The following summary will highlight several representa-
tive age-related diseases or conditions that can be influenced by mushroom extracts and
bioactive compounds derived from the mycelium or fruiting body of mushrooms. For a
comprehensive overview of the medicinal properties of mushrooms, including the respon-
sible compounds and proposed mechanisms, please refer to Table 5.
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Table 5. Medicinal properties of mushrooms.

Properties Mushroom
Species Bioactive Compounds Study Type/Model/Effective

Dosage Mechanisms of Action References

Immunomodulatory

Agaricus blazei

β-glucans (from pure AbM
extracts or commercial mushroom

extracts mixture AndoSan™
containing 85% of AbM)

Ex vivo/human whole
blood/0.1–15% for 6 h;

In vivo/human/20 mL thrice
per day orally for 12 days

Anti-oxidant activities, enhance
immune cells function and
innate immune responses,

trigger release of cytokines,
chemokines, and leukocyte

growth factors

[173]

Pleurotus
cornucopiae β-glucans Clinical trial/human/24 mg

per meal for 8 weeks

Th1 phenotype potentiation via
macrophage-IL-12-IFN-γ

pathway, up-regulation of NK
cell activity

[176]

Latiporus
sulphureus Lectin (LSL4)

In vitro/RAW264.7 cells/0–650
µg·mL−1 (IC50 = 1004.6

µg·mL−1)

Cell phagocytosis via TLR4
signaling pathway, triggers

release of NO, iNOS, TNF-α,
IL-1β, IL-6, and IL-10

[177]

Inonotus
sanghuang

Extract containing
polysaccharides and amino acids

In vivo/mice/4 and 8 mg·kg−1

once a day orally for 12 days

Stimulation of T lymphocytes,
natural killer cells, and B cells;
inhibition of cytochrome P450

isozymes

[178]

Ganoderma
lucidum

Polysaccharides extract
(Ganoderan, heteroglycan,

mannoglucan, glycopeptide)

In vivo/mice/2.5 mg·kg−1

intraperitoneal injection once
per day for 7 days

Stimulation of TNF-α, IL-1,
IFN-γ production, activate

NF-κB
[205]

Ganoderma
Microsporum FIP

In vitro/human alveolar
epithelial A549 cells/4 and 16

µg·mL−1

Down-regulation of TNF-α via
NF-κB pathway [206]

Anti-cardiovascular
diseases

Tricholoma
matsutake Functional peptides In vivo/rats/50 mg·kg−1 acute

oral dose

Alleviated hypertension via
inhibition of angiotensin I

converting enzyme
[183]

Pleurotus florida

Aqueous extract containing 80%
soluble fiber, 44% protein, 1.4%

soluble sugars, 0.2% polyphenols
(w/w dry weight)

In vivo/rats/5 and 7.5% of 100
g basal diet for 4 weeks

Suppression of hepatic
biosynthesis of cholesterol by

inhibiting activity of liver
enzyme HMG-CoA

[186]

Cordyceps
sinensis

Aqueous extract containing 83.9%
carbohydrates (glucose, mannose,

galactose, arabinose), 11.8%
protein, w/w dry weight

In vivo/mice/150 and 300
mg·kg−1 per day orally for 7

days

Suppression of hepatic
biosynthesis of cholesterol by

inhibiting activity of liver
enzyme HMG-CoA

[188]

Neuroprotective

Agaricus blazei Extract, composition not specified
In vivo/rats/50 mg·kg−1 per
day intragastrically at the age

of 7–23 months

Free-radical scavenging ability,
cytoprotective action,
antioxidation reaction

[189]

Hericium
erinaceus

Aqueous and ehthanol extracts,
composition not specified

In vitro/HT22 mouse
hippocampal neurons/ethanol

extracts at 400 µg·mL−1

Inhibition of
mitochondria-dependent
apoptotic cellular signals
activation; elevated CAT
activity and GSH content;

up-regulation of MAPK and
PI3K/Akt pathway

[191]

Extract containing erinacine A,
hericenones C and D

in vivo/mice/1 mg (solubilized
in water) per day for 2 months

Promoting hippocampal
neurogenesis; up-regulation of
lipoxin A4 and modulation of

stress responsive proteins

[194]

Auricularia
polytricha

Ethanolic extract containing
flavonoids, phenols, linoleic acid

In vitro/HT22 mouse
hippocampal cells/5, 10, 20,

and 40 µg·mL−1;
In vivo/Caenorhabditis

elegans/20, 40 µg·mL−1

Anti-oxidant activity via Nrf2
signaling pathway;

up-regulation of Sod1 and Gpx
gene expressions

[190]

Grifola frondose

Aqueous extract containing,
β-glucan, chitin, amino acids,

unsaturated fatty acids,
monosaccharides

In vivo/Saccharomyces
cerevisiae/0.2 and 0.5% in

culture medium;
In vivo/Drosophila

melanogaster/0.2% in culture
medium

Increase of heat shock proteins
expression by inhibition of
Ras/PKA pathway; reduce

levels of ROS

[192]
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Table 5. Cont.

Properties Mushroom
Species Bioactive Compounds Study Type/Model/Effective

Dosage Mechanisms of Action References

Antidiabetic

Tremella
fuciformis,
Phellinus

baumii

Exopolysaccharides, composition
not specified

In vivo/mice/200 mg·kg−1 per
day orally for 52 days

Improve insulin sensitivity via
regulating PPAR-γ-mediated

lipid metabolism
[197]

Agaricus
bisporus

Not specified In vivo/rats/200 mg·kg−1 per
day orally for 3 weeks

Stimulate secretion of insulin
from pancreatic beta cells [198]

Lectins In vivo/mice/10 mg·kg−1 for 2
weeks Induce beta-cell proliferation [201]

Phellinus
linteus

Aqueous extract containing 13.2%
peptide, 82.5% carbohydrates

(w/w dry weight)

In vivo/mice/30 mg·kg−1

intraperitoneally daily from 8 to
24 weeks of age

Inhibit expression of
inflammatory cytokines (IFN-γ,

IL-2, and TNF-α);
up-regulation of IL-4 expression

[199]

Agaricus blazei
Murill

Isoflavovoids (genistein, genistin,
daidzein, daidzin)

In vivo/rats/400 mg·kg−1 per
day orally for 2 weeks

Improve beta-cell function;
increase lipid peroxidation via

enhanced fatty acyl CoA
activity

[200]

AbM, Agaricus blazei Murill; IFN, interferon. NK cell, natural killer cell; LSL4, one of the lectins yields from
Latiporus sulphureus, a glycoprotein containing 6.32% sugar; TNF, tumor necrosis factor; IL, inter-leukin; FIP,
fungal immunomodulatory protein; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; CAT, catalase; GSH,
glutathione; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B;
Nrf2, nuclear factor erythroid 2-related factor 2; Sod1, Cu/Zn superoxide dismutase; Gpx, glutathione peroxidase;
Ras/PKA, Ras protein/protein kinase A; PPAR-γ, peroxisome proliferator-activated receptor gamma.

4.8. Structure–Activity Relationship

The structure–activity relationship of mushroom bioactive compounds refers to the
relationship between the molecular structure of these compounds and their biological
activities in addressing the mechanisms of aging. Mushroom bioactive compounds, such
as polysaccharides, phenolic compounds, triterpenoids, and ergothioneine, exhibit diverse
chemical structures that contribute to their bioactivity [185]. The specific structural features,
such as the presence of specific functional groups or the arrangement of atoms, can influence
their anti-oxidant, anti-inflammatory, and immunomodulatory properties [207,208]. Explor-
ing the structure–activity relationship of mushroom bioactive compounds provides insights
into their potential mechanisms of action and aids in the design of novel compounds with
enhanced anti-aging properties.

Understanding the mechanisms and structure–activity relationship of aging is vital for
developing effective interventions to mitigate the aging process and its associated diseases.
Mushroom bioactive compounds have shown significant potential in addressing the mech-
anisms of aging through their anti-oxidant, anti-inflammatory, and immunomodulatory
properties. Harnessing the power of mushroom bioactive compounds may pave the way
for innovative strategies to promote healthy aging and improve the quality of life in the
aging population.

5. Molecular and Cellular Mechanisms Underlying Aging Processes

Aging is influenced by a multitude of interconnected molecular and cellular mech-
anisms. These mechanisms include DNA damage and repair, telomere shortening, epi-
genetic changes, cellular senescence, mitochondrial dysfunction, oxidative stress, and
chronic inflammation. Each of these mechanisms contributes to the aging process and
the development of age-related diseases. Understanding the intricate interactions among
these mechanisms is crucial for developing effective anti-aging strategies. This includes
understanding how mushroom compounds interact with these mechanisms and influence
their progression. The overall mechanisms of the anti-aging properties of mushrooms are
depicted in Figure 5.



J. Fungi 2024, 10, 215 19 of 34

J. Fungi 2024, 10, x FOR PEER REVIEW 18 of 35 
 

 

activities in addressing the mechanisms of aging. Mushroom bioactive compounds, such 

as polysaccharides, phenolic compounds, triterpenoids, and ergothioneine, exhibit di-

verse chemical structures that contribute to their bioactivity [185]. The specific structural 

features, such as the presence of specific functional groups or the arrangement of atoms, 

can influence their anti-oxidant, anti-inflammatory, and immunomodulatory properties 

[207,208]. Exploring the structure–activity relationship of mushroom bioactive com-

pounds provides insights into their potential mechanisms of action and aids in the design 

of novel compounds with enhanced anti-aging properties. 

Understanding the mechanisms and structure–activity relationship of aging is vital 

for developing effective interventions to mitigate the aging process and its associated dis-

eases. Mushroom bioactive compounds have shown significant potential in addressing 

the mechanisms of aging through their anti-oxidant, anti-inflammatory, and immuno-

modulatory properties. Harnessing the power of mushroom bioactive compounds may 

pave the way for innovative strategies to promote healthy aging and improve the quality 

of life in the aging population. 

5. Molecular and Cellular Mechanisms Underlying Aging Processes 

Aging is influenced by a multitude of interconnected molecular and cellular mecha-

nisms. These mechanisms include DNA damage and repair, telomere shortening, epige-

netic changes, cellular senescence, mitochondrial dysfunction, oxidative stress, and 

chronic inflammation. Each of these mechanisms contributes to the aging process and the 

development of age-related diseases. Understanding the intricate interactions among 

these mechanisms is crucial for developing effective anti-aging strategies. This includes 

understanding how mushroom compounds interact with these mechanisms and influence 

their progression. The overall mechanisms of the anti-aging properties of mushrooms are 

depicted in Figure 5. 

 

Figure 5. The overall mechanisms of the anti-aging properties of mushrooms. Figure 5. The overall mechanisms of the anti-aging properties of mushrooms.

5.1. Cell Senescence

Cell senescence is a key hallmark of aging and is defined as the irreversible loss of
cell division potential and the acquisition of a senescence-associated secretory phenotype.
Senescent cells accumulate with age and contribute to tissue dysfunction and inflamma-
tion, which are characteristic of aging [16]. The accumulation of senescent cells has been
linked to a variety of age-related diseases, including cancer, cardiovascular disease, and
neurodegenerative disorders [29]. Various interventions, including the use of mushroom
bioactive compounds, have been explored as potential strategies to delay or mitigate the
accumulation of senescent cells and promote healthy aging [101].

Mushroom bioactive compounds have been investigated for their potential to de-
lay or mitigate the accumulation of senescent cells and promote healthy aging. Several
studies have reported the anti-senescence effects of mushroom bioactive compounds, in-
cluding polysaccharides, peptides, and phenolic compounds [170,171,209]. For example,
polysaccharides from Ganoderma lucidum (lingzhi) have been shown to reduce senescence-
associated β-galactosidase activity and decrease the expression of senescence-associated
markers in aging human dermal fibroblasts [171,210]. Polysaccharides from Hericium
erinaceus (lion’s mane mushroom) have also been found to reduce senescence-associated
β-galactosidase activity and increase the expression of anti-senescence markers in senescent
human dermal fibroblasts [169,211].

Mushroom bioactive compounds have also been found to have anti-inflammatory
and anti-oxidant properties, which may contribute to their anti-senescence effects [212].
For example, polysaccharides from Lentinus edodes (shiitake mushroom) have been shown
to reduce oxidative stress and inflammation in aging mice, which may help delay the
accumulation of senescent cells [78,213,214]. Overall, mushroom bioactive compounds
have shown promise as potential interventions to delay or mitigate the accumulation of
senescent cells and promote healthy aging through various mechanisms. In addition to
their anti-senescence effects, mushroom bioactive compounds have been investigated for
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their potential to promote healthy aging through other mechanisms, such as preserving
telomere length, protecting against DNA damage, and preserving mitochondrial function.

5.2. Telomere Maintenance

Telomeres are specific structures found at the ends of linear chromosomes. They are
composed of repeated sequences of TTAGGG, known as hexanucleotides, and a protein
complex called shelterin. These components work together to create a protective loop
structure that prevents chromosome fusion and degradation [215]. When telomeres become
shortened or damaged, and the protective loop is opened, it triggers an uncapped state
that activates a DNA damage response. This response can lead to cellular senescence
or programmed cell death. Traditionally, average telomere length, often measured in
human blood lymphocytes, has been considered a biomarker for aging, survival, and
mortality [216]. This shortening is a natural part of the aging process and is primarily
caused by the inability of DNA replication machinery to fully replicate the ends of linear
chromosomes. Telomerase is an enzyme that plays a critical role in maintaining telomere
length, which protects the ends of chromosomes from degradation and fusion. Telomere
shortening, caused by telomerase deficiency, is a hallmark of aging [217]. Shortened
telomeres have been linked to cellular dysfunction, inflammation, age-related diseases and
the overall decline in tissue and organ function [218].

Several factors can influence telomere maintenance and the rate of telomere shortening.
These include genetic factors, lifestyle choices (such as diet, exercise, and stress levels), and
environmental exposures [16,215,216,218]. Certain lifestyle modifications, such as regular
physical activity, a healthy diet, and stress reduction techniques, have been associated with
better telomere maintenance and potentially slower aging.

Mushroom bioactive compounds have been investigated for their potential to preserve
telomere length and delay or mitigate age-related decline. While specific studies focusing
on the effects of mushrooms on telomerase deficiency are limited, some studies have ex-
plored the broader anti-aging mechanisms of mushrooms that may indirectly contribute to
telomere maintenance. For instance, polysaccharides from Agaricus blazei (almond mush-
room) have been found to enhance telomerase activity and preserve telomere length in
aging mice [219]. Another study found that Ganoderma lucidum (lingzhi) polysaccharides
increased telomerase activity and extended the lifespan of fruit flies [217]. These find-
ings suggest that mushroom bioactive compounds may have the potential to counteract
telomerase deficiency and promote healthy aging.

5.3. Mitochondrial Dysfunction

Mitochondria are organelles responsible for producing energy in cells. Mitochondrial
dysfunction, characterized by impaired energy production and increased production of
ROS, is a key aspect of aging. Mitochondrial dysfunction has been linked to a variety of age-
related diseases, including neurodegenerative disorders, cardiovascular disease, metabolic
disorders, and impaired immune function [220–222]. Mitochondrial dysfunction is closely
linked to the process of aging. Several factors contribute to mitochondrial dysfunction
during aging. One major factor is the accumulation of mitochondrial DNA (mtDNA)
mutations, which can impair the production of energy and increase the generation of
harmful ROS [223]. ROS can cause oxidative damage to cellular components, including
mtDNA itself, leading to a vicious cycle of further mitochondrial dysfunction [224]. It can
affect various tissues and organs, including the brain, heart, muscles, and immune system.

Researchers are actively investigating strategies to mitigate mitochondrial dysfunction
and its impact on aging. Approaches include improving mitochondrial quality control
mechanisms, enhancing cellular anti-oxidant defenses, and exploring interventions that
can promote mitochondrial biogenesis and function [225]. Understanding the complex
relationship between mitochondrial dysfunction and aging is crucial for developing in-
terventions to maintain mitochondrial health and potentially delay age-related diseases.
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By targeting mitochondrial function, it may be possible to enhance overall health span and
improve the quality of life in older individuals.

Mushroom bioactive compounds have been investigated for their potential to preserve
mitochondrial function and mitigate age-related decline. Several studies have reported
the anti-mitochondrial dysfunction effects of mushroom bioactive compounds, including
polysaccharides, peptides, and phenolic compounds. For example, polysaccharides from
Grifola frondosa (maitake mushroom) have been found to preserve mitochondrial function
and increase anti-oxidant enzyme activity in aging mice [226]. Polysaccharides from Agari-
cus blazei (almond mushroom) have also been shown to improve mitochondrial function
and increase ATP production in aging mice [227]. The extract of A. blazei was found to
effectively restore lipid peroxidation levels (measured by TBARS) in old rats to levels
comparable to those observed in young rats [228]. This effect is likely due to the ability of
various constituents in A. blazei, such as phenolics, to scavenge free radicals. Among the
phenolics identified in A. blazei, gallic acid, syringic acid, and pyrogallol have demonstrated
significant anti-oxidant activities [229]. Considering their hydrophilic nature, it is probable
that these phenolics are present in the aqueous extract used in the study.

In addition, the treatment with A. blazei was effective in elevating the activity lev-
els of various mitochondrial enzymes in old rats, including succinate dehydrogenase,
α-ketoglutarate dehydrogenase, NADH dehydrogenase, and cytochrome c oxidase. No-
tably, the cytochrome c oxidase activity was nearly doubled by the A. blazei treatment.
These findings are consistent with a previous study in which old rats were treated with
Ganoderma lucidum extracts using a similar experimental protocol [230]. In addition, the
A. blazei treatment resulted in improved membrane energization of the mitochondrial mem-
brane, both in the presence of succinate and ATP [231]. Succinate-driven respiration in the
presence of exogenous ADP was significantly increased, approaching the respiration rates
observed in the brain mitochondria of young rats. This effect is likely due to the stimulation
of succinate dehydrogenase by the A. blazei treatment, which represents a benefit in terms
of rat brain energetics. The aqueous extract of A. blazei has shown potential in improving
the oxidative state of brain tissue and reversing certain detrimental effects of aging on
mitochondrial oxidative enzymes [231]. Overall, mushroom bioactive compounds have
shown promise as potential interventions to preserve mitochondrial function and mitigate
age-related decline through various mechanisms.

5.4. DNA Damage

DNA damage is a natural consequence of aging. Over time, the genetic material in
our cells can accumulate various types of damage, such as DNA strand breaks, oxidative
damage, and the formation of DNA adducts. This damage can result from both endogenous
factors, such as metabolic processes and ROS, as well as exogenous factors, such as exposure
to environmental toxins and radiation [221,232,233]. The accumulation of DNA damage is
believed to contribute to the aging process and age-related diseases. When DNA damage is
not properly repaired, it can lead to mutations and genomic instability, which can affect
cellular function and increase the risk of diseases such as cancer. Various mechanisms are
in place to repair DNA damage, such as base excision repair, nucleotide excision repair, and
homologous recombination. However, as we age, the efficiency of these repair mechanisms
can decline, leading to a higher accumulation of unrepaired DNA damage [234–236].
Additionally, chronic inflammation and oxidative stress, which are associated with aging,
can further contribute to DNA damage. These processes can generate ROS that can directly
damage DNA and interfere with DNA repair mechanisms. DNA damage accumulates with
age and contributes to cellular dysfunction. DNA damage can be caused by a variety of
factors, including oxidative stress, radiation, and environmental toxins. DNA damage has
been linked to a variety of age-related diseases, including cancer, cardiovascular disease,
and neurodegenerative disorders [237–239].

Mushroom bioactive compounds have been investigated as potential interventions to
protect against DNA damage and promote healthy aging. Several studies have reported the
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anti-DNA damage effects of mushroom bioactive compounds, including polysaccharides,
peptides, and phenolic compounds [238]. Polysaccharides from Phellinus linteus (black hoof
mushroom) have also been shown to protect against DNA damage in aging mice [169]. Fur-
thermore, polysaccharides from Grifola frondosa (maitake mushroom) have been found to
protect against DNA damage and increase anti-oxidant enzyme activity in aging mice [192].
Polysaccharides from Ganoderma lucidum (lingzhi) have also been shown to protect against
DNA damage in human liver cells exposed to oxidative stress [240]. Mushroom bioactive
compounds have also been found to have anti-oxidant and anti-inflammatory properties,
which may contribute to their anti-DNA damage effects [241]. For example, polysaccha-
rides from Pleurotus ostreatus (oyster mushroom) have been shown to reduce oxidative
stress and inflammation in aging mice, which may help protect against DNA damage [242].
As mentioned earlier in Section 4.3, gut microbial fermentation product of P. eryngii (king
oyster mushroom), which carries higher bioactivity than pre-fermentated original substrate,
also exerts genoprotective effect via the metabolites-gut microbiome-host pathway, illus-
trated by its ability to protect cyclophosphamide-induced DNA damage in bone marrow
and whole blood cells in young and elderly female and male mice [180]. Furthermore,
mushrooms contain bioactive compounds such as ergothioneine, which has been shown
to have potent anti-oxidant properties that protect DNA from oxidative damage [243].
Ergothioneine can be found in various mushrooms, including oyster mushrooms, shiitake
mushrooms, and king trumpet mushrooms. Overall, mushroom bioactive compounds have
shown promise as potential interventions to protect against DNA damage and promote
healthy aging through various mechanisms.

5.5. Epigenetic Changes

Epigenetic changes refer to modifications in gene expression that do not involve
alterations to the underlying DNA sequence. These changes can have a significant impact
on aging and age-related diseases. One of the key epigenetic changes associated with aging
is DNA methylation. DNA methylation involves the addition of a methyl group to the
DNA molecule, typically at specific sites called CpG sites [244]. Methylation patterns can
change over time, and certain regions of the genome can become more methylated or less
methylated with age. Global DNA hypomethylation, which is a decrease in overall DNA
methylation levels, is commonly observed in aging tissues. This hypomethylation can lead
to genomic instability and the activation of normally silenced genes. On the other hand,
specific genomic regions, such as gene promoters, can become hypermethylated with age,
resulting in the repression of gene expression [245].

Another important epigenetic modification associated with aging is histone modi-
fication. Histones are proteins that help package DNA into a compact structure called
chromatin. Different modifications, such as acetylation, methylation, and phosphorylation,
can occur on histones and influence gene expression [246]. Age-related changes in histone
modifications can impact gene expression patterns and cellular function. For example,
decreased histone acetylation levels have been observed in aging tissues, leading to a more
compact chromatin structure and reduced gene expression. These epigenetic changes can
be influenced by various factors, including environmental factors, lifestyle choices, and
genetic predisposition [247]. They can have wide-ranging effects on cellular processes, such
as DNA repair, cellular senescence, and inflammation, which are all associated with aging
and age-related diseases [248].

While specific studies on the effects of mushrooms on epigenetic changes and aging are
limited, some research suggests that mushroom bioactive compounds may have potential
anti-aging effects through epigenetic mechanisms. For example, a study demonstrated
that polysaccharides from Ganoderma lucidum (lingzhi) can inhibit DNA methyltransferase
activity, leading to DNA hypomethylation and reactivation of tumor suppressor genes in
cancer cells [249]. This suggests that mushroom polysaccharides may influence epigenetic
processes that regulate gene expression. Additionally, certain mushroom bioactive com-
pounds have been found to modulate histone modifications. For instance, extracts from
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Trametes versicolor (Turkey tail mushroom) have been shown to increase the acetylation of
histone proteins, which can result in changes in gene expression [250]. These changes in
histone modifications may have implications for aging and age-related diseases. Further-
more, some mushrooms contain microRNAs, which are small non-coding RNA molecules
that can regulate gene expression. For instance, Pleurotus ostreatus (oyster mushroom) has
been found to contain microRNAs that have anti-inflammatory effects by targeting specific
genes involved in inflammation [251]. As chronic inflammation is associated with aging,
the anti-inflammatory effects of mushroom microRNAs may have potential anti-aging
benefits. It is important to note that the field of epigenetics and the effects of mushrooms
on epigenetic changes and aging are still emerging areas of research.

5.6. Chronic Low-Grade Inflammation

Inflammation and aging are interconnected processes that have been the subject of
extensive research in recent years. Chronic low-grade inflammation, often referred to as
“inflammaging”, is now recognized as a hallmark of aging. As we age, our immune system
undergoes changes, leading to a state of chronic inflammation. This persistent low-level
inflammation can contribute to the development of various age-related diseases, including
cardiovascular disease, neurodegenerative disorders, and certain types of cancer [252].

Several factors contribute to the age-related increase in inflammation. One of the key
factors is the accumulation of senescent cells in tissues throughout the body. Senescent cells
are damaged or dysfunctional cells that no longer divide and can produce pro-inflammatory
molecules. Their accumulation over time contributes to chronic inflammation [253]. An-
other factor is the dysregulation of the immune system with age. This dysregulation,
often referred to as immunosenescence, leads to a state of chronic immune activation and
increased production of pro-inflammatory cytokines [254].

Additionally, changes in the gut microbiota, the collection of microorganisms residing
in our intestines, have been linked to age-related inflammation. Alterations in the composi-
tion of the gut microbiota can lead to increased gut permeability and the release of bacterial
components into the bloodstream, triggering an immune response and inflammation [255].
The consequences of chronic inflammation in aging are far-reaching. In addition to con-
tributing to the development of age-related diseases, inflammation can also accelerate the
aging process itself. It can lead to tissue damage and impair the function of organs, such as
the brain, heart, and joints [256].

Efforts to mitigate age-related inflammation are being actively explored. Lifestyle factors,
such as regular exercise, a healthy diet, and stress management, have been shown to reduce
inflammation and promote healthy aging [257–259]. Certain medications and dietary supple-
ments, such as anti-inflammatory drugs and anti-oxidants, are also being studied for their
potential to modulate age-related inflammation [260]. Understanding the complex relationship
between inflammation and aging is crucial for developing interventions that can promote
healthy aging and reduce the burden of age-related diseases. Ongoing research in this field
holds promise for improving the quality of life in older adults.

Mushrooms, particularly certain species, have been investigated for their potential
anti-inflammatory properties and their ability to mitigate inflammaging. Here is some
comprehensive information on inflammation and the anti-aging mechanisms of mush-
rooms: Mushrooms contain bioactive compounds, including polysaccharides, phenolic
compounds, and triterpenoids, that have demonstrated anti-inflammatory effects [261].
For example, polysaccharides from various mushroom species, such as Ganoderma lucidum
(lingzhi), Lentinula edodes (shiitake), and Pleurotus ostreatus (oyster mushroom), have been
shown to inhibit pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6) [261–263]. These compounds can help reduce inflammation and
associated tissue damage.

Furthermore, mushrooms have been found to modulate the immune response, which
is closely linked to inflammation. For instance, mushroom polysaccharides have been
shown to enhance the activity of natural killer cells, macrophages, and other immune cells,
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thus promoting a balanced immune response, and reducing chronic inflammation [264].
Oxidative stress plays a significant role in inflammation and aging. Mushrooms contain var-
ious anti-oxidants, including phenolic compounds and ergothioneine, which can scavenge
free radicals and reduce oxidative damage. Ergothioneine, specifically found in mushrooms
like Pleurotus eryngii (king trumpet mushroom) and Lactarius deliciosus (saffron milk cap),
has been shown to possess potent anti-oxidant and anti-inflammatory properties [265,266].

Mushroom bioactive compounds can modulate signaling pathways involved in in-
flammation. For instance, polysaccharides from mushrooms like Grifola frondosa (maitake)
and Agaricus bisporus (white button mushroom) have been found to inhibit the nuclear
factor-kappa B (NF-κB) pathway, which is a key regulator of inflammation [267,268].
By suppressing NF-κB activation, mushrooms may help alleviate chronic inflammation.
It is worth noting that while mushrooms have shown promising anti-inflammatory effects,
more research is needed to fully understand their mechanisms and establish their efficacy
and safety in the context of aging and age-related diseases.

6. Concluding Remarks and Future Perspective

As the population ages, there is an increasing demand for strategies to promote healthy
aging. Dietary interventions and nutrient supplementation have been identified as effec-
tive ways to extend both health span and lifespan among the elderly. Among various food
sources, mushrooms have demonstrated promising anti-aging potential due to the presence
of bioactive compounds such as polysaccharides, proteins and peptides, lipids, and phenolic
compounds, which have been shown to have anti-inflammatory, anti-oxidant, immunomodu-
latory, neuroprotective, anti-diabetic, and cardiovascular disease-ameliorating properties.

Mushrooms can be used as functional foods and may serve as valuable source materials
for drug and functional food development. While the majority of studies have used
mushroom extracts in aging models and demonstrated their effectiveness in expanding
lifespan, a minority of studies have identified individual compounds responsible for
their anti-aging properties. It is important to identify the chemical structure of these
compounds to gain insight into how they interact with cells and develop more effective
anti-aging strategies. However, most studies have been performed in vivo or in vitro,
with limited clinical trials, and results from different studies are not always consistent
or supportive. Furthermore, individuals who consume mushrooms may also consume a
variety of different self-selected meals or prepare mushrooms in different ways, which may
counteract the proposed health benefits of mushroom bioactive compounds and limit their
effectiveness. Therefore, meal plans for healthy aging should be designed with this factor
in mind. Additionally, safety, dosage, and effectiveness of the bioactive compounds should
be verified. If mushroom extracts are to be applied in the treatment of diseases among
the elderly, particularly vulnerable populations, further research, particularly clinical or
nutritional trials, will be highly required.

Author Contributions: Methodology, software, formal analysis, investigation, validation, data
curation, writing—original draft preparation, writing—review and editing, visualization, J.L. and
K.G.; Conceptualization, resources, supervision, project administration, funding acquisition, writing—
review and editing, B.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by BNU-HKBU United International College, grant number
UICR0200007-23.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



J. Fungi 2024, 10, 215 25 of 34

References
1. Murray, C.; Barber, R.M.; Foreman, K.J.; Ozgoren, A.A.; Abdallah, F.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abubakar, I.;

Aburaddad, L.J. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy
life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet 2015, 386, 2145–2191.
[CrossRef]

2. Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.;
Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death:
Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [CrossRef]

3. World Health Organization. Preventing chronic diseases: A vital investment. Prev. Chronic Dis. A Vital Invest. 2008, 126, 95.
4. de Cabo, R.; Mattson, M.P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 2019, 381, 2541–2551.

[CrossRef]
5. Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy aging

and dietary patterns. Nutrients 2022, 14, 889. [CrossRef]
6. Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent.

Aging Dis. 2017, 8, 778–791. [CrossRef] [PubMed]
7. Kunugi, H.; Mohammed Ali, A. Royal jelly and its components promote healthy aging and longevity: From animal models to

humans. Int. J. Mol. Sci. 2019, 20, 4662. [CrossRef] [PubMed]
8. Hetland, G.; Johnson, E.; Lyberg, T.; Bernardshaw, S.; Tryggestad, A.M.A.; Grinde, B. Effects of the medicinal mushroom Agaricus

blazei Murill on immunity, infection and cancer. Scand. J. Immunol. 2008, 68, 157015. [CrossRef] [PubMed]
9. Im, K.H.; Nguyen, T.K.; Choi, J.; Lee, T.S. In vitro antioxidant, anti-diabetes, anti-dementia, and inflammation inhibitory effect of

Trametes pubescens fruiting body extracts. Molecules 2016, 21, 639. [CrossRef]
10. Lee, J.E.; Lee, I.S.; Kim, K.C.; Yoo, I.D.; Yang, H.M. ROS scavenging and anti-wrinkle effects of clitocybin A isolated from the

mycelium of the mushroom Clitocybe aurantiaca. J. Microbiol. Biotechnol. 2017, 27, 933–938. [CrossRef] [PubMed]
11. Yuan, F.; Gao, Z.; Liu, W.; Li, H.; Zhang, Y.; Feng, Y.; Song, X.; Wang, W.; Zhang, J.; Huang, C.; et al. Characterization, antioxidant,

anti-aging and organ protective effects of sulfated polysaccharides from Flammulina velutipes. Molecules 2019, 24, 3517. [CrossRef]
12. Jo Feeney, M.; Miller, A.M.; Roupas, P. Mushrooms-biologically distinct and nutritionally unique: Exploring a “Third Food

Kingdom”. Nutr. Today 2014, 49, 301–307. [CrossRef]
13. Elkhateeb, W.A. What medicinal mushroom can do? J. Chem. Res. 2020, 5, 106–118.
14. Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The continuum

of aging and age-related diseases: Common mechanisms but different rates. Front. Med. 2018, 5, 61. [CrossRef]
15. Harman, D. The aging process. Proc. Natl. Acad. Sci. USA 1981, 78, 7124–7128. [CrossRef]
16. Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [CrossRef]

[PubMed]
17. Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [CrossRef] [PubMed]
18. Harman, D. Free radical theory of aging: Dietary implications. Am. J. Clin. Nutr. 1972, 25, 839–843. [CrossRef]
19. Van Remmen, H.; Ikeno, Y.; Hamilton, M.; Pahlavani, M.; Wolf, N.; Thorpe, S.R.; Alderson, N.L.; Baynes, J.W.; Epstein, C.J.;

Huang, T.T.; et al. Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but
does not accelerate aging. Physiol. Genom. 2003, 16, 29–37. [CrossRef]

20. Chen, Q.; Xu, B.J.; Huang, W.S.; Amrouche, A.T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.B.; Zou, L.; Lu, B.Y. Edible
flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 2020, 106, 30–47. [CrossRef]

21. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al.
Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [CrossRef]

22. Belikov, A.V. Age-related diseases as vicious cycles. Ageing Res. Rev. 2019, 49, 11–26. [CrossRef] [PubMed]
23. Lopez-Otin, C.; Galluzzi, L.; Freije, J.M.P.; Madeo, F.; Kroemer, G. Metabolic control of longevity. Cell 2016, 166, 802–821.

[CrossRef] [PubMed]
24. Fontana, L.; Partridge, L.; Longo, V.D. Extending healthy life span—From yeast to humans. Science 2010, 328, 321–326. [CrossRef]
25. Lee, S.H.; Min, K.J. Caloric restriction and its mimetics. BMB Rep. 2013, 46, 181–187. [CrossRef]
26. McCay, C.M.; Crowell, M.F.; Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate

body size. 1935. Nutrition 1989, 5, 155–171, discussion 172.
27. Martins, I.; Galluzzi, L.; Kroemer, G. Hormesis, cell death and aging. Aging 2011, 3, 821–828. [CrossRef]
28. Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [CrossRef]
29. Miller, R.A. Cell stress and aging: New emphasis on multiplex resistance mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 179–182.

[CrossRef]
30. Cava, E.; Fontana, L. Will calorie restriction work in humans? Aging 2013, 5, 507–514. [CrossRef]
31. de Magalhaes, J.P. The scientific quest for lasting youth: Prospects for curing aging. Rejuvenation Res. 2014, 17, 458–467. [CrossRef]
32. Dirks, A.J.; Leeuwenburgh, C. Caloric restriction in humans: Potential pitfalls and health concerns. Mech. Ageing Dev. 2006, 127, 1–7.

[CrossRef] [PubMed]
33. Di Francesco, A.; Di Germanio, C.; Bernier, M.; de Cabo, R. A time to fast. Science 2018, 362, 770–775. [CrossRef] [PubMed]

https://doi.org/10.1016/S0140-6736(15)61340-X
https://doi.org/10.1016/S0140-6736(18)31694-5
https://doi.org/10.1056/NEJMra1905136
https://doi.org/10.3390/nu14040889
https://doi.org/10.14336/AD.2017.0725
https://www.ncbi.nlm.nih.gov/pubmed/29344416
https://doi.org/10.3390/ijms20194662
https://www.ncbi.nlm.nih.gov/pubmed/31547049
https://doi.org/10.1111/j.1365-3083.2008.02156.x
https://www.ncbi.nlm.nih.gov/pubmed/18782264
https://doi.org/10.3390/molecules21050639
https://doi.org/10.4014/jmb.1702.02050
https://www.ncbi.nlm.nih.gov/pubmed/28297750
https://doi.org/10.3390/molecules24193517
https://doi.org/10.1097/NT.0000000000000063
https://doi.org/10.3389/fmed.2018.00061
https://doi.org/10.1073/pnas.78.11.7124
https://doi.org/10.1016/j.cell.2013.05.039
https://www.ncbi.nlm.nih.gov/pubmed/23746838
https://doi.org/10.1093/geronj/11.3.298
https://www.ncbi.nlm.nih.gov/pubmed/13332224
https://doi.org/10.1093/ajcn/25.8.839
https://doi.org/10.1152/physiolgenomics.00122.2003
https://doi.org/10.1016/j.tifs.2020.09.023
https://doi.org/10.2147/CIA.S158513
https://doi.org/10.1016/j.arr.2018.11.002
https://www.ncbi.nlm.nih.gov/pubmed/30458244
https://doi.org/10.1016/j.cell.2016.07.031
https://www.ncbi.nlm.nih.gov/pubmed/27518560
https://doi.org/10.1126/science.1172539
https://doi.org/10.5483/BMBRep.2013.46.4.033
https://doi.org/10.18632/aging.100380
https://doi.org/10.1038/nature08980
https://doi.org/10.1093/gerona/gln072
https://doi.org/10.18632/aging.100581
https://doi.org/10.1089/rej.2014.1580
https://doi.org/10.1016/j.mad.2005.09.001
https://www.ncbi.nlm.nih.gov/pubmed/16226298
https://doi.org/10.1126/science.aau2095
https://www.ncbi.nlm.nih.gov/pubmed/30442801


J. Fungi 2024, 10, 215 26 of 34

34. Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent metabolic switching, neuroplasticity and brain
health. Nat. Rev. Neurosci. 2018, 19, 63–80. [CrossRef] [PubMed]

35. Hu, D.; Xie, F.; Xiao, Y.; Lu, C.; Zhong, J.; Huang, D.; Chen, J.; Wei, J.; Jiang, Y.; Zhong, T. Metformin: A potential candidate for
targeting aging mechanisms. Aging Dis. 2021, 12, 480–493. [CrossRef]

36. Zhang, Y.; Zhang, J.; Wang, S. The role of rapamycin in healthspan extension via the delay of organ aging. Ageing Res. Rev. 2021,
70, 101376. [CrossRef]

37. Li, J.; Kim, S.G.; Blenis, J. Rapamycin: One drug, many effects. Cell Metab. 2014, 19, 373–379. [CrossRef]
38. Soukas, A.A.; Hao, H.; Wu, L. Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol. Metab. 2019, 30, 745–755.

[CrossRef]
39. Martel, J.; Ko, Y.F.; Liau, J.C.; Lee, C.S.; Ojcius, D.M.; Lai, H.C.; Young, J.D. Myths and realities surrounding the mysterious

caterpillar fungus. Trends Biotechnol. 2017, 35, 1017–1021. [CrossRef]
40. Martel, J.; Ko, Y.F.; Ojcius, D.M.; Lu, C.C.; Chang, C.J.; Lin, C.S.; Lai, H.C.; Young, J.D. Immunomodulatory properties of plants

and mushrooms. Trends Pharmacol. Sci. 2017, 38, 967–981. [CrossRef]
41. Martel, J.; Ojcius, D.M.; Chang, C.J.; Lin, C.S.; Lu, C.C.; Ko, Y.F.; Tseng, S.F.; Lai, H.C.; Young, J.D. Anti-obesogenic and antidiabetic

effects of plants and mushrooms. Nat. Rev. Endocrinol. 2017, 13, 149–160. [CrossRef]
42. Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [CrossRef]
43. Kiely, K.M.; Brady, B.; Byles, J. Gender, mental health and ageing. Maturitas 2019, 129, 76–84. [CrossRef] [PubMed]
44. Cedrone, F.; Catalini, A.; Stacchini, L.; Berselli, N.; Caminiti, M.; Mazza, C.; Cosma, C.; Minutolo, G.; Di Martino, G. The role

of gender in the association between mental health and potentially preventable hospitalizations: A single-center retrospective
observational study. Int. J. Environ. Res. Public Health 2022, 19, 14691. [CrossRef] [PubMed]

45. Rinsky-Halivni, L.; Brammli-Greenberg, S.; Christiani, D.C. Ageing workers’ mental health during COVID-19: A multilevel
observational study on the association with the work environment, perceived workplace safety and individual factors. BMJ Open
2022, 12, e064590. [CrossRef] [PubMed]

46. Bockting, W.; Coleman, E.; Deutsch, M.B.; Guillamon, A.; Meyer, I.; Meyer, W., 3rd; Reisner, S.; Sevelius, J.; Ettner, R. Adult development
and quality of life of transgender and gender nonconforming people. Curr. Opin. Endocrinol. Diabetes Obes. 2016, 23, 188–197. [CrossRef]

47. Thomas Tobin, C.S.; Erving, C.L.; Hargrove, T.W.; Satcher, L.A. Is the Black-White mental health paradox consistent across age,
gender, and psychiatric disorders? Aging Ment. Health 2022, 26, 196–204. [CrossRef]

48. Zhang, X.; Yan, Y.; Ye, Z.; Xie, J. Descriptive analysis of depression among adolescents in Huangshi, China. BMC Psychiatry 2023,
23, 176. [CrossRef]

49. Ulep, V.G.T.; Uy, J.; Casas, L.D. What explains the large disparity in child stunting in the Philippines? A decomposition analysis.
Public Health Nutr. 2022, 25, 2995–3007. [CrossRef]

50. Xu, C.; Ganesan, K.; Liu, X.; Ye, Q.; Cheung, Y.; Liu, D.; Zhong, S.; Chen, J. Prognostic value of negative emotions on the incidence
of breast cancer: A systematic review and meta-analysis of 129,621 patients with breast cancer. Cancers 2022, 14, 475. [CrossRef]

51. Lorenzo, E.C.; Kuchel, G.A.; Kuo, C.L.; Moffitt, T.E.; Diniz, B.S. Major depression and the biological hallmarks of aging.
Ageing Res. Rev. 2023, 83, 101805. [CrossRef]

52. Yeap, B.B. Hormonal changes and their impact on cognition and mental health of ageing men. Maturitas 2014, 79, 227–235.
[CrossRef]

53. Barros, L.; Correia, D.M.; Ferreira, I.C.; Baptista, P.; Santos-Buelga, C. Optimization of the determination of tocopherols in Agaricus
sp. edible mushrooms by a normal phase liquid chromatographic method. Food Chem. 2008, 110, 1046–1050. [CrossRef] [PubMed]

54. Mattila, P.; Konko, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen,
V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49,
2343–2348. [CrossRef] [PubMed]

55. Kalac, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric.
2013, 93, 209–218. [CrossRef] [PubMed]

56. Ferreira, I.C.; Barros, L.; Abreu, R.M. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009, 16, 1543–1560. [CrossRef]
[PubMed]

57. Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol.
2011, 89, 1323–1332. [CrossRef] [PubMed]

58. Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life.
Int. J. Microbiol. 2015, 2015, 376387. [CrossRef] [PubMed]

59. Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1→3)-beta-D-glucans is dependent on the
triple helix conformation. Carbohydr. Res. 2000, 329, 587–596. [CrossRef]

60. Kataoka, K.; Muta, T.; Yamazaki, S.; Takeshige, K. Activation of macrophages by linear (1→3)-beta-D-glucans. Impliations for the
recognition of fungi by innate immunity. J. Biol. Chem. 2002, 277, 36825–36831. [CrossRef]

61. Khan, M.A.; Tania, M.; Liu, R.; Rahman, M.M. Hericium erinaceus: An edible mushroom with medicinal values. J. Complement.
Integr. Med. 2013, 10, 253–258. [CrossRef] [PubMed]

62. Vetvicka, V.; Yvin, J.C. Effects of marine beta-1,3 glucan on immune reactions. Int. Immunopharmacol. 2004, 4, 721–730. [CrossRef]
[PubMed]

https://doi.org/10.1038/nrn.2017.156
https://www.ncbi.nlm.nih.gov/pubmed/29321682
https://doi.org/10.14336/AD.2020.0702
https://doi.org/10.1016/j.arr.2021.101376
https://doi.org/10.1016/j.cmet.2014.01.001
https://doi.org/10.1016/j.tem.2019.07.015
https://doi.org/10.1016/j.tibtech.2017.06.011
https://doi.org/10.1016/j.tips.2017.07.006
https://doi.org/10.1038/nrendo.2016.142
https://doi.org/10.4103/0973-7847.95849
https://doi.org/10.1016/j.maturitas.2019.09.004
https://www.ncbi.nlm.nih.gov/pubmed/31547918
https://doi.org/10.3390/ijerph192214691
https://www.ncbi.nlm.nih.gov/pubmed/36429414
https://doi.org/10.1136/bmjopen-2022-064590
https://www.ncbi.nlm.nih.gov/pubmed/36572502
https://doi.org/10.1097/MED.0000000000000232
https://doi.org/10.1080/13607863.2020.1855627
https://doi.org/10.1186/s12888-023-04682-3
https://doi.org/10.1017/S136898002100416X
https://doi.org/10.3390/cancers14030475
https://doi.org/10.1016/j.arr.2022.101805
https://doi.org/10.1016/j.maturitas.2014.05.015
https://doi.org/10.1016/j.foodchem.2008.03.016
https://www.ncbi.nlm.nih.gov/pubmed/26047301
https://doi.org/10.1021/jf001525d
https://www.ncbi.nlm.nih.gov/pubmed/11368601
https://doi.org/10.1002/jsfa.5960
https://www.ncbi.nlm.nih.gov/pubmed/23172575
https://doi.org/10.2174/092986709787909587
https://www.ncbi.nlm.nih.gov/pubmed/19355906
https://doi.org/10.1007/s00253-010-3067-4
https://www.ncbi.nlm.nih.gov/pubmed/21190105
https://doi.org/10.1155/2015/376387
https://www.ncbi.nlm.nih.gov/pubmed/25685150
https://doi.org/10.1016/S0008-6215(00)00222-6
https://doi.org/10.1074/jbc.M206756200
https://doi.org/10.1515/jcim-2013-0001
https://www.ncbi.nlm.nih.gov/pubmed/23735479
https://doi.org/10.1016/j.intimp.2004.02.007
https://www.ncbi.nlm.nih.gov/pubmed/15135314


J. Fungi 2024, 10, 215 27 of 34

63. Zaidman, B.Z.; Yassin, M.; Mahajna, J.; Wasser, S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics.
Appl. Microbiol. Biotechnol. 2005, 67, 453–468. [CrossRef] [PubMed]

64. Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.; Santos-Buelga, C.; Ferreira, I.C. Phenolic, polysaccharidic, and lipidic fractions of
mushrooms from northeastern Portugal: Chemical compounds with antioxidant properties. J. Agric. Food Chem. 2012, 60, 4634–4640.
[CrossRef] [PubMed]

65. Huang, J.; Ou, Y.; Yew, T.W.; Liu, J.; Leng, B.; Lin, Z.; Su, Y.; Zhuang, Y.; Lin, J.; Li, X.; et al. Hepatoprotective effects of
polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl4-induced hepatic injury in mice. Int. J. Biol.
Macromol. 2016, 82, 678–686. [CrossRef]

66. Li, S.; Liu, H.; Wang, W.; Wang, X.; Zhang, C.; Zhang, J.; Jing, H.; Ren, Z.; Gao, Z.; Song, X.; et al. Antioxidant and anti-aging
effects of acidic-extractable polysaccharides by Agaricus bisporus. Int. J. Biol. Macromol. 2018, 106, 1297–1306. [CrossRef]

67. Zhang, Y.; Ma, G.; Fang, L.; Wang, L.; Xie, J. The immunostimulatory and anti-tumor activities of polysaccharide from Agaricus
bisporus (brown). J. Food Nutr. Res. 2014, 2, 122–126. [CrossRef]

68. Pires, A.; Ruthes, A.C.; Cadena, S.; Iacomini, M. Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on
HepG2 cells. Carbohydr. Polym. 2017, 170, 33–42. [CrossRef]

69. Smiderle, F.R.; Alquini, G.; Tadra-Sfeir, M.Z.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J. Agaricus bisporus and Agaricus
brasiliensis (1→6)-β-D-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr. Polym. 2013,
94, 91–99. [CrossRef]

70. Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C. Chemical composition and nutritional value of the most widely appreciated
cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [CrossRef]

71. Govindan, S.; Johnson, E.E.; Christopher, J.; Shanmugam, J.; Thirumalairaj, V.; Gopalan, J. Antioxidant and anti-aging activities of
polysaccharides from Calocybe indica var. APK2. Exp. Toxicol. Pathol. 2016, 68, 329–334. [CrossRef] [PubMed]

72. Chen, G.T.; Fu, Y.X.; Yang, W.J.; Hu, Q.H.; Zhao, L.Y. Effects of polysaccharides from the base of Flammulina velutipes stipe on
growth of murine RAW264.7, B16F10 and L929 cells. Int. J. Biol. Macromol. 2018, 107, 2150–2156. [CrossRef] [PubMed]

73. Yang, W.; Yu, J.; Zhao, L.; Ma, N.; Fang, Y.; Pei, F.; Mariga, A.M.; Hu, Q. Polysaccharides from Flammulina velutipes improve
scopolamine-induced impairment of learning and memory of rats. J. Funct. Foods 2015, 18, 411–422. [CrossRef]

74. Xu, S.; Dou, Y.; Ye, B.; Wu, Q.; Wang, Y.; Hu, M.; Ma, F.; Rong, X.; Guo, J. Ganoderma lucidum polysaccharides improve insulin
sensitivity by regulating inflammatory cytokines and gut microbiota composition in mice. J. Funct. Foods 2017, 38, 545–552.
[CrossRef]

75. Jin, M.; Zhu, Y.; Shao, D.; Zhao, K.; Xu, C.; Li, Q.; Yang, H.; Huang, Q.; Shi, J. Effects of polysaccharide from mycelia of Ganoderma
lucidum on intestinal barrier functions of rats. Int. J. Biol. Macromol. 2017, 94, 1–9. [CrossRef]

76. Yang, G.; Yang, L.; Zhuang, Y.; Qian, X.; Shen, Y. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways
in HL-60 acute leukemia cells. J. Recept. Signal Transduct. Res. 2016, 36, 6–13. [CrossRef]

77. Huang, S.; Mao, J.; Ding, K.; Zhou, Y.; Zeng, X.; Yang, W.; Wang, P.; Zhao, C.; Yao, J.; Xia, P.; et al. Polysaccharides from Ganoderma
lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell Rep.
2017, 8, 84–94. [CrossRef]

78. Ya, G. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells.
Int. J. Biol. Macromol. 2017, 103, 676–682. [CrossRef]

79. Ren, Z.; Li, J.; Song, X.; Zhang, J.; Wang, W.; Wang, X.; Gao, Z.; Jing, H.; Li, S.; Jia, L. The regulation of inflammation and oxidative
status against lung injury of residue polysaccharides by Lentinula edodes. Int. J. Biol. Macromol. 2018, 106, 185–192. [CrossRef]

80. Wang, J.; Li, W.; Huang, X.; Liu, Y.; Li, Q.; Zheng, Z.; Wang, K. A polysaccharide from Lentinus edodes inhibits human colon cancer
cell proliferation and suppresses tumor growth in athymic nude mice. Oncotarget 2017, 8, 610–623. [CrossRef] [PubMed]

81. Jeff, I.B.; Fan, E.; Tian, M.; Song, C.; Yan, J.; Zhou, Y. In vivo anticancer and immunomodulating activities of mannogalactoglucan-
type polysaccharides from Lentinus edodes (Berkeley) Singer. Cent. Eur. J. Immunol. 2016, 41, 47–53. [CrossRef]

82. Xu, H.; Zou, S.; Xu, X.; Zhang, L. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism. Sci. Rep.
2016, 6, 288–302. [CrossRef]

83. Carneiro, A.A.; Ferreira, I.C.; Dueñas, M.; Barros, L.; da Silva, R.; Gomes, E.; Santos-Buelga, C. Chemical composition and
antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem. 2013, 138, 2168–2173.
[CrossRef]

84. Ren, D.; Wang, N.; Guo, J.; Yuan, L.; Yang, X. Chemical characterization of Pleurotus eryngii polysaccharide and its tumor-inhibitory
effects against human hepatoblastoma HepG-2 cells. Carbohydr. Polym. 2016, 138, 123–133. [CrossRef]

85. Ma, G.; Yang, W.; Mariga, A.M.; Fang, Y.; Ma, N.; Pei, F.; Hu, Q. Purification, characterization and antitumor activity of
polysaccharides from Pleurotus eryngii residue. Carbohydr. Polym. 2014, 114, 297–305. [CrossRef]

86. Xu, D.; Wang, H.; Zheng, W.; Gao, Y.; Wang, M.; Zhang, Y.; Gao, Q. Charaterization and immunomodulatory activities of
polysaccharide isolated from Pleurotus eryngii. Int. J. Biol. Macromol. 2016, 92, 30–36. [CrossRef]

87. Zhang, Y.; Yang, X.; Jin, G.; Yang, X.; Zhang, Y. Polysaccharides from Pleurotus ostreatus alleviate cognitive impairment in a rat
model of Alzheimer’s disease. Int. J. Biol. Macromol. 2016, 92, 935–941. [CrossRef] [PubMed]

88. Zhang, Y.; Wang, Z.; Jin, G.; Yang, X.; Zhou, H. Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on
fat-emulsion-induced hyperlipidemia rats. Int. J. Biol. Macromol. 2017, 101, 107–116. [CrossRef] [PubMed]

https://doi.org/10.1007/s00253-004-1787-z
https://www.ncbi.nlm.nih.gov/pubmed/15726350
https://doi.org/10.1021/jf300739m
https://www.ncbi.nlm.nih.gov/pubmed/22515547
https://doi.org/10.1016/j.ijbiomac.2015.10.014
https://doi.org/10.1016/j.ijbiomac.2017.08.135
https://doi.org/10.12691/jfnr-2-3-5
https://doi.org/10.1016/j.carbpol.2017.04.050
https://doi.org/10.1016/j.carbpol.2012.12.073
https://doi.org/10.1016/j.fct.2011.10.056
https://doi.org/10.1016/j.etp.2016.04.001
https://www.ncbi.nlm.nih.gov/pubmed/27174669
https://doi.org/10.1016/j.ijbiomac.2017.10.090
https://www.ncbi.nlm.nih.gov/pubmed/29042281
https://doi.org/10.1016/j.jff.2015.08.003
https://doi.org/10.1016/j.jff.2017.09.032
https://doi.org/10.1016/j.ijbiomac.2016.09.099
https://doi.org/10.3109/10799893.2014.970275
https://doi.org/10.1016/j.stemcr.2016.12.007
https://doi.org/10.1016/j.ijbiomac.2017.05.085
https://doi.org/10.1016/j.ijbiomac.2017.08.008
https://doi.org/10.18632/oncotarget.13481
https://www.ncbi.nlm.nih.gov/pubmed/27888812
https://doi.org/10.5114/ceji.2015.56962
https://doi.org/10.1038/srep28802
https://doi.org/10.1016/j.foodchem.2012.12.036
https://doi.org/10.1016/j.carbpol.2015.11.051
https://doi.org/10.1016/j.carbpol.2014.07.069
https://doi.org/10.1016/j.ijbiomac.2016.07.016
https://doi.org/10.1016/j.ijbiomac.2016.08.008
https://www.ncbi.nlm.nih.gov/pubmed/27498414
https://doi.org/10.1016/j.ijbiomac.2017.03.084
https://www.ncbi.nlm.nih.gov/pubmed/28322967


J. Fungi 2024, 10, 215 28 of 34

89. Cao, X.Y.; Liu, J.L.; Yang, W.; Hou, X.; Li, Q.J. Antitumor activity of polysaccharide extracted from Pleurotus ostreatus mycelia
against gastric cancer in vitro and in vivo. Mol. Med. Rep. 2015, 12, 2383–2389. [CrossRef] [PubMed]

90. Xu, X.; Yan, H.; Chen, J.; Zhang, X. Bioactive proteins from mushrooms. Biotechnol. Adv. 2011, 29, 667–674. [CrossRef]
91. Chang, H.H.; Sheu, F. Anti-tumor mechanisms of orally administered a fungal immunomodulatory protein from Flammulina

velutipes in mice. FASEB J. 2006, 20, 297–306. [CrossRef]
92. Lin, C.H.; Sheu, G.T.; Lin, Y.W.; Yeh, C.S.; Huang, Y.H.; Lai, Y.C.; Chang, J.G.; Ko, J.L. A new immunomodulatory protein from

Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process
Biochem. 2010, 45, 1537–1542. [CrossRef]

93. Peek, H.W.; Halkes, S.B.A.; Tomassen, M.M.M.; Mes, J.J.; Landman, W.J.M. In vivo screening of five phytochemicals/extracts and
a fungal immunomodulatory protein against colibacillosis in broilers. Avian Pathol. 2013, 42, 235–247. [CrossRef]

94. Lin, W.H.; Hung, C.H.; Hsu, C.-N.; Lin, J.Y. Dimerization of the N-terminal amphipathic helix domain of the fungal immunomod-
ulatory protein from Ganoderma tsugae defined by a yeast two-hybrid system and site-directed mutagenesis. J. Biol. Chem. 1997,
272, 20044–20048. [CrossRef] [PubMed]

95. Chang, H.H.; Yeh, C.H.; Sheu, F. A novel immunomodulatory protein from Poria cocos induces toll-like receptor 4-dependent
activation within mouse peritoneal macrophages. J. Agric. Food Chem. 2009, 57, 6129–6139. [CrossRef]

96. Ditamo, Y.; Rupil, L.L.; Sendra, V.G.; Nores, G.A.; Roth, G.A.; Irazoqui, F.J. In vivo immunomodulatory effect of the lectin from
edible mushroom Agaricus bisporus. Food Funct. 2016, 7, 262–279. [CrossRef]
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