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Abstract: Life-threatening systemic fungal infections occur in immunocompromised patients at
an alarming rate. Current antifungal therapies face challenges like drug resistance and patient
toxicity, emphasizing the need for new treatments. Membrane-bound enzymes account for a large
proportion of current and potential antifungal targets, especially ones that contribute to cell wall and
cell membrane biosynthesis. Moreover, structural biology has led to a better understanding of the
mechanisms by which these enzymes synthesize their products, as well as the mechanism of action for
some antifungals. This review summarizes the structures of several current and potential membrane-
bound antifungal targets involved in cell wall and cell membrane biosynthesis and their interactions
with known inhibitors or drugs. The proposed mechanisms of action for some molecules, gleaned
from detailed inhibitor–protein studeis, are also described, which aids in further rational drug design.
Furthermore, some potential membrane-bound antifungal targets with known inhibitors that lack
solved structures are discussed, as these might be good enzymes for future structure interrogation.

Keywords: cryo-EM; structure biology; membrane-bound enzymes; antifungal development;
drug resistance; rational drug design

1. Introduction

Over the past three decades, fungal infections in humans have surged due to a rise in
immunocompromised patients [1–3]. The most common culprits behind these infections
are Candida species, with Candida albicans being the most prevalent. C. albicans is known for
causing a wide range of infections, including those affecting the mucous membranes, skin,
and bloodstream [2,4,5]. Effective treatment requires antifungal therapy, with the main
classes being azoles, echinocandins, and polyenes. Each antifungal class targets specific
fungal cellular components, but they face challenges like growing drug resistance and
patient toxicity [6–10]. Hence, there is a pressing need for new antifungals.

In a quest to address this challenge, various strategies have been exploited to develop
new drugs. High-throughput screening (HTS) and rational drug design are two ways
to identify leads for drug development [11,12]. For HTS, target-based and whole-cell-
based screenings are two major approaches, and both require investigators to screen
thousands of compounds, which requires enormous physical resources, both chemically
and mechanically [13]. On the contrary, rational drug design develops drugs based on
information from the structure, function, and mechanism of action of the target protein
and can also aid in optimizing hits identified from HTS [11]. Rational drug design also
comes in two types: ligand-based and structure-based approaches. The former depends
on understanding the structure of existing ligands that can bind to a target, while the
latter focuses on designing inhibitors using the structural details of target proteins [14].
The rational drug design process typically involves multiple rounds of design, synthesis,
and evaluation to yield compounds potent and specific enough for preclinical trials [15].
The atomic structures, as well as predicted structures from various methods, of the target
proteins have been shown to be useful in drug design [16,17]. Dorzolamide, used for
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treating glaucoma [15], and saquinavir, an HIV protease inhibitor [18], are two market
drugs refined or conceived through the structure-based method.

In recent years, minimal progress has been made to identify new antifungals because
of the relatively high gene homology (~40%) and conservation of fundamental biochemical
pathways between fungi and humans. This similarity prohibits easy identification of drugs
that are selectively toxic to fungi [19]. To this end, it is important to identify fungal-specific
targets that are either absent in mammals, or can be inhibited specifically enough not to
cause side effects in mammals, and can thus provide selective inhibition of fungi. The
most effective of these molecules in current use all target the cell envelope (cell wall–
cell membrane complex). These include the antifungal classes of echinocandins, azoles,
allylamines, and polyenes, which act on fungal cell walls, cell membrane biosynthesis, and
membrane integrity, respectively. There are other inhibitors known to target non-envelope
proteins as well, but they are less commonly used in treating invasive infections in humans.
They target nucleic acid biosynthesis, the respiratory chain, and microtubule function. For
example, pyrimidine analogs, such as flucytosine, inhibit fungal thymidylate synthase,
affecting DNA and RNA synthesis [20]. However, the major drawbacks of flucytosine
include widespread occurrence of resistance in many fungal species and bone marrow
toxicity in patients [21–24]. Benzimidazoles, such as thiabendazole, disrupt microtubule
function, leading to an inhibition of fungal cell division and, ultimately, cell death [25].
Thiabendazole has been used to treat a variety of plant fungal infections, and to a lesser
extent, to treat fungal infection in animals and humans because of its narrow spectrum
of activity and the potential for liver toxicity [26,27]. Similarly, succinate dehydrogenase
inhibitors (SDHIs) and quinone outside inhibitors, targeting succinate dehydrogenase
and cytochrome bc1 complex (complex III), respectively, disrupt energy production in
fungi and have been used in agriculture to combat molds and fungi [28,29]. In addition,
novel agents like olorofim (targeting dihydroorotate dehydrogenase) and fosmanogepix
(targeting inositol acyltransferase) possess broad spectrum activity and remarkable novelty
that are expected to be significant in the future [30–34].

Among all current and potential antifungal drug targets, membrane-bound enzymes
involved in cell wall and cell membrane biosynthesis have been the most valuable targets
based on success and use for invasive infections. Thus, these organelles likely still represent
the best targets for the development of novel antifungal agents due to their essential nature
in fungal survival, proliferation, pathogenicity, and resistance to antifungal drugs. In
addition, some of these enzymes are absent in humans. Here, we provide an overview of
the structural biology of several membrane-bound enzymes considered current or potential
antifungal targets, as well as known inhibitors, and their potential use in rational drug
design. These targets all affect the cell envelope of fungi, which comprises the cell wall and
cell membrane.

2. Cell Wall Biosynthesis Enzymes

The fungal cell wall is an ideal target for antifungal drugs as it is an organelle that is
not conserved in mammals. The cell wall shields fungi from environmental threats and
prevents harmful macromolecules from entering the cell [35]. The fungal cell wall accounts
for around 40% of the entire cell volume and is made of polysaccharides (mainly glucan and
chitin) and glycoproteins [36]. Structurally, chitin and β-1,3-glucan are essential constituents
of most fungal cell walls, and they create a gel-like matrix that in some fungi can include
α-1,3-glucans, β-1,6-glucans, and glycoproteins. The synthesis of chitin and glucan is
mediated by membrane-bound chitin synthases and glucan synthases, respectively, which
are effective targets for antifungal drugs. Table 1 lists the antifungal drugs or inhibitors on
the market or in the developmental stage that target membrane-bound enzymes involved
in cell wall biosynthesis.
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Table 1. Antifungal drugs or inhibitors targeting membrane-bound enzymes in cell wall biosynthesis.

Drug Class/Agent Structure of an Exemplar Compound Target Enzyme Mechanism of
Action Discovery Stage Is the Drug–Target

Interaction Known? Reference
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2.1. Chitin Synthases

Chitin accounts for 1–2% of the dry weight of the yeast cell wall and could reach up to
10–20% in filamentous fungi [62]. In C. albicans, chitin content in the hyphae wall is three
times higher than that of the yeast form [63]. Chitin is a long-chain polymer consisting
of β-(1,4)-linked N-acetylglucosamine (GlcNAc), and because of its absence in plants
and vertebrates, the biosynthesis of chitin is considered a promising target for antifungal
drugs [64]. The chitin layer is formed by large families of plasma membrane-bound chitin
synthases, which catalyze the formation of β(1–4) bonds using UDP-GlcNAc as the sugar
source [65,66]. There are a total of seven classes of chitin synthases, and class IV enzymes
often generate the majority of the cell wall chitin in fungi and are generally associated with
virulence [66–68]. S. cerevisiae has three chitin synthase genes (CHS1, CHS2, and CHS3) and
C. albicans has four (CHS1, CHS2, CHS3, and CHS8), while Aspergillus nidulans, Aspergillus
fumigatus, and Cryptococcus neoformans are known to have eight [66].

Polyoxin B (PolyB) is a type of peptidyl nucleoside that acts against chitin synthases
as a competitive inhibitor [37]. It has been employed for many years in the fields of agri-
culture and forestry to combat fungal plant pathogens and harmful arthropods (which
have chitinous exoskeletons) [37,38]. Similarly, nikkomycin Z (NikZ) is another peptidyl
nucleoside that inhibits chitin synthase, and it has demonstrated substantial positive effects
in treating fungal infections in mammals [40,41]. In 2000, a range of new inhibitors for
CaChs1 was discovered through an extensive screening process, which led to the discovery
of the compound RO-09-3024, a very effective chitin synthase inhibitor with an IC50 value of
0.14 nM in vitro and an EC50 of 70 µg/mL against C. albicans (CY1002) [69]. However, many
fungal pathogens contain CHS genes that are less sensitive to these inhibitors, stressing the
need to optimize these molecules via further drug design, which requires chitin synthase
structures [39,70]. However, as a multi-transmembrane enzyme, chitin synthases have
proven challenging for protein expression, solubilization, and crystallization, hindering
structural analysis [71]. For this reason, a bacterial glycosyltransferase from Sinorhizobium
meliloti, SmNodC, is shown to be an appropriate model to study the general structure
and reaction mechanism of chitin synthases due to the fact that (i) SmNodC has a cat-
alytic core that is conserved with chitin synthases [72,73] and (ii) SmNodC is inhibited by
nikkomycin Z [71]. The homology models of SmNodC and ScChs2 were made based on
the structure of bacterial cellulose synthase from Rhodobacter sphaeroidesi [74], and have
generally similar structural architectures. One difference between them is that SmNodC is
missing the chitin transport channel present in ScChs2 [71]. A detailed display of the active
site and product-binding site of SmNodC is shown in [71].

The first atomic structure of chitin synthase was solved from the soybean root rot
pathogenic oomycete Phytophthora sojae in 2022 via cryo-EM [42]. The structure of this chitin
synthase was solved in apo-, GlcNAc-bound, UDP-bound (post-synthesis), nascent chitin
oligomer-bound, and most importantly, nikkomycin Z-bound forms (Figure 1). PsChs
shares great sequence and architectural similarity with ScChs, but with an elevated Ki
value for nikkomycin Z [42]. This could represent the binding mode of nikkomycin Z
to fungal chitin synthase. As a substrate analog, nikkomycin Z binds to the uridine-
binding tub via its uridine segment in the same way as the substrate UDP-GlcNAc does
(Figure 1B). The hydroxypyridine moiety of nikkomycin Z occupies a significant portion
of the reaction chamber and translocating channel. This restricts the donor substrate from
accessing the reaction area required for chitin synthesis. The hydroxypyridine ring also
forms hydrophobic interactions with Leu412, Tyr433, Val452, Pro454, and Trp539 from the
conserved motifs in PsChs. The mutation of these residues impairs activity but, in the
meantime, reduces inhibition from nikkomycin Z [42].

Predicted structures from models are powerful, but actual solved structures are more
informative. A structure of C. albicans chitin synthase 2 (class I) was recently solved [39].
Structures were solved for the apo-, substrate-bound, nikkomycin Z-bound, and polyoxin
D-bound forms of CaChs2. Similarly, nikkomycin Z and polyoxin D occupy the substrate
binding site of CaChs2, and an overlay of bound UDP-GlcNAc and polyoxin D with
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nikkomycin Z is shown in Figure 2. For nikkomycin Z, the aminohexuronic acid moiety
(red arrow) occupies an overall similar position as UDP-GlcNAc (Figure 2A). However,
nikkomycin Z gains interactions with residues Y571 and W647 on the pyridinyl ring, which
are absent from UDP-GlcNAc. However, nikkomycin Z lacks or has severely decreased
interaction with residue D465, as this residue rotates away when bound to nikkomycin Z.
In contrast, polyoxin D adapts a slightly different binding mode compared to nikkomycin Z.
The critical residue involved in polyoxin D binding is Q643, forming two hydrogen bonds
with hydroxyl groups on polyoxin (Figure 2A). Residue K440 also rotates to interact
with polyoxin D, which is not seen in either nikkomycin- or UDP-GlcNAc-bound forms.
This interaction between K440 and the 5-carboxyl of the uracil base is suggested to be the
additional inhibition mechanism that polyoxin has on CaChs2 activity [39]. It was suggested
that the stronger inhibitory effect of nikkomycin Z on CaChs2 compared to polyoxin D
probably results from the enhanced interaction via the pyridinyl ring. The presence of
the 5-carboxyl in polyoxin D and its interaction with K440 somewhat compensates for the
absence of interactions associated with the pyridinyl ring [39].
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Figure 2. Binding models of UDP-GlcNAc, nikkomycin Z, and polyoxin D to C. albicans Chs2.
(A) Overlay of substrate binding sites: one with UDP-GlcNAc (in brown) and the other with
nikkomycin Z-bound (in green) in CaChs2. The aminohexuronic acid moiety is noted by a red
arrow. (B) Overlay of the substrate binding sites of CaChs2: one bound with nikkomycin Z (in
green) and the other with polyoxin D (in magenta). Hydrogen bonds and π-π stacking interactions
between the substrate or ligand and CaChs2 are marked with dashed lines in their respective colors.
Figures originally generated in [39] and adapted for this review with permission (License Number:
5697420844040).
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The third and most current structure of a fungal chitin synthase is S. cerevisiae Chs1,
(class I) [75]. Again, the structures of substrate-, polyoxin D- and nikkomycin Z-bound
ScChs1 were determined using cryo-EM, and the mechanism of chitin synthesis initiation,
extension, and transport was described in [75]. One unique finding on the mode of
polyoxin D and nikkomycin Z binding is that besides the competition from the nucleoside
moiety on the UDP, the peptidyl moiety of polyoxin D and nikkomycin Z opens the
switch loop and thus keeps the gate of chitin transport channel blocked [75]. This unique
mechanism of inhibition can potentially be used in future rational drug design.

2.2. β-1,3-Glucan Synthase

β-glucan is the predominant polysaccharide in fungal cells, constituting ~50–60% of their
dry weight [62]. Moreover, 65–90% of these glucan polymers have a ß-1,3 linkage, but there
exist other linkage types, like β-1,6 (in Candida spp.), β-1,4, α-1,3, and α-1,4. Among these
different linked glucans, the most structurally significant component is β-1,3-D-glucan, which
serves as the anchor for other covalent attachments within the wall [62,76]. β-1,3-D-glucan is
synthesized by glucan synthases, a group of membrane-bound enzymes located in the plasma
membrane. Glucan synthases have a conserved catalytic domain (Fks) and are regulated by Rho1
GTPase subunits [77,78]. The genes FKS1 and FKS2, responsible for producing β-1,3-D-glucan
synthases, were first discovered in Saccharomyces cerevisiae [78,79], and later the orthologs were
identified in other fungal species. Disruption of one FKS gene leads to cell growth perturbation
and disruption of both causes cell death in S. cerevisiae [35,79,80], indicating that they were a
promising drug target.

Echinocandins, derivatives of secondary metabolites from Aspergillus nidulans and
Aspergillus rugulosus, act as non-competitive inhibitors of β−(1-3)-glucan synthase [45].
The primary cellular mode of action of echinocandins is associated with disruption of the
fungal cell wall, which is then vulnerable to osmotic imbalances, leading to the death of
the fungal cell and a reduction in damage to the host tissue [46,47]. The mode of action of
echinocandins in the host may also be associated with the host immune response, specif-
ically increased detection of ß-(1,3)-glucan by the pathogen receptor dectin-1 [81]. The
FDA-approved echinocandin-class drugs are caspofungin, micafungin, anidulafungin, and
rezafungin (Figure 3), with rezafungin being approved by the US Food and Drug Agency
recently in 2023 [9,82,83]. Structurally, they are all lipopeptides with similar cores, and
one noticeable difference among them is the side chain. The long fatty acid chain was
hypothesized to disrupt the membrane and thus inhibit glucan synthase activity [9,82],
and the resistance mutations of echinocandins often occur at the highly conserved hot
spot 1 (HS1, residue 641–649, TM5), hot spot 2 (HS2, residue 1345–1365, TM8), and hot
spot 3 (HS3, 690–700, TM6) [84–86]. In 2023, the structures of S. cerevisiae FKS1 and the
echinocandin-resistant mutant, S643P FKS1, were determined using cryo-EM [48], provid-
ing structural insights into the mechanism of echinocandin resistance. In ScFKS1, the active
site is located in the interface between the cytoplasm and plasma membrane, with a puta-
tive path for glucan translocation spanning across the membrane layers [48]. HS 1, 2, and 3
are shown in Figure 4A and are spatially located very close to each other. In wildtype
ScFKS1, the residues F639 and S643 from the HS1 region play roles in lipid binding, as
the side chain of F639 has direct interactions with three lipid molecules, while the side
chain of S643 seems to stabilize the lipid-binding residue Y638 (Figure 4B). However, in the
echinocandin-resistant S643P mutant, the side chains of both F639 and Y638 rotate signifi-
cantly, leading to the re-orientation of bound lipids (Figure 4C). Therefore, the echinocandin
resistance mechanism was hypothesized to be that the re-oriented amino acid side chains
and corresponding lipid movement lead to a change in [i] the binding site of echinocandins
or [ii] ScFKS1’s response to membrane perturbation caused by echinocandin [48]. Later,
Zhao et al. also reported the structure of ScFKS1, and proposed an echinocandin resistance
mechanism [49]. In this report, the interface formed by TM5, TM6, and TM8 undergoes
conformational changes during glucan transport with TM8 shifting outward. However,
it was suggested that instead of re-orientating lipid molecules, the echinocandin-resistant
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mutants S643P and S643Y might escape inhibition either by improving catalytic efficiency
or disrupting drug binding [49]. This minor discrepancy can potentially be explained by
different sample preparation procedures (e.g., different detergents used), but the structures
from these two studies are very similar overall. Evidence of more direct drug/protein
interactions will help determine the mechanism of echinocandin inhibition and resistance,
aiding in designing more potent echinocandin-class drugs.
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Figure 4. Structural interpretation of echinocandin-resistant mutations in ScFKS1 structure.
(A) The ScFKS1 structure with three distinct hotspot regions (colored in red) labeled as HS1–3. These
regions are associated with mutations that confer resistance to echinocandins. (B) A detailed view of
echinocandin-resistant mutations is provided, as referenced in (A). The mutations’ alpha carbon (Cα)
atoms are illustrated as red spheres. (C) Conformational changes and lipid re-arrangements, marked
by red arrows, in wildtype ScFKS1 (grey) and drug-resistant mutation S643P ScFKS1 (blue). Potential
polar interaction is indicated by the black dashed line. Figures were originally generated in [48], and
are reused in this review with permission (License Number: 5697430533684).

3. Cell Membrane Biosynthesis Enzymes

Drugs that impact cell membrane integrity have seen significant success as well [87]. For
example, drugs targeting ergosterol synthesis, such as imidazoles and triazoles, are especially
effective. While many new antifungal triazole compounds have been introduced recently, they
still have a long journey before being recognized as successful antifungals [88]. Beyond sterols,
the membrane also contains essential components like phospholipids and sphingolipids, which
are crucial for cellular operations and signaling pathways. Here, we will summarize current and
potential membrane-bound enzyme antifungal targets involved in ergosterol, sphingolipid, and
phospholipid biosynthesis, with their available structures and inhibitors. Table 2 lists antifungal
drugs or inhibitors on the market or in developmental stages that target membrane-bound
enzymes involved in cell membrane biosynthesis.
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3.1. Ergosterol Biosynthesis Enzymes
3.1.1. Lanosterol 14α-Demethylase (Erg11)

Ergosterol is a major component of fungal cell membranes and plays a role similar to
cholesterol in human cell membranes [89–91]. Its biosynthesis pathway in fungi is a prime target
for antifungal drug development, and a detailed ergosterol biosynthesis pathway including
all involved enzymes and the sites of inhibition are summarized in [89]. These enzymes,
residing in the endoplasmic reticulum and other organelles, are crucial for the synthesis of
ergosterol, the main sterol in fungal cell membranes. For example, lanosterol 14α-demethylase
(known as Erg11 or CYP51) is a single-pass membrane-bound cytochrome P450 enzyme and
is a well-studied drug target of azoles [92,93]. Erg11 is responsible for the demethylation of
lanosterol, a step vital for the subsequent conversion of lanosterol to ergosterol, inhibition of
which leads to the accumulation of toxic intermediates, thus compromising cell membrane
integrity [93]. The structures and their interactions with different azoles were identified using
X-ray crystallography for Saccharomyces cerevisiae, Aspergillus fumigatus, Candida albicans, and
Candida glabrata Erg11 [92,94–96]. Like other members within the P450 enzyme family, Erg11
has a thiolate–heme iron center, the active site where oxidation reactions occur (Figure 5B).
Also, it contains hydrophobic pockets and channels that accommodate the lipid substrate
and facilitate its access to the catalytic center [92,94–96]. The interaction between itraconazole
and C. albicans Erg11 shows that on a molecular scale, one of the nitrogen atoms in the azole
ring binds as the sixth coordinating ligand to the heme iron, preventing oxygen activation
(Figure 5B) [97]. The interaction of the azole ring with the heme is crucial in determining the
binding of azole drugs to Erg11 targets in other structures as well [94–96]. With the detailed
structural information of Erg11 available, structure-directed drug discovery can be performed,
which involves virtually screening compound libraries for molecules that might bind more
effectively to Erg11, even in resistant enzymes, or designing new molecules based on insights
from the enzyme’s structure [97].
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5697681298825). The left-hand image shows a cartoon representation of the overall fold of S. cerevisiae
Erg11 and its predicted position in the lipid membrane(PDBID:5EQB). The right-hand image shows
the binding of itraconazole within the S. cerevisiae Erg11. Itraconazole is shown in purple and
heme moiety is shown in pink. (ITC: itraconazole; FSL: fungus-specific loop; SEC: substrate entry
channel; PPEC: putative product exit channel; LBP: ligand-binding pocket; MH1: amphipathic helix;
TMH1: transmembrane helix).
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Table 2. Antifungal drugs or inhibitors targeting membrane-bound enzymes in cell membrane biosynthesis.

Drug
Class/Agent Structure of an Exemplar Compound Target Enzyme Mechanism of

Action Discovery Stage
Is the Atomic

Structure Solved
for the Target?

Is the Drug–Target
Interaction Known? Reference

Azoles (e.g.,
fluconazole,

itraconazole)
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3.1.2. Squalene Synthase (Erg9)

Besides Erg11, other membrane-bound enzymes are also involved in ergosterol biosyn-
thesis. For example, squalene synthase (Erg9), an enzyme that catalyzes the conversion
of two molecules of farnesyl pyrophosphate to squalene, is also a potential drug target
due to the functional difference between animal and fungal counterparts [122–124]. The
structures of Erg9 homologs from a trypanosomatid parasite, Trypanosoma cruzi, and hu-
mans were first determined via X-ray crystallography; this could aid in the development of
anti-Chagas disease and cholesterol-lowering drugs [125–127]. Zaragozic acids are potent
competitive inhibitors of rat liver squalene synthases and can potentially treat hypercholes-
terolemia [128]. Malwal et al. reported the first fungal Erg9 structure from Aspergillus flavus
in both apo- and substrate-bound forms and compared it to previous structures [122]. The
transmembrane domains of A. flavus Erg9 have similar architectures compared to their
human counterparts, but the B-helix is significantly shorter in human Erg9 [122]. This
difference might lead to different ligand/inhibitor binding between human and pathogen
proteins and could be used in antifungal design.

3.1.3. Squalene Epoxidase (Erg1)

Following the formation of squalene, squalene epoxidase (also known as Erg1) adds
an epoxide group to squalene to form 2,3-oxidosqualene [89,122]. Erg1 is also a membrane-
bound enzyme located in the ER membrane and its reaction is the rate-limiting step of
ergosterol biosynthesis in fungi and cholesterol biosynthesis in mammals. It is predicted to
form a complex with Erg9 in the microsomal fraction [129,130]. Terbinafine, an allylamine
drug (Figure 6A, Table 2), inhibits Erg1 and leads to ergosterol depletion and accumulation
of squalene, which is fungicidal for filamentous fungi but fungistatic for most Candida
species [98–100]. The human Erg1 structure was solved with an N-terminally truncated
enzyme (118–574) in the presence of a known inhibitor NB-598 [101]. The terbinafine
molecule was superposed with NB-598 to show the potential mode of inhibition of the
molecule (Figure 6B). The conserved residues of human Erg1, L326, L473, F477, F492, F495,
L508, P505, and H522 are predicted to form non-polar interactions with the inhibitor, and the
mutations of these equivalent residues lead to terbinafine resistance in fungi [101,131–133].
Furthermore, a homology model of S. cerevisiae Erg1 was made and compared to its human
counterpart [129]. S. cerevisiae Erg1 possesses an extended loop between β-strands 6 and 7
(residues 109–139, based on S. cerevisiae, pointed by the arrow), while the human homolog
has a much shorter loop (residues 210–220) (Figure 6C). This compact loop in the human
version might aid in crystal formation and the extended loop in S. cerevisiae Erg1 might
obstruct this process [129]. Currently, the function of the extended loop in S. cerevisiae
Erg1 is unknown, but may be targeted to develop molecules that destabilize the protein or
disrupt potential protein–protein interactions.

3.1.4. C-24 Sterol Methyltransferase (Erg6)

C-24 sterol methyltransferase (known as Erg6) is also a membrane enzyme involved in
ergosterol biosynthesis which was suggested to be an antifungal target due to its absence in
mammals [89,134]. Erg6 catalyzes the methylation of the 24th carbon in the sterol side chain
in the later stages of ergosterol biosynthesis, the disruption of which leads to reduced mat-
ing capability, diminished tryptophan uptake, increased permeability, and susceptibility to
cations and antifungals in S. cerevisiae [135–137]. In C. albicans, the disruption of Erg6 leads
to increased sensitivity to cycloheximide, terbinafine, fenpropimorph, and tridemorph, but
not to azoles, while showing resistance to amphotericin B [138]. Interestingly, deletion of
Erg6 leads to reduced virulence but not cell growth [139].
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Several sterol analogs were determined to suppress Erg6 activity due to their structural
resemblance to the substrate or product of Erg6 [140]. Other inhibitors of Erg6, such as
tomatidine and arylguanidines (Table 2), effectively hinder the growth of C. albicans, but
might inhibit additional cellular targets since disruption of Erg6 does not lead to growth
defects [102,103,139,141]. Recently, an antipyrine derivative, H55 (Table 2), identified from
screening, showed low cytotoxicity and effectively inhibited C. albicans hyphal formation
under various conditions, and also exhibited therapeutic efficacy in mouse models of azole-
resistant candidiasis [104]. Various assays support the hypothesis that H55 is an allosteric
inhibitor for Erg6, and a molecular dynamics simulation predicts that H55 competes with
S-adenosylmethionine for binding to Erg6 [104]. More structural information is needed to
validate or provide more insight into the interaction between Erg6 and H55.

There are currently no structures experimentally solved for Erg6 to our knowledge, but
Azam et al. modeled a C-24 sterol methyltransferase from Leishmania infantum and identified
relevant residues that interact with itraconazole and amphotericin B [134]. Since the
substrate-binding sites and active sites are conserved between L. infantum and S. cerevisiae
C-24 sterol methyltransferase, ligand/protein interaction information from the L. infantum
Erg6 homolog can potentially be applied in antifungal design [134].

3.1.5. Sterol C-14 Reductase (Erg24) and Sterol C-8,7 Isomerase (Erg2)

Morpholines (Table 2) are known to inhibit sterol C-14 reductase (known as Erg24)
and sterol C-8,7 isomerase (Erg2), which are two membrane-bound enzymes involved in
ergosterol biosynthesis [89,142,143]. Morpholines such as fenpropimorph, fenpropidin, and
amorolfine, as well as a silicon containing analog named Sila-analogue 24, exhibit potent
antifungal effects against different human fungal pathogens [105]. An erg24∆∆ mutant has
reduced virulence in a mouse model of disseminated candidiasis [144]. Erg24 catalyzes the
reduction of the C14=15 double bond of sterol intermediates, so sterol intermediates that
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are not processed by Erg24 cannot be recognized by downstream enzymes, thus perturbing
the membrane [89]. Erg2 facilitates the formation of a double bond from the 8 to the
7 position in the sterol intermediate fecosterol, and this enzyme has a polyvalent high-
affinity drug binding site similar to that in mammalian sigma receptors [145]. Currently,
neither the structures of Erg24 and Erg2 nor their interactions with morpholines have been
characterized. The human Erg2 homolog has a solved structure, and its interaction with
the anti-breast cancer drug tamoxifen and the cholesterol biosynthesis inhibitor U18666A
have been studied [146].

Another sterol C-14 reductase is Erg23, and one bacterial homolog, Methylomicrobium
alcaliphilum sterol C-14 reductase, show an interesting arrangement of ten transmembrane
domains, with the catalytic domain localized in the carboxy-terminal half (TM6–10). This
domain surrounds two linked pockets, with one facing the cytoplasm, which accommodates
NADPH, and the second pocket accessible from the lipid bilayer [147]. However, neither
the structure of human sterol C-14 reductase nor Methylomicrobium alcaliphilum sterol C-14
reductase have direct use in the antifungal design, and efforts are needed in structure
determination of their fungal counterparts.

3.2. Sphingolipid Biosynthesis Enzymes

Sphingolipid production is crucial for the growth and survival of various human fungal
pathogens, such as Histoplasma capsulatum and C. albicans [148,149]. Therefore, using a drug
to obstruct this process could effectively halt their growth and trigger cell death. The sphin-
golipid biosynthesis pathway in S. cerevisiae is depicted in Figure 7 from the first step to the
formation of the major sphingolipid mannose-(inositol-P)2-ceramide (M(IP)2C) [117,150,151].
Three membrane-bound enzymes involved in sphingolipid synthesis have been suggested as
potential antifungal targets—serine palmitoyltransferase (SPT), ceramide synthase, and inositol
phosphorylceramide (IPC) synthase. These all have their respective inhibitors.
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3.2.1. Serine Palmitoyltransferase (SPT)

SPT catalyzes the condensation of serine and palmitoyl-CoA, which is the first and
rate-limiting enzyme in the biosynthesis of sphingolipids [152,153]. SPT uses pyridoxal
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phosphate (PLP) as a cofactor for catalysis, and belongs to the allene oxide synthase (AOS)
family [154]. The active yeast SPT enzyme is a heterodimer made from subunits encoded by
lcb1 or lcb2 [155,156], and a third subunit, Tsc3p, is required for high-level SPT activity [157].
The protein structure of the SPT complex was first solved in bacteria [158–160], but since
the bacterial SPT homologs are soluble homodimers, they provided limited insights into
the catalytic mechanism of eukaryotic SPT. In 2021, structures of the human SPT–ORMDL3
complex (ORMDL proteins function as regulatory subunits) in different catalytic states were
solved [161,162], and later, the ceramide-sensing mechanism of the SPT-ORMDL3 complex
was studied from a ceramide-bound structure [163]. Due to the high sequence similarity
between fungal and mammalian SPT subunits [164], the human SPT-ORMDL3 complex
can be used to study the mechanism of SPT inhibitors such as sphingofungins [106,107]
and lipoxamycin [108,109] (Table 2).

3.2.2. Ceramide Synthase

Ceramide synthase, another membrane-bound enzyme involved in sphingolipid
biosynthesis, adds a fatty acyl chain from fatty acyl–coenzyme A (CoA) to the sphingoid
base sphinganine to form ceramide [117]. Mammals possess six ceramide synthase isoforms
that differ in their tissue distribution and substrate specificity, and each isoform is known
to produce ceramides with different acyl chain lengths [165,166]. Currently, there is no
structure available for any fungal ceramide synthase homologs to our knowledge, but
some studies have provided structure-function characterization of ceramide synthases.
Ceramide synthase belongs to the longevity assurance gene 1 (Lag1) protein family, which
has a stretch of 52 amino acids that form a highly conserved Lag1p motif [167]. Two
conserved histidine residues within this Lag1p motif are crucial for the catalysis and binding
of the substrates, the alteration of which negatively impacts the enzymatic function of
mammalian and yeast ceramide synthases [167–169]. Fumonisins are a group of mycotoxins
that have a striking structural resemblance to sphingolipids and are carcinogenic [111]
(Table 2). Notably, fumonisin B1 (FB1), among many fumonisins, effectively inhibits
ceramide synthase, conferring toxicity and carcinogenic properties. Although neither the
protein structure of ceramide synthase nor the FB1/protein binding is solved, an inhibition
model for FB1 was proposed [110]. Briefly, concentrations of both substrates affected the
potency of FB1, suggesting that FB1 is a competitive inhibitor that binds to the active
site of ceramide synthase [112]. It was later found that the tricarballylic acid sidechains
play essential roles in the inhibition of FB1, as eliminating tricarballylic acid sidechains
reduces the strength of ceramide synthase inhibition in vitro by 10-fold [110,170]. Moreover,
this model was further supported by the observation that the FB1 derivative without
tricarballylic acid sidechains can be used as a substrate by ceramide synthase, indicating
those side chains are required for inhibition [171]. Further structure investigation is needed
to validate this model and will also help optimize FB1 to act specifically against fungi.

3.2.3. Inositol Phosphorylceramide (IPC) Synthase

Unlike serine palmitoyltransferase and ceramide synthase, which have homologs in
mammalian cells, inositol phosphorylceramide (IPC) synthase catalyzes a reaction unique to
plants and some microbial eukaryotes, such as fungi and kinetoplastids. This reaction is the
transfer of phosphoinositol from phosphatidylinositol to phytoceramide [117]. Following
its discovery in S. cerevisiae, IPC synthases have been characterized in plants [172–174]
and various protozoans causing neglected tropical diseases, such as Chagas disease and
leishmaniasis [175–179]. An alignment of trypanosomatid IPC synthases showed conserved
arginine, histidine, and aspartate residues in the active site, and their contributions to a
predicted catalytic transfer of the phosphoryl group were demonstrated in Leishmania major
IPC synthase [179].

Four inhibitors that act specifically against IPC synthases have been identified (Table 2).
Rustmicin, a 14-membered macrolide, is especially potent against C. neoformans, where
it inhibits the growth of C. neoformans and its sphingolipid synthesis at concentrations
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<1 ng/mL, with an IC50 of 70 pM against solubilized C. neoformans IPC synthase [113,114].
The compound khafrefungin, isolated from a Costa Rican plant, displayed antifungal effects
again C. albicans and C. neoformans and was determined to inhibit C. albicans IPC synthase
with an IC50 of 0.6 nM, but with no effects on mammalian sphingolipids [115]. Another
compound, aureobasidin A, a natural compound from the fungus Aureobasidium pullulans,
has very low (sub-µg/mL) MIC values for S. cerevisiae, C. albicans, and C. neoformans with
IC50 values for IPC synthase activities ranging from 0.2 to 4.9 nM [116,117]. Haplofungin, a
phytoceramide mimic isolated from the fungus Lauriomyces bellulus, also showed potent
inhibitory activities against fungal IPC synthases [118,119]. However, despite the fact that
several potent IPC synthase inhibitors have been identified, the atomic structure of this
protein is unsolved. The Arabidopsis thaliana IPC synthase monomer is predicted to have
six transmembrane domains with a flexible N-terminal region (AlphaFoldDB: Q9SH93),
and further structure–activity relationship studies will be helpful for optimizing current
inhibitors or designing new antifungal drugs.

3.3. Phospholipid Biosynthesis Enzymes

Phospholipids, accounting for 40–60% of lipids in eukaryotic cells, are the predominant
lipids present in most organisms’ membranes [180]. The four major phospholipids in eu-
karyotes are phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), and phosphatidylinositol (PI) [181]. PC and PE constitute the majority of phospho-
lipids in yeasts and are required for functional membrane construction in eukaryotic organ-
isms. They are involved in membrane integrity and mitochondrial functions [182,183]; PI
species are involved in various cellular signal transduction pathways [184]. PS is enriched
in the plasma membrane [181] and is involved in a variety of other signaling cascades such
as the activation of protein kinase C [185–187]. PS is required for virulence in C. albicans
and viability in C. neformans [183,188,189], but also plays important roles in apoptosis and
blood clotting in mammals [190–192]

Phospholipid biosynthesis in cells is intricate, with distinct variations between fungal
and mammalian cells. The phospholipid biosynthesis pathways of C. albicans (A) and
mammals/parasites (B) are shown in Figure 8, adapted from [193]. The biosynthesis of
phospholipids in C. albicans differs from mammalian cells in several steps. First, mammalian
cells encode one PSD gene for PS decarboxylase [194], which converts PS to PE, while yeast
has two distinct proteins with little similarity, PSD1 and PSD2. Each of these genes has PS
decarboxylase activity [195,196]. Also, the production of PS uses a different mechanism
in mammalian versus fungal cells. In mammalian cells, PS is produced through a base-
exchange reaction catalyzed by the mammalian phosphatidylserine synthase-1 (PSS1) and
phosphatidylserine synthase-2 (PSS2), in which the headgroups of existing PC and PE,
respectively, are cleaved off and replaced with serine to produce PS [197]. On the contrary,
fungal cells condense cytidine diphosphate diacylglycerol (CDP-DAG) and serine into
PS via phosphatidylserine synthase (PS synthase), using a different catalytic mechanism
compared to the mammalian PSS1/PSS2 enzymes [181,197]. Here, we will discuss the
current inhibitors and structure studies of PS decarboxylase and PS synthase.

3.3.1. PS Decarboxylases (PSD)

In both yeast and mammals, PE is synthesized through the de novo pathway by
decarboxylating PS or through the Kennedy pathway by using exogenous ethanolamine
(Figure 8). The Kennedy pathway contributes to the majority of PE in some mammalian
cells [198–200], but in yeast, the majority of PE is generated by the decarboxylation of
PS [194,196,201]. Also, research has shown that while the elimination of the Kennedy path-
way does not impact yeast cell survival, disruption of the PSD1 gene leads to ethanolamine
auxotrophy and mitochondrial instability [196]. PSDs are evolutionarily conserved across
a wide range of organisms, and most are membrane-associated enzymes relying on a
covalently attached pyruvoyl moiety for their activities [202]. Membrane-bound PSDs
are synthesized as a single polypeptide proenzyme, which undergoes self-cleavage at a
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highly conserved LGST motif [203,204]. The α and β chains from the cleavage assemble
into a mature PSD homodimer, with each protomer having one α and one β chain. The α

chains function as the catalytic domains and β chains facilitate membrane association [202].
Recently, the structures of apo and PE-bound E. coli PSDs were solved, and structural
insight into detailed mechanisms of membrane-binding, PS recognition, self-cleavage, and
catalysis were provided [205,206].
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decarboxylase; Cpt1: choline phosphotransferase.

Several PSD inhibitors have been proposed and are shown in Table 3. In the 1970s,
hydroxylamine was found to inhibit the enzymatic activity of PSD and PE synthesis,
and induce the accumulation of PS [207,208]. The effects of hydroxylamine are similar
when incubated with S. cerevisiae and C. albicans, leading to an accumulation of PS and
decreases in PE and PC, but PC and PE levels are much lower in C. albicans compared
with S. cerevisiae [209]. Similarly, serine hydroxamate, a serine analog, was also found
to inhibit the conversion of PS to PE in E. coli with an accumulation in PS, indicating
that it targets PS decarboxylase [210]. However, neither the specificity nor inhibition
mechanism have been described for hydroxylamine and serine hydroxamate. In 2007, a
screen of a collection of 9920 molecules was performed against human inner mitochondrial
membranes containing the PSD enzyme, where direct measurements of PS and PE were
generated. This screen identified 54 molecules that exhibited inhibition in a dose-dependent
manner [211]. More recently, one molecule was identified from a cell-based screening and it
is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamin (MMV007285), which has potent inhibition
of Plasmodium falciparum PSD, with low toxicity toward mammalian cells [212]. An analog
of this compound, 7CPQA, also exhibited inhibition of Pf PSD activity [212]. Later, two
compounds, YU253467and YU254403, were discovered from a target-based screen, and they
inhibit both native C. albicans growth and PSD mitochondrial activity [120]. The molecules
identified from these different screens are promising, but the addition of detailed protein
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structure and ligand interactions would improve optimization efforts for higher specificity
and potency.

Table 3. Potential phospholipid biosynthesis enzymes as drug targets and inhibitors.

Compound Target Enzyme Organism Reference

Hydroxylamine PS decarboxylase E. coli [207,208]

Hydroxylamine PS decarboxylase S. cerevisiae and
C. albicans [209]

Serine hydroxamate PS decarboxylase E. coli [210]

7CPQA PS decarboxylase P. falciparum [212]

YU253467 and YU254403 PS decarboxylase C. albicans [120]

CBR-5884 PS synthase C. albicans [121]

Validamycin A PI synthesis R. cerealis [213]

Ethionine PE methylation S. cerevisiae [214]

2-hydroxyethyl-
hydrazine PE methylation S. cerevisiae [215]

BR23 and BR25 Choline kinase P. falciparum [216]

3.3.2. PS Synthase

Fungi use the Cho1 PS synthase to catalyze the formation of PS from CDP-DAG
and serine, and both the enzyme and the reaction are absent in mammals [181,197,217],
indicating a potential antifungal target. Furthermore, deleting the PS synthase in C. albicans
prevents it from causing disease in mouse models of oral or systemic candidiasis [183,218].
PS synthase is also crucial for the growth of the major fungal pathogen C. neoformans [189]
and is also highly conserved across various fungal species [217]; these observations indicate
that PS synthase is an excellent drug target.

PS synthases were first characterized in bacteria. The PS synthases from Gram-negative
bacteria such as E. coli, Salmonella typhimurium, and Enterobacter aerogenes are tightly associ-
ated with ribosomes, and perform catalysis when they bind to the plasma membrane [219].
Gram-positive bacteria such as B. megaterium, Bacillus subtilis, and Clostridium perfringens
have membrane-associated PS synthase, which have conserved motifs and belong to the
protein family that includes eukaryotic counterparts [220]. The first eukaryotic PS synthase
was identified in S. cerevisiae [221,222]. Since then, the characterization of S. cerevisiae PS
synthase (Cho1) included understanding the regulation of Cho1 [223–227], identifying the
localization of the enzyme [228,229], protein solubilization and purification [230,231], and
determination of Michaelis–Menton kinetics [223,230,231]. The C. albicans PS synthase was
first characterized in 2010, with the finding that it is crucial for systemic Candida infections
in mice [183]. Michaelis–Menton kinetics of C. albicans PS synthase were described, and
its conserved CAPT motif for binding CDP-DAG was identified as well as some residues
involved in serine binding [232–234]. Later, C. albicans PS synthase was solubilized and
purified, but surprisingly formed a hexamer. It is unique among the known structures of
the same family of membrane-bound phospholipid synthases, which are all dimers [235].

PS synthase belongs to the CDP-alcohol phosphatidyltransferase (CDP-AP) protein
family, and six prokaryotic [236–241] and two eukaryotic [242,243] members have solved
structures to date. Among these, there is only one PS synthase structure, and it is from the
archaean Methanocaldococcus jannaschii, and has eight transmembrane domains [241]. This
is different from the homology model of C. albicans PS synthase with six transmembrane
domains. In addition, some key residues involved in catalytic activity of C. albicans PS were
lacking functions in M. jannaschii PS synthase [235,241]. A structure of fungal PS synthase
will reconcile this discrepancy and also provide insights into the mechanisms of C. albicans
PS synthase catalysis.
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Currently, despite the fact that PS synthase is a promising drug target, the identifica-
tion of its specific inhibitors is in the early stage. Two cell-based screens were conducted to
identify inhibitors of C. albicans PS synthase, but both attempts were unsuccessful [244,245].
One screen pinpointed the compound SB-224289. However, it was later determined that
SB-224289 only acts on PS synthase-related physiological pathways rather than the en-
zyme directly [244]. The other screen identified bleomycin, but it was also found that
this compound affects phospholipid-associated processes rather than targeting C. albi-
cans PS synthase directly [245]. Recently, Zhou et al. identified a molecule, CBR-5884
(Table 3), that inhibits both purified PS synthase and its function in vivo, with a Ki of
1550 ± 245.6 nM [121]. This molecule acts as a competitive inhibitor for serine, thus having
the potential for further development. However, more efforts are needed to identify ad-
ditional inhibitors to this promising drug target that can potentially lead to new classes
of antifungals.

3.3.3. Other Miscellaneous Phospholipid Synthesis Inhibitors

Finally, besides PS decarboxylase and PS synthase, several inhibitors have been
identified to target phospholipid biosynthesis pathways for PI and PC. For example, it
was suggested that validamycin A might hinder the incorporation of inositol into PI in
Rhizoctonia cerealis, a process driven by the membrane-associated enzyme PI synthase [213],
but a detailed enzymatic characterization is missing. For de novo PC biosynthesis, where
PE is methylated three time into PC (Figure 8), ethionine and 2-hydroxyethyl-hydrazine
were shown to inhibit PE methylation, and thus resulted in lower PC levels [214,215].
Moreover, the anticancer compounds BR23 and BR25, known to inhibit human choline
kinase, directly inhibited the ethanolamine activity of P. falciparum choline kinase, thus
significantly reducing PE levels in P. falciparum without affecting PC [216]. This led to
halted growth of the parasite due to the depletion of membrane PE, and was ultimately
lethal [216]. These observations underscore the significance of phospholipid biosynthesis
in certain microbes’ survival and pathogenicity and thus drug development.

4. Conclusions

The role of structural biology has expanded significantly in antifungal drug discov-
ery, employing advanced techniques like X-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy (cryo-EM) to reveal intricate details of enzyme–inhibitor interac-
tions. These methods have revolutionized our understanding by providing high-resolution
images of target enzymes and their detailed interactions with inhibitors, facilitating the
design of novel inhibitors with improved specificity and potency. This detailed molecular
insight has been key to overcoming drug resistance and toxicity challenges, paving the
way for more effective antifungal therapies. Besides the advanced techniques for solving
protein structures, bioinformatics tools, such as homology modeling and newly developed
AlphaFold, may also predict the structures of target enzymes when the experimental struc-
tures are not available. These techniques could deepen our knowledge of structure–activity
relationships, refining antifungal drug design strategies and speeding up the discovery of
new antifungals.

The unique properties of the fungal cell wall and membrane make these organelles
ideal targets for antifungal agents, as they are essential to the survival of fungi and also
contain enzymes not found in human cells, making it possible to discover molecules target-
ing fungal-specific pathways without affecting human cells [8,82]. However, a drawback
to targeting cell wall and cell membrane biosynthesis enzymes is the potential for the
rapid development of resistance by fungi, necessitating continuous research into novel
targets [8,82]. Future directions include leveraging advanced genomics and proteomics
to identify unique fungal enzymes and pathways involved in cell wall and membrane
biosynthesis and employing structure-based drug design to develop more effective and se-
lective antifungal agents. Additionally, a more profound understanding of protein–ligand
interactions between current antifungals and novel drugs with their respective targets
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could also lead to the optimization of current drugs and the development of new drugs,
addressing resistance issues and improving treatment outcomes. In sum, this review not
only sheds light on the structural intricacies of membrane-bound antifungal targets and
their inhibitors but also suggests targets and pathways for future explorations in structural
biology, which are crucial for the advancement of rational drug design and the development
of more effective antifungal therapies.
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