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Abstract: Chimonanthus praecox is an aromatic plant that flowers in winter. The composition of the
floral volatiles of C. praecox is influenced by different blooming stages, circadian rhythms and species.
However, the relationship between floral volatiles and plant endophytic fungi has not received much
research attention. Here, we used high-throughput sequencing technology to compare and analyze
the changes in the structure and diversity of the endophytic fungal communities in C. praecox under
different circadian rhythms (7:00 a.m., 1:00 p.m., and 7:00 p.m.) and in different blooming stages
(unopened flowers and opened flowers). The endophytic fungi of C. praecox consisted of nine phyla,
34 classes, 79 orders, 181 families, 293 genera, and 397 species, and Ascomycota was the dominant
phylum. Under a diurnal rhythm, the diversity (Chao1 and Shannon indices) of endophytic fungi
gradually decreased in the unopened flowers, while an increasing and then decreasing trend was
found for the opened flowers. In the different blooming stages, the endophytic fungal diversity was
significantly higher at 7:00 a.m. in the unopened flowers compared to the opened flowers. Humidity
was the key factors that significantly affected the endophytic fungal diversity and community.
Moreover, 11 endophytic fungi were significantly positively or negatively correlated with seven floral
volatiles. In conclusion, the community structure and diversity of endophytic fungi in C. praecox
were affected by the different blooming stages and circadian rhythms, and a correlation effect related
to floral volatiles was found, but there are other possible reasons that were not tested. This study
provides a theoretical basis for elucidating the interrelationships between endophytic fungi, floral
volatiles, and environmental factors in C. praecox.
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1. Introduction

Plant endophytes, mainly including fungi, bacteria, and actinomycetes, commonly
inhabit healthy plant tissues without causing apparent disease [1]. Endophytic fungi can
promote plant growth [2], enhance tissue colonization [3], improve stress resistance [4], and
produce bioactive secondary metabolites [5,6]. They can synthesize the same or similar
compounds as their hosts, and increase key metabolite production in horticultural plants,
such as paclitaxel (Taxus chinensis) [7], methyl eugenol (Rosa spp.) [5], and 4-penten-2-
ol (Lilium brownii) [8]. Similar phenomena occur in medicinal plants. For instance, the
endophytes in Azadirachta indica [9] and Rhodiola sachalinensis [10] can produce the AL4
and rhodioside metabolites. These results suggest that endophytic fungi and their hosts
share secondary metabolic pathways or production sources. Therefore, revealing the
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close relationship between endophytic fungi and metabolites can clarify the sources and
metabolic pathways of plant metabolites.

The community composition, abundance, and diversity of plant endophytic fungi
are primarily influenced by the host species [11,12], growth period [13], and geographic
habitat [14], among other factors. Taxa of endophytic fungi significantly differ in different
ornamental plant species: for example, Rhododendron spp. [11], Paeonia ludlowii [15], and
Lonicera japonica [16] were found to contain 43, 14, and 19 genera, respectively. Similar
results were observed in different floral organs for instance, 11 and 4 genera were found
in Eucalyptus globulus [17] and Moinga oleifera flowers [18], respectively. Moreover, endo-
phytic fungal diversity and community composition vary between different plant tissues
(roots, stems, and leaves) across growth stages. For instance, endophytic fungal diversity
was higher in Bletilla mycorrhizae in the flowering and emergence periods than in other
periods [19]. The changes in the major genera (Penicillium, Fusarium, Xylaria) in Capsicum
annuum stems across the seedling, flowering, and fruiting stages were inconsistent [20].
Similar variability was found in the leaves of Stellera chamaejasme [21]. In addition, environ-
mental factors such as temperature and humidity have significant impacts on the diversity
of endophytes. Previous results showed that endophytic fungal diversity in angiosperms
is richer in tropical versus temperate/cold forests [22]. Humid climates were found to be
more suitable for the survival of endophytes than arid environments [23].

Endophytic fungi can not only produce secondary metabolites in plant tissue, but are
also one of the critical pathways for producing volatile compounds with a floral fragrance
in plants [24]. Five aromatic metabolites (cyclo-(Trp-Ala), indole-3-carboxylic acid (ICA),
in-dole-3-carbaldehyde, mellein, and 2-phenylethanol) were identified in endophytic fungi
of Viscum coloratum flowers [25], confirming that endophytic fungi in flowers may be an
essential resource for natural plant aromas. Moreover, the emission and composition of
floral volatile compounds in different plants are affected by the blooming stage [26–29],
circadian rhythms [28,30], environmental factors [31–34], and species [35]. However, it
is unclear whether floral substance changes caused by biological and abiotic factors can
affect some endophytic fungal populations. At the same time, environmental factors can
directly affect not only floral volatiles, but also the diversity of endophytic fungi. Therefore,
exploring the relationship between floral volatiles and endophytic fungi under different
conditions is a necessary way to clarify the source and production of floral volatiles.

Chimonanthus praecox is a deciduous shrub that flowering in winter, belonging to the
genus Chimonanthus in the family Calycanthaceae, and it is a fragrant and unique traditional
plant in China. Most previous studies showed that the components of floral volatiles in
C. praecox are altered by the blooming stage [35,36], circadian rhythms [37], geographic
locations [38], and species [39]. Although a close relationship between endophytic fungi
and floral volatiles has been demonstrated, the relationship between endophytic fungi
diversity, floral volatiles, and environmental factors in C. praecox is still unclear. Based
on our previous study of the variation in the floral volatiles of C. praecox in different
blooming stages (unopened flowers and opened flowers) and under different circadian
rhythms (7:00 a.m., 1:00 p.m., and 7:00 p.m.) in Kunming, Yunnan Province [37], we further
analyzed the community structure and diversity of the endophytic fungi in C. praecox using
high-throughput sequencing technology. This study aimed to (1) investigate the influence
of blooming stages and circadian rhythms on the community structure and diversity of
the endophytic fungi in C. praecox, and (2) elucidate the relationship between endophytic
fungal diversity, floral volatiles, and environmental factors in C. praecox.

2. Materials and Methods
2.1. Plant Materials

In this experiment, the flowers of var. grandiflorus in different blooming stages were
used as research materials. The unopened flowers were yellow with upright stamens and
buds beginning to increase, while the opened flowers were yellow with completely opened
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petals and a purple flower center (Figure 1). All the flowers were collected from the campus
of Southwest Forestry University in Kunming, Yunnan Province.
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2.2. Flower Samples Collection

On 25 December 2019, 24 unopened and 18 opened flowers of C. praecox were collected
at 7:00 a.m., 1:00 p.m., and 7:00 p.m.. Two opened flowers and four unopened flowers
(about 0.5 g) were placed in a 20 mL head space bottle, which was quickly sealed with
an aluminum cover, to determine the floral volatiles. Additionally, twelve unopened and
opened flowers of C. praecox were selected and placed in sterile self-sealing bags, and then
immediately brought back to the laboratory for surface disinfection and biocidal treatment.
The disinfection process involved the following steps: 75% alcohol for 60 s, 0.5% sodium
hypochlorite for 90 s, and 75% alcohol for 30 s. After each step finished, sterile excess water
was applied 3–4 times to rinse the samples. Subsequently, all the flower samples were dried
with sterile filter paper, placed in a 50 mL sterile centrifugal tube, and stored at −80 ◦C for
DNA extraction and sequencing.

2.3. Floral Volatile Collection and Identification

Headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass
spectrometry (GC/MS) were carried out to extract the floral scent compounds in C. prae-
cox. An empty capped vial was used as the negative control. The SPME device was
equipped with an SPME fiber (50/30 µm) coated with polydimethylsiloxane (PDMS)
(TriPlus 300, Thermo Fisher Scientific, Waltham, MA, USA). In detail, the protocols for
HS-SPME followed the methods of Chen et al. [40]. Subsequently, a GC/MS system (Trace
GC Ultra/ITQ900, Thermo Fisher Scientific, Waltham, MA, USA) with an HP-5MS capillary
column (30 m × 0.25 mm × 0.25 µm, Agilent J & W Scientific, Santa Clara, CA, USA) was
performed to identify the floral volatiles. The variation in the GC oven temperature and the
data recorded from the mass spectrometer in electron impact mode (MS/EI) were based on
the methods of Li et al. [37].

2.4. DNA Extraction, PCR Amplification, and Sequencing

DNA was extracted from 0.5 g of frozen flowers using the FastDNA® Spin KitDNA
(MP Biomedicals, Southern California, USA) kit according to the manufacturer’s protocol.
The obtained DNA was quantified by using a NanoDrop® spectrophotometer (ND-2000c,
Thermo Scientific, Waltham, MA, USA) for nucleic acid concentration and purity. The
entire fungal ITS1 region was amplified using the primers ITS1F (5′-TCC GTA GGT GAA
CCT GCG G-3′) and ITS2R (5′-TCC TCC GCT TAT TGA TAT GC-3′) [41]. The amplification
system consisted of 5 × Fast Pfu Buffer 4 µL, 2.5 mM dNTPs 2 µL, Forward Primer
(5 µM) 0.8 µL, Reverse Primer (5 µM) 0.8 µL, Fast Pfu Polymerase 0.4 µL, BSA 0.2 µL,
Template DNA 10 ng, and ddH2O added to 20 µL. The PCR protocols were as follows:
pre-denaturation at 95 ◦C for 3 min; denaturation at 95 ◦C for 20 s, annealing at 55 ◦C
for 30 s, and extension at 72 ◦C for 30 s, over 30 cycles; and extension at 72 ◦C for 5 min.
Three PCR products as three replicates were selected to detect the DNA quality using 2%
agarose gel electrophoresis. The qualified PCR products were purified with an AxyPrep
DNA Gel Extraction Kit and quantified using a Quantus™ Fluorometer. Amplicons from
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different samples were mixed for library construction using a NEXTFLEX Rapid DNA-Seq
Kit. Finally, high-throughput sequencing was performed using the MiSeq PE300 platform
(Shanghai MajorBio Technology Co, China). The sequences have been deposited in the
National Center for Biotechnology Information Sequence Read Archive under Accession
No. PRJNA875038 (ITS data).

2.5. Data Processing and Statistical Analysis

In this experiment, microbiome bioinformatics was implemented in QIIME 1.9.1, with
slight modifications according to the official tutorials (www.majorbio.com, accessed on 19
November 2022). Briefly, raw sequence data were quality-controlled using the Trimmomatic
plugin, followed by base splicing using the FLASH plugin. Finally, the sequences were
quality-frequency-analyzed, denoised, and merged, and chimeras were removed using
the UCHIME plugin. The RDP classifier was used to annotate the species classification
for each sequence, and representative sequences were assigned by comparing to Silva
database (ssu123), with the comparison threshold being 70%. Sequence data analysis was
performed using QIIME 1.9.1, during which non-fungal sequences were removed to avoid
contamination of the chloroplasts and mitochondria of the host plant.

The mothur plugin was employed to calculate the alpha diversity (Chao1 and Shannon
indices). PCoA plots based on the Bray–Curtis index were analyzed using the vegan and
ggplot2 packages in R (version 3.3.1). Venn diagrams based on an OTU table with a
97% similarity level and a heat map of the correlation clustering for the top 30 genera
and 10 main floral volatiles (our pre-study) were generated using R (version 3.3.1). RDA
analysis was performed using the vegan package in R to analyze the relationship between
endophytic fungal communities and environmental factors.

3. Results
3.1. Alpha and Beta Diversity of Endophytic Fungi

The detailed sequencing information of the endophytic fungi in C. praecox in different
blooming stages and under different circadian rhythms can be found in the attached table
(Table S1). The rarefaction analysis results (Figure S1) indicated an adequate sequencing
depth for all samples. The α diversity (Chao1 and Shannon indices) of the endophytic
fungal community in C. praecox was analyzed using Qiime software (1.9.1) (Figure 2a,b).
Our findings indicated a circadian rhythm-dependent variation in these indices. Specifically,
endophytic fungal α diversity showed a gradual decrease in the unopened flowers with
the circadian rhythm, whereas an initial increase followed by a decrease was found in
the opened flowers. In the different blooming stages, the Chao1 and Shannon indices
of the endophytic fungi were significantly higher at 7:00 a.m. in the unopened flowers
compared to the opened flowers (p < 0.05). Additionally, the community abundance and
diversity of the endophytic fungi at the other two time points (1:00 p.m. and 7:00 p.m.)
showed a no differences between the unopened and opened flowers. The beta diversity of
endophytic fungi was further analyzed using the Bray–Curtis distance measure. The PCoA
plot (Figure 2c) showed that the contributions of PC1 and PC2 were 32.3% and 13.29%,
respectively, with no significant differences between the groups (R2 = 0.22, p > 0.05).

3.2. Taxonomic Analysis of Endophytic Fungal Communities

Following clustering at the 97% similarity level, the Venn diagram (Figure 3a) revealed
that the number of Operational Taxonomic Units (OTUs) of the endophytic fungi in the
unopened flowers of C. praecox decreased gradually with the circadian rhythm, while in the
opened flowers, an initial increase followed by a decrease was observed. The GUA, GUB,
GUC, GOA, GOB, and GOC samples contained 89, 65, 29, 34, 52, and 35 OTUs, respectively,
with a total of 32 shared OTUs. Among these, GUA had the highest number of OTUs,
with 252. The top three most abundant endophytic fungi were unclassified Ascomycota
(35.37%), Didymella (13.63%), and Apiotrichum (6.54%). The Venn diagrams for the different
blooming stages (Figure 3b) showed that the number of OTUs in the unopened flowers
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(202) was higher than in the opened flowers (130), with a total of 165 OTUs for both stages.
The top three endophytic fungi were unclassified Ascomycota (30.40%), Didymella (11.49%),
and Apiotrichum (5.85%).
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OTU representative sequences with 97% or higher similarity levels were taxonomically
analyzed using the RDP classifier Bayesian algorithm. The C. praecox sample contained vari-
ous endophytic fungal species types, including nine phyla, 34 classes, 79 orders, 181 families,
293 genera, and 397 species. The top five endophytic fungal communities were identi-
fied at the phylum, class, order, family, genus, and species levels (Table 1). Ascomycota,
Dothideomycetes, and Pleosporales were the most dominant phylum, class, and order,
respectively, while fungi belonging to unclassified Ascomycota were the most prevalent at
the family, genus, and species levels. The percentages of Ascomycota and Dothideomycetes
in the unopened and opened flower stages decreased with the circadian rhythm and were
the highest at 7:00 a.m. Similar results were observed in the most dominant order (Pleospo-
rales) and family (unclassified Ascomycota). At the genus and species levels, the percentage
of unclassified Ascomycota decreased first and then increased with the circadian rhythm,
and was the highest at 7:00 a.m. in the unopened and opened flower stages.

Table 1. Relative abundance of the top five fungi at different levels of taxonomy in the six samples.

Taxonomy
Levels Top Five GUA GUB GUC GOA GOB GOC

Phylum Ascomycota 96.57% 90.84% 87.70% 98.40% 85.16% 82.32%
Basidiomycota 2.88% 7.03% 8.85% 1.55% 13.60% 13.60%
unclassified_k__Fungi 0.29% 1.95% 3.07% 0.04% 0.86% 3.31%

Class Dothideomycetes 46.20% 37.16% 44.57% 44.03% 36.64% 19.90%
unclassified_p__Ascomycota 35.23% 20.61% 7.43% 50.52% 26.31% 37.55%
Eurotiomycetes 8.30% 7.34% 8.39% 2.41% 8.81% 4.32%
Sordariomycetes 5.73% 16.97% 4.06% 0.89% 1.30% 14.92%
Tremellomycetes 1.94% 5.66% 6.93% 1.00% 10.83% 11.45%

Order Pleosporales 33.37% 31.01% 18.37% 40.96% 50.53% 30.30%
unclassified_p__Ascomycota 46.20% 20.61% 41.66% 7.43% 41.98% 26.13%
Eurotiales 7.81% 4.45% 16.93% 5.94% 1.30% 7.42%
Hypocreales 4.51% 16.82% 1.57% 1.99% 0.49% 0.29%
Trichosporonales 1.73% 5.49% 1.63% 5.06% 0.73% 9.67%

Family unclassified_p__Ascomycota 46.20% 20.61% 7.43% 50.52% 26.13% 37.55%
Didymellaceae 18.86% 23.55% 25.44% 28.41% 19.57% 9.13%
Phaeosphaeriaceae 10.68% 6.00% 14.21% 4.20% 7.45% 4.29%
Aspergillaceae 7.80% 4.45% 5.94% 1.29% 7.20% 2.45%
Nectriaceae 4.49% 16.46% 1.62% 0.47% 1.63% 13.67%

Genus unclassified_p__Ascomycota 46.20% 20.61% 24.58% 50.52% 26.13% 37.55%
Didymella 17.39% 19.57% 7.43% 26.91% 14.77% 8.70%
unclassified_f__Phaeosphaeriaceae 9.88% 4.61% 12.15% 2.84% 4.05% 3.57%
Aspergillus 7.29% 5.49% 5.06% 1.19% 6.32% 1.63%
Gibberalla 3.86% 13.87% 1.28% 0.73% 1.63% 13.28%

Species unclassified_p__Ascomycota 46.20% 20.61% 24.58% 50.52% 26.13% 37.56%
unclassified_g__Didymella 17.39% 19.56% 7.43% 26.91% 14.77% 8.70%
unclassified_f__Phaeosphaeriaceae 9.88% 4.61% 12.15% 2.84% 4.05% 3.57%
Aspergillus amstelodami 6.49% 2.08% 2.12% 0.84% 1.41% 10.71%
unclassified_g__Gibberella 3.61% 13.13% 1.05% 8.99% 9.67% 13.28%

GUA: unopened flowers at 7:00 a.m.; GUB: unopened flowers at 1:00 p.m.; GUC: unopened flowers at 7:00 p.m.;
GOA: opened flowers at 7:00 a.m.; GOB: opened flowers at 1:00 p.m.; GOC: opened flowers at 7:00 p.m..

3.3. Correlation Analysis between Endophytic Fungi and Floral Volatiles in C. praecox

A classification analysis was conducted at the 97% similarity level using the Unite
database for 293 genera, and then the top 30 genera in terms of relative abundance were
selected for the correlation analysis (Figure S2). Didymella was the dominant genus in
unopened and opened flowers. The abundance of Didymella was increased in the unopened
flowers and decreased in the opened flowers with the circadian rhythm, respectively.
Additionally, the correlation analysis between the top 30 main genera of endophytic fungi



J. Fungi 2024, 10, 145 7 of 12

and 10 main floral compounds showed that only 11 fungi were significantly associated
with seven floral volatiles (Table S2, Figure 4). Unclassified Saccharomycetales (R = −0.56;
R = −0.75), Saccharomycosis (R = −0.59; R = −0.67), Wickerhamomyces (R = −0.56; R = −0.64),
and Cercospora (R = −0.56; R = −0.65) were negatively correlated with M-Xylene and
o-toluic acid, and positively correlated with Diaporthe (R = 0.55; R = 0.54). Meanwhile,
Saccharomyces (R = −0.56) and unclassified Ascomycota (R = 0.58) were associated with o-
toluic acid, respectively. In addition, Rhodotorula was negatively correlated with Cyclohepta-
1,3,5-triene (R = −0.58), unclassified Necritiaceae and Eugenol (R = −0.49), unclassified
Cystobasidiomycetes and Benzyl alcohol (R = −0.57) and (-)-Myrtenol (R = −0.54), and
Gibberella was significantly positively correlated with Germacrene D (R = 0.50). Furthermore,
the community composition and diversity of endophytic fungi in C. praecox was positively
correlated with humidity (Figure S3; Table S3).
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4. Discussion
4.1. Endophytic Fungal Diversity in C. praecox Is Altered by Circadian Rhythm and
Blooming Stage

The diversity and community structure of endophytic fungi are predominantly deter-
mined by the host species, growth stages, and environmental conditions [12–14]. Our study
indicated a circadian rhythm-dependent variation in the Chao1 and Shannon indices of
the endophytic fungi in C. praecox. Specifically, these indices exhibited a gradual decrease
in the unopened flowers, while in the opened flowers, an initial increase followed by a
decrease was observed. Despite the fact that limited research is available about the impact
of circadian rhythms on plant endophytic fungi, it has been established that the microbial
flora exhibits heightened sensitivity to temperature fluctuations, particularly over short
durations such as daily variations [42]. However, the correlation analysis revealed a posi-
tive correlation between the diversity and community structure of C. praecox’s endophytic
fungi and humidity. This aligns with findings from studies on Taxus Chinensis [43], and can
be attributed to the organism’s preference for dark and humid environments. Given these
observations, we propose that the diversity of endophytic fungi in C. praecox is modulated
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by humidity, which is, in turn, influenced by circadian rhythms. Additionally, we observed
inconsistent variations in endophytic fungal diversity in different blooming stages (un-
opened and opened flowers), a phenomenon also reported in other studies [19–21,44]. It
is known that endophytic fungi in different growth stages have distinct nutrient require-
ments, which could significantly influence their behavior during the flowering process [45].
Our study also suggested that the β diversity of the endophytic fungi remained relatively
consistent across the different blooming stages and circadian rhythms. This could imply
that endophytic fungi are not easily selected, being subjected to environmental filtering
over short periods or throughout growth [46], especially within the same plant. In ad-
dition, the endophytic fungi in C. praecox are influenced by both circadian rhythms and
blooming stages, similar to the dynamic changes observed in floral volatiles [47,48]. As
insect pollinators act rhythmically, the variations in floral scent with rhythm are associated
with the activity of the corresponding pollinators [37]. This leads us to speculate about the
potential close relationship between plant endophytic fungi and their secondary metabo-
lites. In other words, changes in floral volatiles may be an important reason for changes in
endophytic fungi.

4.2. Dominant Fungal Communities under Different Circadian Rhythms and in Different
Blooming Stages

We analyzed the species composition and relative abundance of endophytic fungi
in C. praecox. Our analysis revealed that the relative abundance of endophytic fungi in
C. praecox at various taxonomic levels fluctuated with the circadian rhythm. Specifically,
the number of endophytic fungal OTUs decreased gradually in the unopened flowers,
whereas an initial increase followed by a decrease was observed with the circadian rhythm
in the opened flowers. Moreover, the species composition of endophytic fungi in C. praecox
spans nine phyla, 34 classes, 79 orders, 181 families, 293 genera, and 397 species. Notably,
Ascomycota was dominant in C. praecox and prevalent in different tissue parts of other
plants, including the seeds, leaves, roots, and bark [49–53]. Aromatic compounds produced
by Ascomycota through biotransformation pathways [54] can be used as food by some
endophytic fungi [55], and these endophytic fungi can also resist the toxicity of the com-
pounds [56], which could potentially account for their high presence in C. praecox. However,
this finding contrasts with the primary fungal communities of local flowers in Yunnan,
which predominantly belong to the Deuteromycotina, suggesting a potential influence of
the host species [57]. In addition to Ascomycota, Didymella holds a dominant position at
the genus level among the endophytic fungi of C. praecox. As the most phytopathologically
important genus in the Didymellaceae, Didymella may serve as a significant reservoir of
species of the Septosporaceae in plants [58]. Furthermore, the endophytic fungi of C. praecox
consisted of Phaeosphaeriaceae, Aspergillus, and Gibberella. Among these, some species
within the Phaeosphaeriaceae have been identified as a source of polyketide biosynthesis
in desert plants [59]; Aspergillus synthesizes a variety of secondary metabolites [60]; and
Gibberella has been reported to promote plant growth [61]. To summarize, our findings are
expected to enrich the understanding of the types and resources of endophytic fungi in
C. praecox.

4.3. Relationship between Endophytic Fungi and Floral Volatiles in C. praecox

Eleven endophytic fungi were positively or negatively correlated with seven floral
volatiles in C. praecox. This may be attributed to the ability of endophytic fungi to be
directly selected from within the plant, thereby influencing its metabolic pathways [62].
Furthermore, some aromatic hydrocarbons (e.g., α-Terpinene, M-xylene, O-toluic acid, and
Germacrene D) present in the floral volatiles of C. praecox exhibited a positive correlation
with specific endophytic fungi (Ascomycota, Gibberella, and Diaporthe). This contrasts with
previous findings that phenolic substances in medicinal plants are more likely to coexist
with certain endophytic fungi, possibly due to variations in the host species or metabolic
responses [63]. The dominance of aromatic hydrocarbons in C. praecox, an ornamental
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flower, suggests a different metabolic preference compared to medicinal plants, where phe-
nolic substances enhance the antioxidant capacity. Diaporthe fungi, a significant source of
functional natural products, have been found to produce polyketones, alkaloids, terpenoids,
anthraquinones, and other novel structural metabolites [64]. Similarly, most Gibberella fungi
are known to produce bioactive metabolites [65]. Interestingly, M-xylene and O-toluic
acid showed significant negative correlations (p < 0.01) with unclassified Saccharomycetales,
Saccharomycopsis, and Wickerhamomyces. This parallels findings of negative correlations
between endophytic fungi and some precursors for the synthesis of paclitaxel in Taxus Chi-
nensis [66], implying a close relationship between endophytic fungi and plant metabolism.
In conclusion, the endophytic fungi of C. praecox can directly affect the production of
secondary metabolites, which may be influenced by multiple strains of fungi. This study
further deepens our understanding of the relationship between plant endophytic fungi and
their floral volatiles.

5. Conclusions

This study represents the first investigation into the community structure and diversity
of endophytic fungi in relation to the circadian rhythms and blooming stages of C. praecox
using high-throughput sequencing technology. Under a diurnal rhythm, the diversity
(Chao1 and Shannon indices) of endophytic fungi gradually decreased in the unopened
flowers, while it showed an increasing and then decreasing trend in the opened flowers.
In the different blooming stages, the endophytic fungal diversity was significantly higher
at 7:00 a.m. in the unopened flowers compared to the opened flowers. Ascomycota was
found to be dominant in C. praecox flowers. Humidity was the key factors that significantly
affected the endophytic fungal diversity and community. Notably, 11 endophytic fungi
were significantly positively or negatively correlated with seven floral volatiles. Our
findings are expected to enrich the knowledge of the types and resources of endophytic
fungi in C. praecox and further elucidate the relationship between endophytic fungi and
floral volatiles.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jof10020145/s1. Table S1. Summary of sample sequencing information;
Table S2. Floral volatile emitted from C. praecox with different blooming stages and circadian rhythms;
Table S3. Correlations between endophytic fungal diversity in C. praecox with environmental
factors; Figure S1. Sequencing data results in endophytic fungi of C. praecox OTU dilution curve;
Figure S2. Community structure of endophytic fungi of C. praecox at genus level. Figure S3.
Correlations between the endophytic fungal community in C. praecox and environmental factors
(T: temperature; H: humidity).
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