Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain’s Elevation Gradients, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Selection and Soil Sampling
2.2. Determination of Soil Chemical Properties
2.3. DNA Extraction and PCR Amplification
2.4. Sequence Data Processing
2.5. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Fungal Alpha Diversity
3.3. Fungal Community Composition
3.4. Potential Functional Fungi in Rhizospheric Soil
3.5. Community Assembly Mechanisms of Rhizospheric Fungi
3.6. Analysis of Rhizospheric Fungal Networks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, Q.; Jiang, Y.; Tang, Y.; Wu, Y.; Tang, Z.; Liu, F. Soil PH and Organic Carbon Properties Drive Soil Bacterial Communities in Surface and Deep Layers Along an Elevational Gradient. Front. Microbiol. 2021, 12, 646124. [Google Scholar] [CrossRef] [PubMed]
- Gentilin-Avanci, C.; Pinha, G.D.; Ratz Scoarize, M.M.; Petsch, D.K.; Benedito, E. Warming Water and Leaf Litter Quality but Not Plant Origin Drive Decomposition and Fungal Diversity in an Experiment. Fungal. Biol. 2022, 126, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, K.; Xie, Y.; Li, X.; Zhang, S.; Liu, W.; Huang, Y.; Cui, L.; Wang, S.; Bao, P. Geographical, Climatic, and Soil Factors Control the Altitudinal Pattern of Rhizosphere Microbial Diversity and Its Driving Effect on Root Zone Soil Multifunctionality in Mountain Ecosystems. Sci. Total Environ. 2023, 904, 166932. [Google Scholar] [CrossRef] [PubMed]
- Farrer, E.C.; Porazinska, D.L.; Spasojevic, M.J.; King, A.J.; Bueno de Mesquita, C.P.; Sartwell, S.A.; Smith, J.G.; White, C.T.; Schmidt, S.K.; Suding, K.N. Soil Microbial Networks Shift Across a High-Elevation Successional Gradient. Front. Microbiol. 2019, 10, 2887. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Lin, X.; Konopka, A.E.; Fredrickson, J.K. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities. ISME J. 2012, 6, 1653–1664. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Liu, D.; Wu, X.; Shi, S.; Liu, H.; Liu, G. A Hollow Bacterial Diversity Pattern with Elevation in Wolong Nature Reserve, Western Sichuan Plateau. J. Soils Sediments. 2016, 16, 2365–2374. [Google Scholar] [CrossRef]
- Afridi, M.S.; Fakhar, A.; Kumar, A.; Ali, S.; Medeiros, F.H.V.; Muneer, M.A.; Ali, H.; Saleem, M. Harnessing Microbial Multitrophic Interactions for Rhizosphere Microbiome Engineering. Microbiol. Res. 2022, 265, 127199. [Google Scholar] [CrossRef]
- Qu, Q.; Zhang, Z.; Peijnenburg, W.J.G.M.; Liu, W.; Lu, T.; Hu, B.; Chen, J.; Chen, J.; Lin, Z.; Qian, H. Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. J. Agric. Food Chem. 2020, 68, 5024–5038. [Google Scholar] [CrossRef]
- Khan, M.F.; Chowdhary, S.; Koksch, B.; Murphy, C.D. Biodegradation of Amphipathic Fluorinated Peptides Reveals a New Bacterial Defluorinating Activity and a New Source of Natural Organofluorine Compounds. Environ. Sci. Technol. 2023, 57, 9762–9772. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Song, S. Important Soil Microbiota’s Effects on Plants and Soils: A Comprehensive 30-Year Systematic Literature Review. Front. Microbiol. 2024, 15, 1347745. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, X.; Solanki, M.K.; Pang, F. A Synthetic Microbial Community of Plant Core Microbiome Can Be a Potential Biocontrol Tool. J. Agric. Food Chem. 2023, 71, 5030–5041. [Google Scholar] [CrossRef]
- Praeg, N.; Illmer, P. Microbial Community Composition in the Rhizosphere of Larix Decidua under Different Light Regimes with Additional Focus on Methane Cycling Microorganisms. Sci. Rep. 2020, 10, 22324. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Álvarez, R.; Cáliz, J.; Camarero, L.; Casamayor, E.O. Regional Community Assembly Drivers and Microbial Environmental Sources Shaping Bacterioplankton in an Alpine Lacustrine District (Pyrenees, Spain). Environ. Microbiol. 2020, 22, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wu, H.; Zhang, Y.; Wu, Q.; Guan, Q.; Lu, K.; Lin, Y. Differential Distribution Patterns and Assembly Processes of Soil Microbial Communities under Contrasting Vegetation Types at Distinctive Altitudes in the Changbai Mountain. Front. Microbiol. 2023, 14, 1152818. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Hu, L.H.; Zhang, H.C.; Fang, Y.M.; Wang, G.M. Elevational distribution characteristics of soil bacterial community and enzyme activities in Mount Huangshan. Huan Jing Ke Xue 2019, 40, 859–868. (In Chinese) [Google Scholar] [PubMed]
- Hu, M.; Yang, Y.; Fan, M.; Huang, K.; Wang, L.; Lv, T.; Yi, X.; Chen, L.; Fang, Y. Inter- and Intra-Population Variation of Foliage Calcium and Magnesium in Two Chinese Pine Species. Plants 2023, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed. Appl. Environ. Microbiol. 2001, 67, 4742–4751. [Google Scholar] [CrossRef]
- Ståhlberg, S. A New Extraction Method for Estimation of Plant-Available P, K and Mg. Acta Agric. Scand. 1980, 30, 93–107. [Google Scholar] [CrossRef]
- Ai, Z.; He, L.; Xin, Q.; Yang, T.; Liu, G.; Xue, S. Slope Aspect Affects the Non-Structural Carbohydrates and C:N:P Stoichiometry of Artemisia Sacrorum on the Loess Plateau in China. Catena 2017, 152, 9–17. [Google Scholar] [CrossRef]
- Bowman, R.A. A Rapid Method to Determine Total Phosphorus in Soils. Soil Sci. Soc. Am. J. 1988, 52, 1301–1304. [Google Scholar] [CrossRef]
- Keshri, J.; Pradeep Ram, A.S.; Sime-Ngando, T. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes. Microb. Ecol. 2018, 75, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.I.; Miletto, M.; Taylor, J.W.; Bruns, T.D. Dispersal in Microbes: Fungi in Indoor Air Are Dominated by Outdoor Air and Show Dispersal Limitation at Short Distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Baselga, A. Partitioning the Turnover and Nestedness Components of Beta Diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the Roles of Immigration and Chance in Shaping Prokaryote Community Structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef]
- Luan, L.; Liang, C.; Chen, L.; Wang, H.; Xu, Q.; Jiang, Y.; Sun, B. Coupling Bacterial Community Assembly to Microbial Metabolism across Soil Profiles. mSystems 2020, 5, e00298-20. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal. Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Zeng, Q.; Liu, D.; An, S. Decoupled Diversity Patterns in Microbial Geographic Distributions on the Arid Area (the Loess Plateau). Catena 2021, 196, 104922. [Google Scholar] [CrossRef]
- Fakhry, A.; Osman, O.; Ezzat, H.; Ibrahim, M. Spectroscopic Analyses of Soil Samples Outside Nile Delta of Egypt. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2016, 168, 244–252. [Google Scholar] [CrossRef]
- Cissé, G.; Essi, M.; Kedi, B.; Nicolas, M.; Staunton, S. Accumulation and Vertical Distribution of Glomalin-Related Soil Protein in French Temperate Forest Soils as a Function of Tree Type, Climate and Soil Properties. Catena 2023, 220, 106635. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, Z.; Yang, M.; Lu, S.; Cao, L.; Wang, X. Molecular Diversity and Distribution of Arbuscular Mycorrhizal Fungi at Different Elevations in Mt. Taibai of Qinling Mountain. Front. Microbiol. 2021, 12, 609386. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; McCain, C.M.; Meir, P.; Zimmermann, M.; Rapp, J.M.; Silman, M.R.; Knight, R. Microbes Do Not Follow the Elevational Diversity Patterns of Plants and Animals. Ecology 2011, 92, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Liu, W.; Liu, H.; Zhang, Q.; Zeng, J.; Ren, C.; Yang, G.; Zhong, Z.; Han, X. Abundant and Rare Fungal Taxa Exhibit Different Patterns of Phylogenetic Niche Conservatism and Community Assembly across a Geographical and Environmental Gradient. Soil Biol. Biochem. 2023, 186, 109167. [Google Scholar] [CrossRef]
- Soukupová, L.; Hršelová, H.; Gryndlerová, H.; Merhautová, V.; Gryndler, M. Alkali-Extractable Soil Organic Matter: An Important Factor Affecting the Mycelial Growth of Ectomycorrhizal Fungi. Appl. Soil Ecol. 2008, 40, 37–43. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, G.; Yu, H.; Du, X.; He, Q.; Yao, S.; Zhao, L.; Huang, C.; Wen, X.; Deng, Y. Meadow Degradation Increases Spatial Turnover Rates of the Fungal Community through Both Niche Selection and Dispersal Limitation. Sci. Total Environ. 2021, 798, 149362. [Google Scholar] [CrossRef]
- Lee, S.; Klinger, R.; Brooks, M.L.; Ferrenberg, S. Homogenization of Soil Seed Bank Communities by Fire and Invasive Species in the Mojave Desert. Front. Ecol. Evol. 2024, 12, 1271824. [Google Scholar] [CrossRef]
- Zorzal-Almeida, S.; Bartozek, E.C.R.; Bicudo, D.C. Homogenization of Diatom Assemblages Is Driven by Eutrophication in Tropical Reservoirs. Environ. Pollut. 2021, 288, 117778. [Google Scholar] [CrossRef]
- Hunting, E.R.; Barmentlo, S.H.; Schrama, M.; van Bodegom, P.M.; Zhai, Y.; Vijver, M.G. Agricultural Constraints on Microbial Resource Use and Niche Breadth in Drainage Ditches. PeerJ 2017, 5, e4175. [Google Scholar] [CrossRef]
- Heeger, F.; Bourne, E.C.; Wurzbacher, C.; Funke, E.; Lipzen, A.; He, G.; Ng, V.; Grigoriev, I.V.; Schlosser, D.; Monaghan, M.T. Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis Aquatica. J. Fungi. 2021, 7, 854. [Google Scholar] [CrossRef]
- Ruytinx, J.; Miyauchi, S.; Hartmann-Wittulsky, S.; de Freitas Pereira, M.; Guinet, F.; Churin, J.-L.; Put, C.; Le Tacon, F.; Veneault-Fourrey, C.; Martin, F.; et al. A Transcriptomic Atlas of the Ectomycorrhizal Fungus Laccaria Bicolor. Microorganisms 2021, 9, 2612. [Google Scholar] [CrossRef] [PubMed]
- Card, S.; Johnson, L.; Teasdale, S.; Caradus, J. Deciphering Endophyte Behaviour: The Link between Endophyte Biology and Efficacious Biological Control Agents. FEMS Microbiol. Ecol. 2016, 92, fiw114. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized Metabolic Functions of Keystone Taxa Sustain Soil Microbiome Stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate Warming Enhances Microbial Network Complexity and Stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Ya, T.; Huang, Y.; Wang, K.; Wang, J.; Liu, J.; Hai, R.; Zhang, T.; Wang, X. Functional Stability Correlates with Dynamic Microbial Networks in Anammox Process. Bioresour. Technol. 2023, 370, 128557. [Google Scholar] [CrossRef]
- Daynes, C.N.; Zhang, N.; Saleeba, J.A.; McGee, P.A. Soil Aggregates Formed in Vitro by Saprotrophic Trichocomaceae Have Transient Water-Stability. Soil Biol. Biochem. 2012, 48, 151–161. [Google Scholar] [CrossRef]
- Mikheev, V.S.; Struchkova, I.V.; Churkina, L.M.; Brilkina, A.A.; Berezina, E.V. Several Characteristics of Oidiodendron Maius G.L. Barron Important for Heather Plants’ Controlled Mycorrhization. J. Fungi 2023, 9, 728. [Google Scholar] [CrossRef]
- Pescie, M.A.; Montecchia, M.; Lavado, R.S.; Chiocchio, V.M. Inoculation with Oidiodendron Maius BP Improves Nitrogen Absorption from Fertilizer and Growth of Vaccinium Corymbosum during the Early Nursery Stage. Plants 2023, 12, 792. [Google Scholar] [CrossRef]
- Peng, J.; Rojas, J.A.; Sang, H.; Proffer, T.J.; Outwater, C.A.; Vilgalys, R.; Sundin, G.W. Draft Genome Sequence Resource for Blumeriella Jaapii, the Cherry Leaf Spot Pathogen. Phytopathology 2020, 110, 1507–1510. [Google Scholar] [CrossRef]
- Severns, P.M.; Guzman-Martinez, M. Plant Pathogen Invasion Modifies the Eco-Evolutionary Host Plant Interactions of an Endangered Checkerspot Butterfly. Insects 2021, 12, 246. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Z.; Zhao, J.; Chen, Z.; Xiang, X. Significant Differences in Intestinal Fungal Community of Hooded Cranes along the Wintering Periods. Front. Microbiol. 2022, 13, 991998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, S.; Hong, W.; Shen, Z.; Li, S.; Fang, W. Differences in Pathogenic Community Assembly Processes and Their Interactions with Bacterial Communities in River and Lake Ecosystems. Environ. Res. 2023, 236, 116847. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Mei, T.; Wang, M.; Tan, W. Linking Phosphorus Fertility to Soil Microbial Diversity and Network Complexity in Citrus Orchards: Implications for Sustainable Agriculture. Appl. Soil Ecol. 2024, 200, 105441. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Ding, C.; Ren, X.; Yuan, J.; Sun, F.; Li, Y. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops. Ecotoxicol. Environ. Saf. 2017, 145, 111–118. [Google Scholar] [CrossRef]
Soil Properties | SM(%) | pH | TN(g/kg) | AN (mg/kg) | AP (mg/kg) | TP (g/kg) | SOM (g/kg) |
---|---|---|---|---|---|---|---|
LE | 32.54 ± 9.95 b | 4.87 ± 0.19 a | 2.60 ± 0.77 b | 331.51 ± 105.55 b | 3.28 ± 0.79 c | 0.18 ± 0.06 b | 109.20 ± 14.06 c |
ME | 39.67 ± 14.61 b | 4.44 ± 0.14 b | 3.51 ± 1.03 b | 380.31 ± 157.79 b | 11.63 ± 4.02 b | 0.16 ± 0.05 b | 153.85 ± 24.58 b |
HE | 56.81 ± 17.13 a | 4.18 ± 0.08 c | 7.47 ± 1.68 a | 700.86 ± 118.30 a | 24.38 ± 10.67 a | 0.41 ± 0.07 a | 281.93 ± 64.47 a |
Treatment | Indicator Value | p | Taxonomy | Relative Abundance (%) |
---|---|---|---|---|
LE | 1.771 | 0.026 | g__Russula | 2.193 |
0.975 | 0.03 | g__Elaphomyces | 0.278 | |
0.830 | 0.005 | g__Clitocybula | 0.247 | |
ME | 2.675 | 0.055 | g__Oidiodendron | 0.582 |
0.921 | 0.029 | g__Hypomyces | 0.910 | |
1.582 | 0.002 | g__Umbelopsis | 0.639 | |
1.659 | 0.006 | g__Tomentella | 0.474 | |
0.838 | 0.023 | g__Lactarius | 0.389 | |
0.912 | 0.001 | g__Lachnum | 0.301 | |
0.828 | 0.013 | g__Hymenoscyphus | 0.293 | |
HE | 1.618 | 0.004 | g__Hypocrea | 2.221 |
0.679 | 0.009 | g__Mortierella | 1.145 | |
0.933 | 0.029 | g__Russula | 0.616 | |
0.887 | 0.013 | g__Hypomyces | 0.509 | |
0.855 | 0.005 | g__Cadophora | 0.211 | |
0.894 | 0.027 | g__Hymenoscyphus | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Q.; Dang, K.; Yin, J.; Yuan, D.; Lu, J.; Xiang, X. Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain’s Elevation Gradients, China. J. Fungi 2024, 10, 673. https://doi.org/10.3390/jof10100673
Zuo Q, Dang K, Yin J, Yuan D, Lu J, Xiang X. Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain’s Elevation Gradients, China. Journal of Fungi. 2024; 10(10):673. https://doi.org/10.3390/jof10100673
Chicago/Turabian StyleZuo, Qinglin, Keke Dang, Jing Yin, Dandan Yuan, Jing Lu, and Xingjia Xiang. 2024. "Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain’s Elevation Gradients, China" Journal of Fungi 10, no. 10: 673. https://doi.org/10.3390/jof10100673
APA StyleZuo, Q., Dang, K., Yin, J., Yuan, D., Lu, J., & Xiang, X. (2024). Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain’s Elevation Gradients, China. Journal of Fungi, 10(10), 673. https://doi.org/10.3390/jof10100673