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Abstract: Background and aims: Auscultation is a cheap and fundamental technique for detecting
cardiovascular disease effectively. Doctors’ abilities in auscultation are varied. Sometimes, there may
be cases of misdiagnosis, even when auscultation is performed by an experienced doctor. Hence, it is
necessary to propose accurate computational tools to assist auscultation, especially in developing
countries. Artificial intelligence technology can be an efficient diagnostic tool for detecting cardiovas-
cular disease. This work proposed an automatic multiple classification method for cardiovascular
disease detection by heart sound signals. Methods and results: In this work, a 1D heart sound signal
is translated into its corresponding 3D spectrogram using continuous wavelet transform (CWT). In
total, six classes of heart sound data are used in this experiment. We combine an open database
(including five classes of heart sound data: aortic stenosis, mitral regurgitation, mitral stenosis, mitral
valve prolapse and normal) with one class (pulmonary hypertension) of heart sound data collected
by ourselves to perform the experiment. To make the method robust in a noisy environment, the
background deformation technique is used before training. Then, 10 transfer learning networks
(GoogleNet, SqueezeNet, DarkNet19, MobileNetv2, Inception-ResNetv2, DenseNet201, Inceptionv3,
ResNet101, NasNet-Large, and Xception) are used for comparison. Furthermore, other models (LSTM
and CNN) are also compared with our proposed algorithm. The experimental results show that four
transfer learning networks (ResNet101, DenseNet201, DarkNet19 and GoogleNet) outperformed their
peer models with an accuracy of 0.98 to detect the multiple heart diseases. The performances have
been validated both in the original heart sound and the augmented heart sound using 10-fold cross
validation. The results of these 10 folds are reported in this research. Conclusions: Our method ob-
tained high classification accuracy even under a noisy background, which suggests that the proposed
classification method could be used in auxiliary diagnosis for cardiovascular diseases.

Keywords: heart sound signal; continuous wavelet transform; transfer learning; data augmentation;
multiple label classification

1. Introduction

Heart disease morbidity and mortality are increasing year after year. Meanwhile, heart
disease has become a serious disease threatening human health. There are various methods
for diagnosing cardiovascular diseases [1]. Among them, the most common methods are
electrocardiograms (ECG) and phonocardiograms (PCG), which are used for detection of
heart diseases. ECG can evaluate the condition of the heart work directly. However, in some
cases, the ECG cannot reflect all existing disorders, such as the presence of heart murmurs [2].

In the clinical examination, the doctors first listen to the sounds on the surface of the
patients’ chest by the stethoscope. These sounds are called heart sounds (HSs), and the
recording of the HSs is called phonocardiogram (PCG). The PCG can reflect the condition of
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the cardiovascular system comprehensively, which contains pathological or physiological
information of the heart. Therefore, PCG has great value in assisting doctors to diagnose or
analyze different kinds of heart diseases [3].

As we know, there are four valves (the mitral valve, tricuspid valve, pulmonary valve,
aortic valve) in the heart. If there is a problem with these heart valves opening or closing,
there will be damage to the heart which may cause heart valve disease. Heart valvular
diseases usually involve mitral stenosis (MS), mitral regurgitation (MR), aortic stenosis (AS),
and mitral valve prolapse (MVP). These different heart valvular diseases reflect different
features on heart sounds.

Mitral stenosis: Mitral stenosis will cause rheumatic heart disease. Diastolic blood
flows from the left atrium through the narrow mitral valve to the right ventricle. It will
generate low-pitched murmurs. The murmur can be heard best at the apex.

Mitral regurgitation: The murmur of mitral regurgitation is generated as blood regur-
gitates from the left ventricle to left atrium. The first heart sounds (S1s) are very soft. We
can hear a pan-systolic murmur best at the apex of heart.

Aortic stenosis: The murmur of aortic stenosis is a systolic ejection murmur that peaks
early in systole. It is heard best at the second right interspace.

Mitral valve prolapse: If mitral valve prolapse is present, then a mid-systolic click may
be heard, followed by a late systolic murmur.

In addition, we also provide the data on patients of pulmonary hypertension (PH).
Pulmonary hypertension: PH is a hemodynamic and pathophysiological condition in

which the pulmonary artery pressure rises above a certain threshold. Symptoms of heart
sound findings include augmented second heart sound (such as P2 component), tricuspid
regurgitant, and the third heart sound (S3) gallop.

However, doctors are not always able to diagnose heart diseases accurately by simply
listening or observing a HS record. For this reason, studies on PCG have been increased to
make it easier for doctors to make a diagnosis. In recent years, computer-assisted detection
technology for the processing and analysis of heart sound signals have made remarkable
achievements and aroused great interest [4–8].

Currently, smart detection of PCG technology has not been widely used in real-
life clinical diagnosis, and the main method used for detection of heart sounds is still
artificial auscultation. Therefore, research and application of computer-aided heart sound
detection techniques will greatly facilitate the development in the field of cardiovascular
disease diagnosis. From the existing research literature, there were mainly four strides
used to detect cardiovascular disease: (1) pre-processing of the heart sound signals, (2)
segmentation of the first heart sounds (S1s) and the second heart sounds (S2s) or division
of cardiac cycles, (3) extraction of features, and (4) recognition of normal and abnormal HS
recordings. In general, manual operation or algorithms extract the key features from PCG
signals first. Then, they compare the monitoring sequence of the patients with the tagged
database. At last, more intuitive diagnostic results can be obtained automatically.

In early years, many researchers paid close attention to the location of the boundaries of
HS components (such as: S1s and S2s) [9–15]. However, these segmentation methods may be
inaccurate with the massive growth of databases today. If the segmentation is inaccurate, then
the detection of cardiovascular disease will even be more inaccurate. Therefore, most of the
current methods are based on feature extraction to detect heart diseases instead of segmentation
of S1s and S2s. In our research, we classify the PCGs without segmentation of HSs.

In the feature-extraction stage, it is worth noting that some of the features of one-
dimensional signals are similar in diverse cardiovascular diseases. These similar features
may influence the results of the multi-classification. As a consequence, it is particularly
important to magnify the variedness in different features of the heart diseases. Many
researchers have extracted manual features [16–18]. Most of these handcrafted features
have physiological explanations, such as the amplitude, time interval, kurtosis, energy
ratio, MFCC, and entropy etc. These features have usually been used to conduct binary
classification (normal PCG vs. abnormal PCG) by previous researchers. The computation
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of these manual features is small and simple, but may be not good at multi-classification
and new databases. For deep networks with complex and deep structures, the classification
effect may be poor. Hence, deep features are needed for multi-classification of heart diseases.
Some researchers have used deep-learning models to extract deeper features automatically,
such as CNN or other ANN models [19–21]. Additionally, their results were better than the
results of manual features extraction.

Table 1 shows a detailed comparison with some recent existing excellent work. How-
ever, there are some limitations in the field of HSs classification due to the few clinical
databases. Additionally, most of the studies have focused on binary classification. At the
same time, most of the validation and training was based on one single database (such as
PASCAL or Open heart sound database). This is because of the absence of multi-labels heart
sound databases and corresponding annotations of the categories of heart sounds from the
databases. To solve this problem, we combine the databases from the website [22] with the
data collected by ourselves together, which have six categories of heart sound signals in
total (normal, mitral stenosis, mitral regurgitation, mitral valve prolapse, aortic stenosis and
pulmonary hypertension). Furthermore, in our research, the proposed method is validated
based on data augmentation condition. This works very well under the different noise
recordings based on the heart sound augmentation method.

Table 1. A comparative performance of existing work for the cardiac disease classification.

Year Related Work Database Condition Feature
Extraction Method Accuracy

2021 Haoran Kui et al. [17] Collected by
themselves

Two and
four classes MFSC CNN

93.89%
(two-classes);
86.25% (multi-

classes)

2021 Omer Deperlioglu et al. [18] PASCAL
B-training

Three
classes Instant energy

Stacked
autoencoder

network
99.61%

2020 Neeraj Baghel et al. [21] Yaseen
database Five classes 7-conv-layers Improved network

architecture 98.60%

2018 Yaseen et al. [22] Yaseen
database Five classes MFCC+DWT SVM, DNN, KNN 97%

2021 Suyi Li et al. [23] PhysioNet
database Two classes

Time–
frequency

feature fusion

Lightweight neural
network model 95.50%

2021 Vinay Arora et al. [24]
PhysioNet 2016

and PASCAL
2011

Two classes CWT

MobileNet,
Xception, VGG16,
ResNet, DenseNet,
and InceptionV3

92.96%

2021 Turker Tuncer et al. [25] Yaseen
database Five classes Petersen graph

pattern

Decision tree, linear
discriminant,

bagged tree, and
support vector

100%

2021 Mohanad Alkhodari et al. [26] Yaseen
database Five classes

Maximal
overlap discrete

wavelet
transform

CNN-BiLSTM
network 97.87%

2018 Omer Deperlioglu et al. [27] PASCAL Three
classes Heartbeat CNN 97.9%

Note: MFCC (Mel-Frequency Cepstrum Coefficient); MFSC (Mel-frequency spectral coefficients); DWT (Discrete
Wavelet Transform).

This paper is organized as follows: Part 2 introduces the two databases applied in
our research. Part 3 describes the detailed method, such as the CWT for the creation of the
time–frequency images and the transfer learning models with the augmented databases.
Part 4 describes the results of the 10 transfer learning models. At the same time, the transfer
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learning models have compared the results with other multi-classification results. Part 5
contains the conclusion of this paper’s proposed method.

2. Database Details

(Database A) The phonocardiogram database [22] is used as one of our databases. The
database includes 1000 audio recordings (the exact number of people is unclear) which
are in the format of wav audio. The sampling rate is 8000 Hz. There are five categories
of heart sound signals, which are normal (N) and four major valvular heart diseases:
mitral stenosis (MS), mitral valve prolapse (MVP), mitral regurgitation (MR), aortic stenosis
(AS). Each category has 200 HS recordings (200 audio recordings/per category). The
duration of heart sound signals ranges from 1.1556 s to 3.9929 s in the database A. We
take the HS signal time length up to 1.1556 s according to the minimum time length of
HS signal in database A. The database of the five categories of original heart sounds can
be obtained at: https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-
Using-Multiple-Features-/blob/master/README.md (accessed on 10 September 2021).

(Database B) The second database was collected at the Second Hospital of Dalian
Medical University. All the subjects were informed to the study and signed the study
participation consent. The database B contains 74 PH subjects, including 102 recordings in
total. The sampling rate is 2000 Hz. We select two non-overlapping segments according to
the time length of 1.1556 s from each original recording randomly in database B. Therefore,
there are 204 recordings after we re-split the recordings. To be consistent with the numbers
in database A, we select the first 200 heart sound recordings as database B.

The details of the two given databases are described in Table 2. Additionally, typical ex-
amples of the PCG signals of the represented classes are shown in Figure 1. The PH database
can be obtained at: https://github.com/wangmiao1992/pulmonary-hypertension-database/
tree/main (accessed on 12 January 2022).

Table 2. Original heart sound database.

Heart Disease Recording Size Sample Frequency

Normal (N) 200 8000 Hz
Aortic Stenosis (AS) 200 8000 Hz

Mitral Regurgitation (MR) 200 8000 Hz
Mitral Stenosis (MS) 200 8000 Hz

Mitral Valve Prolapse (MVP) 200 8000 Hz
Pulmonary Hypertension (PH) 200 (with 74 subjects) 2000 Hz
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3. Methodology

The main objective of this work is to apply transfer leaning networks to detect major
cardiac diseases using HS recordings automatically. Figure 2 is the framework of this paper
proposed approach. In summary, the research is divided into four steps: (1) Acquire the
heart sound recordings, one is from the online database and the other one is PH subjects’
recordings collected by ourselves from the hospital; (2) Signal pre-processing including
denoising, amplitude normalization and data augmentation; (3) One-dimensional heart
sound signal is converted to three-dimensional time–frequency image which can help to
improve the performance of the multi-classification results; (4) Apply transfer learning
architectures to classify these images for training and testing the models in 10-fold cross
validation. The proposed flow path could be used for multi-classification diagnosis of
major heart diseases by PCG signals automatically.
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The details on the programming used in the experiments are already uploaded
to GitHub. Please check the website: https://github.com/wangmiao1992/pulmonary-
hypertension-database/tree/main (accessed on 12 January 2022).

Furthermore, the software platform to run the proposed method is based on Matlab 2021a.

3.1. Signal Preprocessing

The sampling frequency of database A is 8000 Hz. However, the sampling frequency of
database B is 2000 Hz. We only conduct preprocessing of database B and retain the original
signal of database A. To eliminate the difference in sampling frequency, the sampling
frequency of database A is reduced to 2000 Hz. Then, each heart sound signal in the two
databases has fixed sample length of 2312.

The signal quality of the database A is good, while the heart sound recordings from
database B include slight noise. As we know, the frequency of heart sound signal is usually
between 50 Hz and 150 Hz [28]. Digital filters can be used to remove the low- and high-frequency
components. In this paper, the HS signals pass a third-order Butterworth filter with bandwidth
in the range of 15 Hz to 150 Hz and reverses the filtered sequence and runs it back through the

https://github.com/wangmiao1992/pulmonary-hypertension-database/tree/main
https://github.com/wangmiao1992/pulmonary-hypertension-database/tree/main
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filter to remove the noise outside the bandwidth and avoid time delay. Subsequently, the signals
in both database A and database B are normalized using Equation (1).

Xnorm =
x

|xmax|
(1)

3.2. PCG Augmentations

Heart sound signal is a time series signal, its characteristics and individual differences
hinder the application of the traditional data augmentation methods in the field of heart
sound signal. Hence, how to explore a more effective and more suitable augmentation
method from the original heart sound signal is an important problem for building of the
multi-label heart sound diagnosis system.

The operation process of data augmentation usually included flip, rotate/reflection,
shift, zoom, contrast, color and noise disturbance [29–31]. However, these data augmenta-
tion methods in the image field only change basic information such as position and angle
from a macro perspective, and these methods can only apply in the field of simple computer
vision methods such as image recognition, which can not be applied to data augmentation
of heart sound signals.

In this research, the PCG augmentation method applies a 1D signal augmentation
mechanism. The augmentation method includes HS signals under various cases in order to
recognize the model with stronger generalization performance. The methodology explores
background formations, and at the same time the transfer learning models are able to
categorize various heart sound signals even in a noisy circumstance.

There is a given heart sound signal represented as ‘original_signal’. At the same time,
the same-size background transformations are generated stochastically. The background
transformation is displayed as ‘random_signal’, where the ‘delta’ represents the parameter
of the deformation control. The background deformation ‘delta’ belongs to the interval
“(0,1)". An augmented signal is calculated based on Equation (2), which is generated based
on the random background noise mixed with the original heart sound signal. It should be
noted that in the testing unit there is no data augmentation. Figure 3 describes the effect
of the data augmentation. Figure 3a represents the original heart sound signal; Figure 3b
represents the augmented heart sound signal through the Equation (2); Figure 3c represents
the denoised signal of the Figure 3b. Table 3 summaries the recording distribution after
data augmentation. Finally, the database contains 2400 PCG recordings in total. There are
400 PCG recordings in each class.

augmentation_signal = original_signal + delta ∗ random_signal (2)
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Table 3. Recording distribution after data augmentation.

Heart Disease Recording Size Sample Frequency

Normal (N) 400 8000 Hz
Aortic Stenosis (AS) 400 8000 Hz

Mitral Regurgitation (MR) 400 8000 Hz
Mitral Stenosis (MS) 400 8000 Hz

Mitral Valve Prolapse (MVP) 400 8000 Hz
Pulmonary Hypertension (PH) 400 2000 Hz

3.3. Creating Time–Frequency Representations

Time–frequency transformation is a common approach in the classification of speech
events to extract a time–frequency representation of sound. Time–frequency representation
is to convert a one-dimensional signal into a three-dimensional image representation. After
that, the features extracted from the transformation are used to identify the most likely
source of sound. Based on the investigation in [32], the authors conclude that among three
time–frequency representations (short-time Fourier transform (STFT), Wigner distribution,
and continuous wavelet transform (CWT)), CWT gives the clearest presentation of the
time–frequency content for PCG signals.

The CWT spectrogram is produced by Morse analysis. A magnitude spectrogram of
the heart sound signal is calculated for each sample. These spectrograms are used to train
and test the transfer learning models. The CWT of a heart sound signal x(t) is defined in
(3), and Equation (4) is the Morse analytic wavelet:

W(a, b) =
∫ ∞

−∞
x(t)

1√
a

ψ(
t− b

a
)dt (3)

ψ(t) = e−t2
cos(π

√
2

ln 2
t) (4)

where x(t) is a heart sound signal, ψ(t) is the mother wavelet, and a and b are the param-
eters that manage the scaling and translation of the wavelet, respectively. The CWT is
calculated by varying a and b continuously over the range of scales and the length of the
heart sound signal, respectively.

The CWT provide superior time and frequency resolution. This allows for different-
sized analysis windows at different frequencies. The spectrograms of the heart sound
signals show the frequencies at different times and provide an optical presentation that can
be used to tell apart the various heart sounds. The CWT creates 3D scalogram data and they
are stored as RGB images. To match the inputs of different transfer learning architectures,
each RGB image is resized to an array of size n-by-m-by-3. For example, for the GoogLeNet
architecture, the RGB image is resized to an array of size 224-by-224-by-3. The six typical
spectrograms of HS signal are shown in Figure 4. Figure 4a represents the spectrogram of
the original heart sound signals; Figure 4b represents the spectrogram of the augmented
heart sound signals.
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3.4. Architecture of Transfer Learning for PCG Multiple Classification

Transfer learning aims at utilizing the acquired knowledge on target domains to
address other problems in different but related areas. This approach may be a better choice
than some simple structures of CNN models. However, transfer learning is rarely reported
and considered for classifying PCG signals.

In this work, the heart sound signal is converted into its corresponding pattern based
on CWT spectrogram, and two syncretic databases of HS signals are taken as one database to
perform experimentation. The 10 existing transfer learning models (Squeezenet, Googlenet,
NasNet-Large, Inceptionv3, Densenet201, DarkNet19, Mobilenetv2, Resnet101, Xception
and Inceptionresnetv2) are used to classify the heart sound signals into six categories
(N, AS, MR, MS, MVP, PH). These parameters of transfer learning models are shown in
Table 4. It is worth noting that the different transfer learning models have different image
input sizes, therefore the generated images should follow the input size of the models.
Table 4 shows the image input sizes of the models. Additionally, Figure 5 illustrates the
flow chart of transfer learning.

Table 4. Overall view of the transfer learning models used in this study.

No. Network Depth Size Parameters
(million)

Image Input
Size

1 Squeezenet 18 5.2 MB 1.24 227 × 227 × 3
2 Googlenet 22 27 MB 7.0 224 × 224 × 3
3 Inceptionv3 48 89 MB 23.9 299 × 299 × 3
4 Densenet201 201 77 MB 20.0 224 × 224 × 3
5 Mobilenetv2 53 13 MB 3.5 224 × 224 × 3
6 Resnet101 101 167 MB 44.6 224 × 224 × 3
7 Xception 71 85 MB 22.9 299 × 299 × 3
8 Inceptionresnetv2 164 209 MB 55.9 299 × 299 × 3
9 nasnetlarge * 332 MB 88.9 331 × 331 × 3
10 darknet19 19 78 MB 20.8 256 × 256 × 3

* The nasnetlarge networks do not consist of a linear sequence of modules.
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In this research, the pre-trained transfer learning networks’ parameters are modified
and some of the architectures are fine-tuned. The earlier layers identify more common
features of images, such as blobs, edges, and colors. Subsequent layers focus on more
specific characteristics in order to differentiate categories.

For example, the original GoogLeNet is pretrained to categorize various pictures into
1000 target categories. However, in this research filed, we retrain GoogLeNet for solving
the problem of PCG classification. To prevent over-fitting of the transfer learning model,
a dropout layer is used. The final dropout layer (‘pool5-drop_7x7_s1’) is replaced for a
dropout layer of probability 0.6. Furthermore, we also replace the layers of ‘loss3-classifier’
and ‘output’ with a new fully connected layer to adapt to the new data. At last, the learning
rate factor is increased to 0.001. This is an iterative processing for training a neural network
for minimizing the loss function. A gradient descent algorithm is used to minimize the loss
function. In each reiteration, the loss function gradient is assessed, and at the same time
the weight of the drop algorithm is updated. We set mini-batch size to 10 and max epochs
to 15. In this paper, the stochastic gradient descent with momentum optimizer is applied.
The other transfer learning models have the same settings as above.

The analysis and model development are performed in a workstation with hardware/
software configuration and specification as follows: DELL(R) Precision T3240 i7-10700, Graphical
Processing Units (GPU) NVIDIA Quadro RTX3000, 64GB RAM, and 64-bit Windows 10.

3.5. Model Training and Testing

The proposed methods used diverse HS data for training, validation and testing. The
training and testing are based on 10-fold cross validation. In this research, nine folds are
used for training the transfer learning models while one fold is used for testing. The process
iterates repeatedly to ensure the coverage of the entire database for training and testing
conditions. The choice of each fold is not based on independent subjects, because all the
recordings of the patients are put in one collection. The training data includes all of the
augmented data and 90% of the original heart sound data (There are 3800 heart sound
recordings which include 2000 augmented heart sound recordings and 1800 original heart
sound recordings). The testing data only include 10% of the original heart sound data
(includes 200 original recordings).

3.6. Assessment Indicators

To evaluate the performance of the methodology in this paper, four indicators, accuracy,
precision, recall and Fl-score, are used. Accuracy (ACC) is the indicator of all the correct
recognition events. Precision and recall are powerful estimations when the database is
quite imbalanced. Additionally, the F1_score is defined as the harmonic mean of precision
and recall. The equations of the performance are calculated as follows:

ACC =
True_Positive + True_negative

True_Positive + True_negative + False_Positive + False_negative
(5)

Precision =
True_Positive

True_Positive + False_Positive
(6)



J. Cardiovasc. Dev. Dis. 2022, 9, 86 10 of 17

Recall =
True_Positive

True_Positive + False_negative
(7)

F1_score = 2× Precision× Recall
Precision + Recall

(8)

4. Experiment Results and Discussions
4.1. Experiment Results

Table 5 shows one transfer learning model’s result—the accuracy with loss of the
GoogleNet training and testing in the augmented PCG database and the original PCG database,
respectively. The experiment is performed on the 10-fold cross validation. Here, in Table 5,
there are some parameters, such as train samples, test samples, training accuracy (Acc), testing
accuracy (Val Acc), training loss (Loss) and testing loss (Val Loss) on each fold. Table 5a shows
10-fold cross validation results on the augmented PCG database. Table 5b shows 10-fold cross
validation results on the original database. It is visible from the Table 5a,b that the proposed
methods achieve an average of 98% accuracy in classification of six categories both with the
augmented data training and the original data training. The results of the PCG database
show the efficiency of this method. Furthermore, we also evaluate the impact of the PCG
augmentation method with additional background deformation.

Table 5. (a) Results of 10-fold cross validation on augmented heart sound database on GoogleNet.
(b) 10-fold cross validation result on the original dataset on GoogLeNet.

(a)

Fold Train Samples Test Samples Acc Val Acc Loss Val Loss

1 2280 120 1.00 0.99 0.10 0.07
2 2280 120 1.00 0.99 0.12 0.10
3 2280 120 1.00 0.98 0.09 0.02
4 2280 120 1.00 0.95 0.14 0.12
5 2280 120 1.00 0.98 0.19 0.04
6 2280 120 1.00 0.98 0.15 0.04
7 2280 120 1.00 0.98 0.13 0.06
8 2280 120 1.00 0.98 0.16 0.14
9 2280 120 1.00 0.98 0.16 0.05

10 2280 120 1.00 0.99 0.10 0.07
Mean 0.98

(b)

Fold Train Samples Test Samples Acc Val Acc Loss Val Loss

1 1080 120 0.98 0.98 0.00 0.2
2 1080 120 1.00 0.98 0.00 0.3
3 1080 120 1.00 0.98 0.1 0.07
4 1080 120 1.00 0.95 0.00 0.02
5 1080 120 1.00 0.97 0.00 0.05
6 1080 120 1.00 0.97 0.00 0.08
7 1080 120 1.00 0.98 0.00 0.09
8 1080 120 1.00 0.99 0.00 0.10
9 1080 120 1.00 0.98 0.00 0.06

10 1080 120 1.00 0.98 0.00 0.06
Mean 0.98

Figures 6 and 7 represent the confusion matrix for the entire 10-fold with multiple
classification estimations. At the same time, Table 6 shows the performance (precision,
recall and Fl-score) of the GoogleNet structure for the multiple classifications of different
heart diseases for all 10 folds with various indicators on the augmented PCG database and
on the original PCG database.
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Figure 7. 10-fold cross validation of confusion matrix for the GoogleNet model on original heart
sound database. The accuracy of each fold is: (a): 0.98; (b): 0.98; (c): 0.97; (d): 0.98; (e): 0.98; (f): 0.98;
(g): 0.95; (h): 0.97; (i): 0.99; (j): 0.98.

Table 6. Results for multiple class classification on GoogleNet.

Performance
Indicators

Results on an Augmented Database Results on an Original Database

AS MR MS MVP N PH AS MR MS MVP N PH

Fold 1
Precision 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 1.00

Recall 1.00 1.00 1.00 0.95 1.00 1.00 0.95 0.95 1.00 1.00 1.00 1.00
F1-Score 0.98 1.00 1.00 0.97 1.00 1.00 0.97 0.95 1.00 0.98 1.00 1.00

Fold 2
Precision 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00

Recall 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00
F1-Score 0.98 0.97 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00

Fold 3
Precision 1.00 0.95 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91

Recall 1.00 1.00 0.90 1.00 1.00 0.95 1.00 1.00 1.00 0.90 1.00 1.00
F1-Score 1.00 0.98 0.92 0.98 1.00 0.97 1.00 1.00 1.00 0.95 1.00 0.95

Fold 4
Precision 0.83 1.00 1.00 0.95 1.00 0.95 1.00 0.86 1.00 0.90 1.00 0.95

Recall 1.00 0.80 0.90 1.00 1.00 1.00 0.95 0.90 0.95 0.90 1.00 1.00
F1-Score 0.91 0.89 0.95 0.98 1.00 0.98 0.97 0.88 0.97 0.90 1.00 0.98
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Table 6. Cont.

Performance
Indicators

Results on an Augmented Database Results on an Original Database

AS MR MS MVP N PH AS MR MS MVP N PH

Fold 5
Precision 1.00 1.00 0.95 0.91 1.00 1.00 1.00 1.00 0.87 0.95 1.00 1.00

Recall 1.00 0.95 1.00 1.00 1.00 0.90 1.00 0.95 1.00 0.95 1.00 0.90
F1-Score 1.00 0.97 0.98 0.95 1.00 0.95 1.00 0.97 0.93 0.95 1.00 0.95

Fold 6
Precision 0.91 1.00 0.95 1.00 1.00 1.00 0.95 1.00 0.95 0.95 1.00 0.95

Recall 1.00 0.90 1.00 0.95 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00
F1-Score 0.95 0.95 0.98 0.97 1.00 1.00 0.92 1.00 0.98 0.92 1.00 0.98

Fold 7
Precision 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 0.91 1.00 1.00 1.00

Recall 1.00 0.95 1.00 0.90 1.00 1.00 1.00 0.95 1.00 0.90 1.00 1.00
F1-Score 0.98 0.97 1.00 0.92 1.00 0.98 1.00 0.95 0.95 0.95 1.00 1.00

Fold 8
Precision 0.87 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00

Recall 1.00 0.85 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00
F1-Score 0.93 0.92 1.00 1.00 1.00 1.00 0.97 0.98 1.00 1.00 1.00 1.00

Fold 9
Precision 1.00 0.95 1.00 0.91 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00

Recall 1.00 0.90 1.00 1.00 1.00 0.95 1.00 1.00 0.90 1.00 1.00 1.00
F1-Score 1.00 0.92 1.00 0.95 1.00 0.97 1.00 0.95 0.95 1.00 1.00 1.00

Fold 10
Precision 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95

Recall 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00
F1-Score 1.00 1.00 0.98 0.97 1.00 1.00 1.00 0.98 1.00 0.95 1.00 0.98

Figure 8 shows the receiver operating characteristic (ROC) curve for the GoogleNet model
results of multiple classifiers for six categories of heart sounds with AUC area. There are six
colors which represent different categories of heart sounds. Figure 8a shows the ROC curve on
the augmented PCG database; Figure 8b shows the ROC curve on the original PCG database.
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Figure 8. ROC curve for (a) the augmented heart sound classification based on GoogleNet; (b) the 

original heart sound classification based on GoogleNet. 
Figure 8. ROC curve for (a) the augmented heart sound classification based on GoogleNet; (b) the
original heart sound classification based on GoogleNet.

Figure 9 shows the comparison of the different confusion matrices for the multi-
classification by the other transfer learning models, such as Xception convolutional neural
network, NASNet-Large convolutional neural network, resnet101, inceptionv3, densenet201,
Inception-ResNet-v2, mobilenetv2, darknet, and squeezenet. Table 7 presents the accuracy,
recall, precision, and F1-scores corresponding to these transfer learning models, where
the results show that the Resnet101, Densenet201, Darknet and the model before we used
GoogleNet obtained good accuracy in comparison with peer approaches.
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Figure 9. Comparison of confusion matrix results of nine categories of transfer learning models.
(a) Xception convolutional neural network; (b) NASNet-Large convolutional neural network; (c) resnet101;
(d) inceptionv3; (e) densenet201; (f) Inception-ResNet-v2; (g) mobilenetv2; (h) darknet; (i) squeezenet.

Table 7. Nine transfer learning models of classification performance based on augmented heart
sound database.

Models ACC Performance
Results on an Augmented Database

AS MR MS MVP N PH

xception 0.90
Precision 0.86 0.94 0.86 0.94 1.00 0.86

Recall 0.95 0.8 0.9 0.85 1 0.95
F1-Score 0.90 0.86 0.88 0.89 1.00 0.90

Resnet101 0.98
Precision 1.00 1.00 0.95 1.00 1.00 0.95

Recall 1.00 0.95 0.95 1.00 1.00 1.00
F1-Score 1.00 0.97 0.95 1.00 1.00 0.98

NASNet_large 0.92
Precision 0.95 1.00 0.94 0.77 1.00 0.95

Recall 0.90 0.85 0.85 1.00 1.00 0.95
F1-Score 0.92 0.92 0.89 0.87 1.00 0.95

Inception-v3 0.94
Precision 0.95 0.94 0.86 1.00 1.00 0.91

Recall 1.00 0.75 0.95 0.95 1.00 1.00
F1-Score 0.98 0.83 0.90 0.97 1.00 0.95
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Table 7. Cont.

Models ACC Performance
Results on an Augmented Database

AS MR MS MVP N PH

DenseNet-201 0.98
Precision 1.00 1.00 0.95 1.00 1.00 0.95

Recall 1.00 0.95 1.00 0.95 1.00 1.00
F1-Score 1.00 0.97 0.98 0.97 1.00 0.98

Inception-
ResNet-v2

0.95
Precision 0.79 0.95 1.00 1.00 1.00 1.00

Recall 0.95 1.00 1.00 0.75 1.00 1.00
F1-Score 0.86 0.98 1.00 0.86 1.00 1.00

MobileNet-v2 0.95
Precision 1.00 0.95 0.86 0.95 1.00 0.95

Recall 1.00 0.95 0.95 0.90 1.00 0.90
F1-Score 1.00 0.95 0.90 0.92 1.00 0.92

Darknet19 0.98
Precision 1.00 1.00 0.91 1.00 1.00 1.00

Recall 1.00 0.95 1.00 0.95 1.00 1.00
F1-Score 1.00 0.97 0.95 0.97 1.00 1.00

Squeezenet 0.97
Precision 0.95 0.95 1.00 1.00 0.91 1.00

Recall 1.00 1.00 1.00 0.80 1.00 1.00
F1-Score 0.98 0.98 1.00 0.89 0.95 1.00

4.2. Experiment Discussions

The methods proposed by the authors have only considered one depiction of heart
sound signals, which is spectrogram from the HSs. The spectrogram is an image represen-
tation of sound signals in the time–frequency domain. The inputted heart sound signals
have been first converted into the respective spectrogram and then are classified further
into six categories using the transfer learning models.

In addition, Table 8 describes the other methods without transfer learning. It shows
the accuracy of other methods compared with the transfer learning models in the multiple
classification of heart diseases. The comparison of these different methods is performed
on the same database. However, the result from Table 8 shows that the accuracy is very
low. We conduct two controlled trials: (1) Original 1D PCG signals are inputted into the
Bi-LSTM network for six categories of heart sound classification, but an accuracy of only
21.67% is achieved; (2) The 3D images of the heart sound spectrogram are inputted into the
simple CNN network only with three convolution layers, and the accuracy is only 76.67%.

Table 8. Results for multiple class classifications based on other deep-learning networks.

Models Network Architecture Features Accuracy

Bi-LSTM
fully connected layer of size 2, a

softmax layer, the maximum
number of epochs is 30.

Original
one-dimensional PCG

signals
21.67%

CNN

3 convolution layer, each layer
contains a normalized RELU,

MaxPooling, fully connected layer,
and Softmax. The maximum

number of epochs is 15.

Spectrogram of the
PCG signals 76.67%

Compared with B-mode ultrasonography, nuclear magnetic resonance imaging, com-
puted tomography and so on, phonocardiography has the characteristics of being non-
invasive, non-destructive, good repeatability, simple operation and low cost, which could
be applied for the prevention, preliminary diagnosis and long-term monitoring of related
diseases. With the development of digital medical technology and biological technology,
researchers have increased the demands on the processing and analysis of heart sound
signal in related fields. Automatic analysis methods for processing of medical sequence



J. Cardiovasc. Dev. Dis. 2022, 9, 86 15 of 17

signals can share the responsibility and pressure of the medical domain, and provide
long-term monitoring of disease. At the same time, they can help medical staff to grasp
the condition better then work out plans for disease prevention and treatment. Thereby,
doctors can enhance the overall health of society.

Despite advancements in the automatic diagnosis of heart sounds domain, there are
still some limitations to be overcome to develop this technology further. For example,
database deficiencies, huge feature extraction and low accuracy in multiple classification
of heart disease. Solving these challenges can allow deep-learning technology to obtain a
huge breakthrough in the field of human health. In our paper, we provide a heart sound
database of pulmonary hypertension which is the first heart sound database related to
pulmonary hypertension. Furthermore, feature extraction of heart sounds often takes a lot
of time to acquire, which is a limitation. For this reason, we also proposed one-dimensional
signal transfer to the three-dimensional image for training and testing, which can generate
features automatically by a convolution layer in the heart sound domain. At last, we
propose transfer learning technologies to diagnose multiple heart sounds and obtain a
good performance. This overcomes the independent learning pattern through applying
previously learned knowledge to solve similar problems. It is important for small-sample-
size data to use transfer learning in the artificial intelligence domain because the pre-trained
weights can be more efficient in training and obtain a better performance.

In this work, we suspect that the diversity of the augmented data can contribute to the
networks’ ability to generalize to unseen data during the training stage. Data augmentation
can improve the robustness of training. Comparison is made with traditional methods and
transfer learning. In all experiments, the transfer leaning networks performed better on the
task than other simple networks (such as Convolutional Neural Network and Long Short-
Term Memory Network), as shown by several performance metrics. This approach has the
potential to provide physicians with an efficient and accurate means to triage patients.

The proposed approach would have a significant impact in clinical situations by
assisting medical doctors in decision making regarding different kinds of heart diseases.
Our model performs efficiently in predicting the occurrence of an abnormality in a recorded
signal. Moreover, it is tested on specific valvular diseases and patients with pulmonary
hypertension who are not easily diagnosed early.

In summary, there are three contributions of this work. (1) The first is that we provide
a new type of heart sound database (PH database). Additionally, our methods are validated
under different conditions of HS databases. (2) The second is that we use a HS data
augmentation strategy for completely automatic heart disease diagnosis. The method of
augmentation improves the robustness of the heart diseases diagnosis, especially in noisy
environments. (3) According to the published literature, transfer learning is rarely applied
in the field of heart sound classification. We use 10 transfer learning models to verify the
classification methods. We obtain a low error rate and great accuracy (0.98 accuracy for six
categories of heart sounds) for multiple classification of heart diseases, which help to cope
with multiple classification issues.

5. Conclusions

Heart sound signals carry important information about the function of heart valves
during heartbeats. Therefore, these signals are very important in diagnosing heart problems
at an early stage. To detect heart problems with great precision, we apply the transfer
learning architectures based on the CWT method under background deformation for
classifying PCG. In total, we use 10 transfer learning models to build the methods. The
classification results are good even they are validated by a fusion of two different databases.
The results show the method is robust. This may be particularly useful in remote areas or
community hospital screening activities.
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