
Citation: Gerbasi, A.; Konduri, P.;

Tolhuisen, M.; Cavalcante, F.; Rinkel,

L.; Kappelhof, M.; Wolff, L.;

Coutinho, J.M.; Emmer, B.J.; Costalat,

V.; et al. Prognostic Value of

Combined Radiomic Features from

Follow-Up DWI and T2-FLAIR in

Acute Ischemic Stroke. J. Cardiovasc.

Dev. Dis. 2022, 9, 468. https://

doi.org/10.3390/jcdd9120468

Academic Editor: Narayanaswamy

Venketasubramanian

Received: 18 November 2022

Accepted: 15 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cardiovascular 

Development and Disease

Article

Prognostic Value of Combined Radiomic Features from
Follow-Up DWI and T2-FLAIR in Acute Ischemic Stroke
Alessia Gerbasi 1,* , Praneeta Konduri 2,3, Manon Tolhuisen 2,3 , Fabiano Cavalcante 3, Leon Rinkel 4,
Manon Kappelhof 3, Lennard Wolff 5, Jonathan M. Coutinho 4, Bart J. Emmer 3 , Vincent Costalat 6,
Caroline Arquizan 7, Jeannette Hofmeijer 8, Maarten Uyttenboogaart 9, Wim van Zwam 10 , Yvo Roos 4,
Silvana Quaglini 1, Riccardo Bellazzi 1, Charles Majoie 3 and Henk Marquering 2,3 on behalf of the MR
CLEAN-NO IV Trial Investigators (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute
Ischemic Stroke in The Netherlands)

1 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 PV Pavia, Italy
2 Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam,

1105 AZ Amsterdam, The Netherlands
3 Department of Radiology and Nuclear Medicine, Amsterdam UMC Location University of Amsterdam,

1105 AZ Amsterdam, The Netherlands
4 Department of Neurology, Amsterdam UMC Location University of Amsterdam,

1105 AZ Amsterdam, The Netherlands
5 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center,

3015 Rotterdam, The Netherlands
6 Department of Neuroradiology, Centre Hospitalier Universitaire de Montpellier, 34400 Montpellier, France
7 Department of Neurology, Centre Hospitalier Universitaire de Montpellier, 34400 Montpellier, France
8 Department of Neurology, Rijnstate Hospital, 6836 BH Arnhem, The Netherlands
9 Department of Neurology and Department of Medical Imaging Center, University Medical Center Groningen,

9713 GZ Groningen, The Netherlands
10 Department of Radiology and Nuclear Medicine, Maastricht University Medical Center,

6229 HX Maastricht, The Netherlands
* Correspondence: alessia.gerbasi01@universitadipavia.it

Abstract: The biological pathways involved in lesion formation after an acute ischemic stroke (AIS)
are poorly understood. Despite successful reperfusion treatment, up to two thirds of patients with
large vessel occlusion remain functionally dependent. Imaging characteristics extracted from DWI
and T2-FLAIR follow-up MR sequences could aid in providing a better understanding of the lesion
constituents. We built a fully automated pipeline based on a tree ensemble machine learning model
to predict poor long-term functional outcome in patients from the MR CLEAN-NO IV trial. Several
feature sets were compared, considering only imaging, only clinical, or both types of features. Nested
cross-validation with grid search and a feature selection procedure based on SHapley Additive
exPlanations (SHAP) was used to train and validate the models. Considering features from both
imaging modalities in combination with clinical characteristics led to the best prognostic model
(AUC = 0.85, 95%CI [0.81, 0.89]). Moreover, SHAP values showed that imaging features from both
sequences have a relevant impact on the final classification, with texture heterogeneity being the
most predictive imaging biomarker. This study suggests the prognostic value of both DWI and
T2-FLAIR follow-up sequences for AIS patients. If combined with clinical characteristics, they
could lead to better understanding of lesion pathophysiology and improved long-term functional
outcome prediction.

Keywords: acute ischemic stroke; functional independence; imaging bio-markers; machine learning;
ensemble tree classifier; explainable AI; SHAP
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1. Introduction

Stroke is the second leading cause of death worldwide, with ischemic stroke being the
most frequent type [1]. Acute ischemic stroke (AIS) is caused by thrombotic or embolic
occlusion of a cerebral artery leading to reduced blood supply to part of the brain and
consequent cell death. Treatments aim for the timely restoration of the blood supply to
the occluded artery. The standard of care involves administering thrombolytic drugs
(intravenous thrombolysis) followed by mechanical retrieval of the clot (endovascular
treatment). Currently, the choice of the best therapy is the subject of ongoing research.
Moreover, ischemic lesion evolution after stroke is a complex biological process. Notably,
a considerable proportion of patients do not experience clinical improvement despite
successful recanalization of the occluded artery and reperfusion of the ischemic area [2].

Although several well-known risk factors, such as lifestyle, common comorbidities,
and aging, have been already identified as related to stroke onset and severity, several
challenges remain open in this field, including the prediction of long-term prognosis and
the identification of biomarkers for common treatment complications, to name only a few.

Neuroimaging has significantly improved AIS management, with magnetic resonance
imaging (MRI) and computed tomography (CT) being the preferred imaging modalities.
The use of MRI is particularly associated with a significant decrease in the rates of com-
plications in AIS patients at the expense of only marginally increased length and cost of
hospitalization [3]. Moreover, MRI is the most sensitive noninvasive neuroimaging tech-
nique for assessing brain changes after stroke as well as in predicting recovery, especially
in the subacute stage [4]. Accurate functional outcome prediction after treatment is needed
in order to provide patients with a prognosis, plan rehabilitation programs, and provide
research avenues targeting secondary treatments [5,6].

Previous studies exploring the prognostic value of MRI features have identified the
size of the area with diffusion restriction and the apparent diffusion coefficient (ADC) as
being associated with clinical outcome. Furthermore, infarct volume measurements (in the
subacute phase between 14 h and 48 h) are predictors of long-term functional outcome,
measured in terms of 3-month modified Rankin Scale (mRS) [7–9]. A texture analysis based
on ADC maps and T2-FLAIR images highlighted an association between image texture
features and functional outcome [10].

It is not always easy to fully explain the reasons for poor functional outcome and
to timely predict its occurrence in AIS patients. In this context, the predictive power
of machine learning (ML) and deep learning (DL) models and their ability to extract
hidden patterns from neuroimages have been explored in several studies [11,12]. Most of
the published works focused on pre-treatment imaging features extracted from a single
imaging modality. However, a tool able to support the interpretation and prognostic
value assessment of follow-up neuroimaging sequences in the subacute stage would be
useful in clinical practice. There could be early detectable signs for unfavorable long-term
clinical outcome among follow-up imaging characteristics that could help to gain new
insights into the lesion evolution mechanism and its pathophysiology. MRI follow-up
protocols usually include DWI and T2-FLAIR sequences to assess ischemic lesion status
after treatment. DWI is considered the gold standard modality for evaluating the status
of the lesion in the subacute stage thanks to its ability to quantify the movement of water
molecules [13]. During ischemia, intracellular water accumulates in the injured cells
as a consequence of changes in the osmotic gradients caused by the malfunctioning of
the sodium–potassium pump. This results in a bright signal in MR diffusion imaging,
allowing the detection of infarction and cytotoxic edema. On the other hand, T2-FLAIR
is a structural imaging sequence in which T2 prolongation is commonly observed hours
after stroke. T2 prolongation is mainly related to increased water content in the ischemic
tissue, and usually represents vasogenic edema [14]. Although several prognostic models
have been proposed in the literature [15,16], lack of reproducibility and interpretability
of the prediction results is often the most critical aspect. Moreover, most of the related
works are single-center or single-country studies, and thus present a significant risk of
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bias. Finally, none of the previous studies have explored the prognostic value of combined
imaging features extracted from these two follow-up MR sequences; yet, these may actually
capture different aspects of stroke lesion status after treatment, and multimodal predictive
modeling approaches could lead to more accurate and reliable prognosis prediction from
a clinical perspective.

The aim of this study is to evaluate the prognostic value of the combination of two
follow-up MR sequences. We hypothesize that the prediction of stroke functional outcome
benefits from combined follow-up DWI and T2-FLAIR imaging features in terms of 90-day
mRS. We aim to build a complete prognostic model considering both follow-up imaging
features extracted from the two sequences and routinely available clinical characteristics,
thereby exploiting all patient data available up to 24 h. Finally, we are interested in
exploring the contribution of each feature to the prediction of the prognostic model and
studying the clinical interpretation of the identified imaging predictors.

2. Materials and Methods

The complete study workflow is schematized in Figure 1. We propose an image anal-
ysis pipeline, starting with the preprocessing of the MR scans and the infarct lesion seg-
mentation in DWI and T2-FLAIR sequences. Radiomic features are subsequently extracted
from the segmented lesions and combined with clinical characteristics in order to train and
validate an ensemble tree-based ML classifier for outcome prediction. Finally, the models’
interpretability is evaluated using SHapley Additive exPlanations (SHAP) [17].

Image Preprocessing

Radiomic Feature
Extraction

Clinical features 

DWI radiomic
features

T2-FLAIR radiomic
features

Model training (grid search + feature selection)

Model evaluation

Feature ranking (SHAP) 

Follow-up DWI Follow-up T2-FLAIR

Pr
ep

ro
ce

ss
in

g 
 

 

Modeling

Interpretation

DWI set
FLAIR set
Imaging set

Clinical set
Combination set

24-hours

*feature set

*feature set

Figure 1. Schematic representation of the study workflow. Follow-up DWI and T2-FLAIR scans are
preprocessed and radiomic features are extracted from the segmented lesions. Five different sets of
features are then used to train an ensemble tree-based ML classifier to predict binary 90-day mRS (0–2
vs. 3–6). Each set respectively includes: (1) only DWI radiomic features (DWI set), (2) only T2-FLAIR
radiomic features (FLAIR set), (3) both DWI and T2-FLAIR radiomic features (imaging set), (4) only
clinical characteristics (clinical set), and (5) a combination of all the radiomic features and the clinical
characteristics available up to 24 h (combination set). Finally, the models’ interpretability is evaluated
using SHapley Additive exPlanations (SHAP).

2.1. Data Collection

The patients included in this study were enrolled in the MR CLEAN-NO IV [18] trial,
which is a multicenter randomized clinical trial including 539 patients ≥ 18 years of age
with a pre-stroke mRS < 3 with an intracranial large vessel occlusion (LVO) confirmed
on CT/MR angiography within 4.5 h of symptom onset eligible for both intravenous
thrombolysis (IVT) and endovascular treatment (EVT). The patients were randomized
to receive IVT followed by EVT or EVT only. The follow-up imaging protocol included
NCCT or MRI at 24 h for all patients. A detailed description of the inclusion and exclusion
criteria is provided in the study protocol [19]. The trial was carried out in 20 hospitals in
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the Netherlands, Belgium, and France. Therefore, the slice thickness of the scans varied
(from 3 to 6 mm), and the field strength used for the acquisition was 1.5 or 3 Tesla.

Baseline clinical features, 24-h NIH Stroke Scale score, and 90-day mRS were available
for all the patients included in the study.

Figure 2 shows a flow-chart of the patient inclusion process. We included patients
with high-quality follow-up DWI and T2-FLAIR scans, resulting in 164 patients from MR
CLEAN-NO IV trial. Scans presenting severe artifacts were excluded from this study.

Patients included in MR CLEAN-NO IV trial: N = 539

 Patients with only 24h DWI scan: N = 31 
 Patients with 24h different/missing imaging sequences: N = 311

Patients with both 24h DWI and T2-FLAIR scan: N = 197

Patients included in this study: N = 164

 Patients with poor quality DWI scan: N = 12 
 Patients with poor quality T2-FLAIR scan: N = 16 
 Scans presenting unsolvable registration errors: N = 5

Figure 2. Flow chart of the patient inclusion process.

2.2. Image Preprocessing

The main image preprocessing steps are summarized in Figure 3. All the scans were
skull-stripped and registered to the standard MNI-space via rigid transformations using
the open source SPM12 toolbox [20], obtaining an isotropic voxel dimension of 1 mm.
Intensities were normalized using the white stripe normalization method [21]. Finally,
the lesion was segmented in both imaging sequences.

Registration

Input - original MRI
sequences

T2-FLAIR

DWI

Skull - Stripping

Normalization

Automatic lesion
segmentation

Lesion segmented
on T2-FLAIR

Lesion segmented
on DWI

Output - infarct
lesion segmentations

Preprocessing Pipeline

Figure 3. Image preprocessing pipeline. The same steps are repeated for each of the input MR
sequences, obtaining the infarct lesion segmentation as the final output from both imaging sequences.

Infarcts in DWI scans were automatically segmented using a deep learning software
developed in-house and then manually checked and corrected by two expert neurora-
diologists (with more than twenty and five years of experience, respectively) using ITK-
SNAP software [22]. Infarcts in T2-FLAIR sequences were automatically segmented using
DeepNeuroSeg [23], a deep fully convolutional network trained to detect white matter
hyperintensities (WMH) from FLAIR that ranked first in WMH Segmentation Challenge at
MICCAI 2017. All resulting segmentations were manually checked and corrected using
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ITK-SNAP software. Figure 4 shows an example of T2-FLAIR and DWI lesion segmentation
from the same patient. For each modality, a few slices sampled from the preprocessed scan
are reported in the first line. Lesions appear hyperintense on both imaging modalities,
and the segmented area after the preprocessing steps (red) is displayed as overlapping the
original slices in the second row.

(a) DWI

(b) T2-FLAIR

Figure 4. Example of infarct lesion segmentation on a selected slices sampled from (a) DWI and
(b) T2-FLAIR preprocessed volumes. For each modality, original slices are displayed in the first row
and lesion segmentation (red) is shown as overlapping the correspondent slices in the second row.

2.3. Features

Radiomic features were extracted from the segmented lesion, which is defined as the
region of interest (ROI) in the following using the open-source PyRadiomics [24] Python
package. Although deep neural networks have been proven to be powerful feature ex-
tractors in several computer vision applications, and are able to capture hidden patterns
in images, we decided to avoid this strategy in our study due to the limited sample size
and consequent high risk of overfitting. The extracted radiomic features (n = 107) ex-
tensively describe the lesion, capturing different aspects, and can be subdivided in the
following classes: first-order statistics, size/shape based, and high-order textural charac-
teristics. The first-order statistics describe the distribution of voxel intensities within the
ROI (e.g., energy, entropy); the size- and shape-based features include both 2D and 3D
measures, among which is the follow-up lesion volume, which is often used in literature as
a prognostic marker; finally, the textural features include measures derived from correlation
matrices describing spatial patterns of voxel intensities. There are five main textural matri-
ces: (1) the Gray Level Co-occurrence Matrix (GLCM), which describes the second-order
joint probability function of an image region constrained by the mask; (2) the Gray Level
Size Zone Matrix (GLSZM), which quantifies gray level zones in an image, defined as a the
number of connected voxels that share the same gray level intensity; (3) the Gray Level Run
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Length Matrix (GLRLM), which quantifies gray level runs, defined as the length in number
of pixels, of consecutive pixels that have the same gray level value; (4) the Neighbouring
Gray Tone Difference Matrix (NGTDM), which quantifies the difference between a gray
value and the average gray value of its neighbors within a defined distance; and (5) the
Gray Level Dependence Matrix (GLDM), which quantifies gray level dependencies in an
image, defined as a the number of connected voxels within a defined distance that are
dependent on the center voxel.

We considered five different sets of features to predict binary 90-day mRS (0–2 vs. 3–6)
as the model outcome, a clinical definition for favorable long-term functional independence.
Each set respectively includes: (1) only DWI radiomic features (named the DWI set, n = 107);
(2) only T2-FLAIR radiomic features (named the FLAIR set, n = 107); (3) both DWI and T2-
FLAIR radiomic features (named the imaging set, n = 214); (4) only clinical characteristics
(named the clinical set, n = 23); and (5) a combination of all the radiomic features and the
clinical characteristics available up to 24 h (named the combination set, n = 237).

Clinical characteristics were included in the final models, as it is well known that
a number of these are strongly associated with functional outcome. Therefore, we decided
to further evaluate the prognostic value of imaging features on top of routinely acquired
clinical characteristics in order to simulate a complete model exploiting all the patient
data available up to 24 h. Clinical characteristics included: clinical history data (e.g., age,
gender), baseline clinical measurements and imaging derived scores routinely acquired
in the acute phase (e.g., glucose, ASPECTS), treatment, and post-treatment characteristics
(e.g., type of treatment, 24-h NIH Stroke Scale). A complete list of the clinical characteristics
considered in this study is provided in the Supplementary Materials.

2.4. Image Analysis Pipeline and Experimental Setup

We adopted the Extreme Gradient Boosting (XGB) model as a classifier, implemented in
the XGBoost Python library [25]. XGB is a high-performing ensemble tree-based algorithm
designed to deal with high dimensional and mixed input data types. One of the strengths
of this algorithm is its capability to automatically handle collinear features and missing
data; therefore, we preferred to avoid any imputing strategy for the missing clinical values.

We implemented a feature selection strategy based on SHAP values [17]. Lund-
berg et al. [26] showed that several common methods for estimating feature importance are
inconsistent, as they can lower a feature’s assigned importance when the true impact of
that feature actually increases. Therefore, they developed TreeSHAP, a consistent individu-
alized feature attribution algorithm for tree ensembles based on SHAP values. It has been
shown that this method results in reduced computational complexity depending on the
maximum depth of the trees instead of the number of possible feature combinations, and it
has demonstrated obtained results in better agreement with human intuition.

Because the analyzed sample size is relatively small, nested stratified k-fold cross
validation (CV) was used to train and test the model in order to avoid biases and overly-
optimistic results. The schema of the experimental setup is shown in Figure 5, where
the outer and inner loops are schematically represented on the left and right, respec-
tively. In our pipeline, k was set to 5, meaning that that 20% of the dataset is used as
a test set at each split. In the inner CV, a grid-search strategy was implemented to tune
the model’s parameters (learning_rate, max_depth, min_child_weight, colsample_bytree,
colsample_bynode, subsample, alpha) in order to maximise validation accuracy. A detailed
description of the parameters is available in the official documentation [27]. For each
feature, mean absolute SHAP values were computed on each validation set of the inner
loop. The average SHAP values at the end of inner CV were used to obtain the final feature
importance ranking. All the features with a mean absolute SHAP value equal to 0 where
automatically discarded. For each round of the outer CV, the final model with the selected
parameters and features was retrained on the whole outer training set and tested on the
unseen test set to assess the model’s generalization capabilities.
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The pipeline was executed for each of the five feature sets previously defined. For each
classifier, final average performance on the test sets was evaluated in terms of classification
accuracy, precision, sensitivity, specificity, and area under the ROC curve (AUC). We
compared the models pairwise based on their AUC using DeLong’s test, with the highest
AUC as a reference.

OUTER 5-FOLD CV INNER 5-FOLD CV

Test set (outer)

Validation set (inner)

Training set (outer)

Training set (inner)

Final model training and testing Parameters tuning and feature selection

Figure 5. Schema of experimental setup, showing a schematic representation of the nested cross
validation in the outer loop on the left and the inner loop on the right. Each row on the left represents
the whole dataset, which is divided in five different folds; one fold (blue) is used as an independent
test set, while the remaining four folds form the training set. Repeating this split five times ensures
that each single fold is considered as a test set once. In the inner loop on the right, the training set is
subsequently split in five folds again in order to obtain a validation set (green) used to estimate the
model’s performance during the grid search and feature selection procedure. The best model with
the chosen parameters and features is then retrained on the outer training set (red) and tested on the
outer test set (blue). SHAP values for the final model interpretability are computed on the test sets.

2.5. Explainability

The explainability of AI models is of the utmost importance in the medical field,
especially when dealing with challenging clinical tasks such as prognosis prediction where
a black-box approach would be useless in clinical practice. The final aim in this case is
not only to build a reliable model, it is to better understand the impact of the identified
predictors that could possibly help to gain new insights into lesion pathophysiology and
help clinicians to interpret and trust the model’s outcome.

For the best model, SHAP values were computed on the test sets to better understand
the role of each feature in predicting the desired outcome. We used SHAP summary plots
to show the most important features with the largest impact on outcome prediction for
the best experiment. This is an easy to read beeswarm plot colored by feature values,
with the features ordered based on their impact on the model’s output. Positive SHAP
values are associated with unfavorable outcomes, while negative values are associated with
good clinical outcomes. In order to visually inspect the meaning of the extracted radiomic
characteristics, we ordered our cohort of patients based on the relevant features shown by
the resulting SHAP summary plot and analyzed four different case studies.

3. Results

A complete list of the clinical characteristics, including clinical history and measure-
ments, baseline imaging scores, and treatment and post-treatment characteristics of the
patients included in this study and the original MR CLEAN-NO IV population, is provided
in the Supplementary Materials.

The prediction accuracy measures computed on the test sets for each collection of
features are reported in Table 1. Table 2 provides the results of DeLong’s test. The model
including all imaging features (imaging set) shows slightly higher performance compared
to the models using features from a single modality. The average AUC achieved with
the imaging set is 71% (+2% and +3% compared to the average AUC of DWI and FLAIR
set, respectively). The model trained on the clinical set shows a higher predictive power
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compared to models using imaging features alone (+12% compared to the average AUC of
the imaging set). Finally, the combination set led to the best prognostic model, outperforming
all the other models in terms of the considered metrics, with an average AUC of 85%
(Figure 6).

Table 1. Average metrics (95% CI) computed on the test sets for all the tested feature sets (DWI set:
only DWI radiomic features, FLAIR set: only T2-FLAIR radiomic features, imaging set: both DWI and
T2-FLAIR radiomic features, clinical set: only clinical characteristics, combination set: combination of all
the radiomic features and the clinical characteristics). For each feature set, Accuracy (Acc), Sensitivity
(Sens), Specificity (Spec), Precision (Prec), and Area under the ROC curve (AUC) are reported.

Feature Set Acc Sens Spec Prec AUC

DWI 0.66 [0.56, 0.76] 0.58 [0.38, 0.78] 0.72 [0.56, 0.88] 0.62 [0.48, 0.76] 0.69 [0.55, 0.82]
FLAIR 0.64 [0.58, 0.70] 0.56 [0.46, 0.66] 0.71 [0.62, 0.80] 0.58 [0.50, 0.66] 0.68 [0.59, 0.77]

Imaging 0.67 [0.60, 0.74] 0.56 [0.47, 0.65] 0.76 [0.66, 0.86] 0.65 [0.55, 0.75] 0.71 [0.63, 0.79]
Clinical 0.75 [0.70, 0.80] 0.71 [0.58, 0.84] 0.79 [0.74, 0.84] 0.72 [0.67, 0.77] 0.83 [0.78, 0.88]

Combination 0.79 [0.72, 0.86] 0.71 [0.62, 0.80] 0.84 [0.74, 0.94] 0.78 [0.68, 0.88] 0.85 [0.81, 0.89]

Table 2. DeLong’s test p-values for pairwise AUC comparisons (α = 0.05), with the highest AUC as
a reference. Statistically significant results are provided in bold.

Feature Set AUC p-Value

Combination—DWI 0.85–0.69 <0.001
Combination—FLAIR 0.85–0.68 <0.001

Combination—Imaging 0.85–0.71 <0.001
Combination—Clinical 0.85–0.83 0.33

ROC curve - combination set

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 6. Average ROC curve (blue) obtained from the outer cross-validation of the best-performing
model (combination set).

Figure 7 shows the SHAP summary plot of the most important features with the
largest impact on outcome prediction for the best experiment (combination set). The features
with the largest impact include both clinical characteristics and radiomic features. It can be
seen that both DWI and T2-FLAIR radiomic features are ranked among the most relevant
predictors, with texture features the most frequent ones. The only exceptions are Skewness
measured on DWI, which is a first-order feature and an indicator of asymmetry in gray
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level distribution, and Sphericity measured on T2-FLAIR, which is a shape-related feature
measuring the roundness of the shape of the lesion region. All the other image predictors
are texture features, and despite the different textural matrices being able to capture
slightly different aspects of gray values distributions, they are essentially describing the
heterogeneity of the examined region (a detailed description of each feature is reported in
the official documentation [28]). The beeswarm plot shows that more heterogeneous lesions
(↑ Dependence non uniformity, GLDM–DWI; ↓ Strength, NGTDM–FLAIR; ↑ Short run low
level emphasis, GLRLM–FLAIR; ↑Max correlation coefficient, GLCM–FLAIR; ↑ Gray level
non uniformity, GLSZM–FLAIR) are more associated with unfavorable clinical outcomes.

Figure 7. SHAP value beeswarm plot of the most relevant predictors on the test sets. Features are
sorted according to their impact on model output. Positive and negative SHAP values are associated
with unfavorable and favorable clinical outcomes, respectively. The colors represent the original
feature values, with higher values in pink and lower values in blue. For each clinical feature (CLIN),
the time of measurement is reported (BL = baseline, FU = follow-up at 24 h). For each radiomic
feature, the imaging modality (FLAIR or DWI) and the type of feature are provided in brackets
(FO = first order, SHAPE = 2D or 3D shape, NGTDM/GLRLM/GLCM/GLSZM = texture).

Figure 8 shows four different study cases (L1-4) demonstrating the meaning of texture
heterogeneity for visual inspection. For each lesion, the axial view from both DWI and T2-
FLAIR modality is reported. The lesion appears hyperintense on both imaging sequences.
L1 and L2 are two examples of lesions from patients experiencing poor long-term functional
outcome (90-day mRS of 6 and 5 respectively). L1 is a very severe case; the extension of the
lesion is quite large, involving both GM and WM and presenting PH1 hemorrhage. L2 is
less extensive compared to L1, although it too involves both GM and WM. Patients with
worse outcomes present more heterogeneous lesions, often involving both GM and WM.
In the presence of hemorrhage, heterogeneity in terms of radiomic features is even higher
(e.g., texture heterogeneity measured in terms of Dependence non uniformity normalized—
GLDM on DWI was 0.23 and 0.13 in L1 and L2, respectively). On the other hand, in patients
that achieved functional independence (e.g., L3 and L4 presented a 90-day mRS of 2 and
0, respectively), the lesions were less heterogeneous (texture heterogeneity in terms of
Dependence non uniformity normalized—GLDM on DWI of 0.08 and 0.04, respectively),
and mostly involved GM areas.
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(a) L1—DWI (b) L1—FLAIR

(c) L2—DWI (d) L2—FLAIR

(e) L3—DWI (f) L3—FLAIR

(g) L4—DWI (h) L4—FLAIR

Figure 8. Axial views of DWI and T2-FLAIR scans from four different lesions (L1–L4). The lesions
look hyperintense on both imaging sequences. L1 and L2 are two examples of patients with poor
long-term functional outcome (90-day mRS of 6 and 5 respectively). L1 is quite extensive and presents
PH1 hemorrage. Both lesions include WM and GM areas of the brain (texture heterogeneity measured
in terms of Dependence non uniformity normalized—GLDM on DWI of 0.23 and 0.13, respectively).
L3 and L4 instead are two examples of patients with good long-term functional outcome (90-day mRS
of 2 and 0, respectively). Both lesions involve GM only (texture heterogeneity measured in terms of
Dependence non uniformity normalized - GLDM on DWI of 0.08 and 0.04, respectively).
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4. Discussion

In this study, we showed the predictive value of radiomic features extracted from
routinely acquired follow-up MR sequences (DWI and T2-FLAIR) for long-term functional
outcome prediction in AIS patients. In the comparison of prediction models trained on
five different feature sets, respectively including only radiomic features extracted by one
follow-up MR sequence (DWI or T2-FLAIR), all the available imaging sequences (DWI
and T2-FLAIR), only clinical characteristics, and finally a combination of all the radiomic
features and the available clinical characteristics, we showed that the highest accuracy is
found with the model trained on this last feature set. A completely data-driven ranking
of the best model’s predictors based on SHAP values showed the relevance of radiomic
features from both imaging modalities and confirmed, in line with previous clinical studies,
the high predictive value of 24-h NIH Stroke Scale, and age [29,30].

Among the most relevant imaging characteristics is the heterogeneity of the lesion
measured in terms of different texture features on both MR sequences, which has been
shown to be more related to worse long-term functional outcome. This finding is interesting
from a clinical perspective because heterogeneous lesions could indicate edema formation
in the subacute stage or hemorrhage. In fact, focal cerebral ischemia and post-ischemic
reperfusion can cause cerebral capillary dysfunction, resulting in edema formation and
hemorrhagic conversion [31]. Because edema strongly influences patient prognosis, pre-
dicting its occurrence in the early stages is vital to providing timely intervention. However,
there is a lack of early bio-markers, and the underlying physiological mechanisms of cere-
bral edema and hemorrhagic transformations are still being searched [32]. The work of
Jiang et al. [33] supports our observation, showing how radiomic features from infarction
and CSF (measured on DWI and T2-FLAIR respectively) may offer effective imaging bio-
markers for predicting edema. In addition, Zhai et al. [34] showed DWI-based texture
analysis with good predictive validity for hemorrhagic transformation in patients with
acute massive cerebral infarction.

Another interesting aspect that can be captured by texture features is the involvement
of white matter (WM) and gray matter (GM) in the ischemic lesion. Both GM and WM
can be affected by ischemic stroke, as they need a constant supply of oxygen and glucose.
However, the collateral circulation in WM is reduced compared to GM and the reduced
blood supply makes WM highly vulnerable to ischemia, leading to more rapid and severe
injuries [35]. Damage in WM integrity has been shown to be related to cognitive deficits
in stroke patients and worse post-stroke functional outcomes [36]. More heterogeneous
lesions are more likely to involve both GM and WM, indicating more severe injuries
with fewer expectations of full functional recovery. Nonetheless, the lesions in patients
with a favorable functional outcome were often smaller than those that did not achieve
functional independence. Very large lesions are more likely to involve both GM and WM,
resulting in a more heterogeneous areas, while very small lesions are often localized in
GM or WM only. Therefore, heterogeneity indirectly takes into account follow-up lesion
volume, which is known to be a useful prognostic factor [37]. Despite this, when the size of
the lesion is comparable (e.g., L2, L3 in Figure 8), the involvement of both GM and WM
still results in higher values of heterogeneity, indicating a higher risk of poor long-term
functional outcome.

At present, most of the available radiomic evidence regarding stroke is derived from
single-center studies, often leading to unstable and unreproducible association of radiomic
features with clinical events due to selection bias [16]. This multi-center study suggests that
functional outcome prediction using a combination of imaging and clinical characteristics
leads to accurate results taking into account all the parameters routinely available up to 24 h.
Moreover, we show that lesion heterogeneity measured from DWI and T2-FLAIR in terms of
radiomic features can serve as a biomarker for poor clinical outcome. An accurate prognosis
in the subacute stage is highly relevant for patients who ultimately have a poor outcome,
as it enables early planning of care adapted to their needs [38]. Radiomics potential in
stroke research has not been fully exploited yet, mostly due to the difficulty of collecting
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multi-center and large-scale imaging data. Nonetheless, the identification of stable imaging
biomarkers would help to better understand the complex pathophysiological cascade
involved in lesion formation and evolution after an AIS, optimize secondary prevention
strategies, and facilitate the development of personalized precision medicine in post-stroke
patients [16].

This study has a few limitations. Our results are not directly generalizable to patients
not compliant to the MR CLEAN-NO IV inclusion criteria. Therefore, future studies
assessing the impact of the identified predictors for stroke patients with minor vessel
occlusions or posterior circulation occlusions are needed. Moreover, we showed that 24-h
radiomic features, if used on top of clinical characteristics, have the potential to improve
long-term prognosis prediction. However, in our study the differences are small. This is
most likely due to the relatively small size of the analyzed sample. Future works including
a larger population could probably lead to increased statistical significance and model
performance. Furthermore, with a larger sample size it would be interesting to try end-
to-end DL approaches comparing the predictive power and interpretability of radiomic
and automatically extracted features. Research in this field is in its early stages; studies
on larger populations are needed to further assess the scalability and robustness of the
proposed method and the identified biomarkers, which is essential before considering its
use in the clinical practice. Finally, we only considered mRS score as long-term functional
outcome, as it is the most used indicator in clinical practice; however different scores better
reflecting the psychological and emotional status of the patient could be used as endpoints,
possibly leading to a better understanding of the disease mechanisms.

5. Conclusions

In this study, we showed that radiomic imaging features describing infarct lesion on
follow-up MR sequences (DWI and T2-FLAIR) are predictive of poor long-term functional
outcome in AIS patients, with features describing texture heterogeneity being the most
predictive imaging biomarkers. In addition, we proved that using imaging features on top
of routinely available clinical characteristics, and thus exploiting all patient data available
up to 24 h, leads to the most accurate prognostic model. Further research in this direction
may help in better targeting secondary treatments to mitigate lesion evolution in the
subacute phase and thereby improving long-term functional outcome, hopefully reducing
the burden of disease.
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