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Abstract: von Willebrand factor (VWF) is an adhesive protein involved in primary hemostasis and
facilitates platelet adhesion to sites of vascular injury, thereby promoting thrombus formation. VWF
exists in plasma as multimers of increasing size, with the largest (high molecular weight; HMW)
expressing the greatest functional activity. A deficiency of VWF is associated with a bleeding disorder
called von Willebrand disease (VWD), whereas an excess of VWF, in particular the HMW forms, is
associated with thrombosis. ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin
type 1 motif-13), also known as VWF-cleaving protease, functions to moderate the activity of VWF
by cleaving multimers of VWF and limiting the expression of the largest multimers of VWF. A
deficiency of ADAMTS13 is therefore associated with an excess of (HMW forms of) VWF, and thus
thrombosis. Indeed, any disturbance of the VWF/ADAMTS13 ratio or ‘axis’ may be associated
with pathophysiological processes, including prothrombotic tendency. However, both thrombosis or
bleeding may be associated with such disturbances, depending on the presenting events. This review
evaluates the relationship of VWF and ADAMTS13 with cardiac disease, including cardiac failure,
and associated pathophysiology.
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1. Introduction

Cardiac failure is becoming increasingly common with improvements in therapeutic
targets in an aging population [1]. Cardiac failure represents a clinical syndrome with
significant morbidity and mortality. The pathophysiology of cardiac failure is a complex
mix of structural and functional alterations. However, the exact mechanisms underlying
the disease remain poorly defined [2]. Endothelial dysfunction has been identified as one
of the components of cardiac failure pathophysiology, whereby disturbances in coronary
microcirculation are thought to contribute to cardiac failure and its progression [3,4]. In-
flammatory or ischemic endothelial activation results in the release of von Willebrand
factor (VWF) from Weibel–Palade bodies held in endothelial cells [5]. VWF is a large,
complex protein that has a crucial role in platelet adhesion and aggregation and is involved
in both primary and secondary haemostasis [6]. VWF exists in plasma as multimers of
increasing size, with the largest (high molecular weight; HMW) expressing the greatest
functional activity. A deficiency of VWF is associated with a congenital bleeding disor-
der called von Willebrand disease (VWD). In addition, the loss of VWF can occur in a
variety of acquired conditions [6,7]. Of note, certain cardiac lesions, particularly aortic
stenosis, can elongate VWF multimers in the shear field, resulting in proteolytic loss of the
highest molecular weight forms, leading to subsequent loss of VWF activity and resultant
bleeding [8,9]. VWF activity is controlled through cleavage by a disintegrin and metallopro-
teinase with thrombospondin type 1 motif-13 (ADAMTS13), also known as VWF-cleavage
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protease. Elevation of VWF and potential reduction in ADAMTS13 essentially represent
biomarkers of endothelial dysfunction, as most recently typified in COVID-19 (Coronavirus
Disease 2019) [10].

Plasma VWF levels can be assessed by means of VWF antigen (VWF: Ag) [11,12]
and/or a variety of activity assays [6,11,12]. The most common VWF: Ag assays com-
prise latex-enhanced immunoassays and enzyme-linked immunosorbent assays [11,12].
Activity assays for VWF include measurements of binding to platelet glycoprotein Ib
(GPIb), collagen and factor VIII [11]. However, in the main, studies reporting a single VWF
parameter report VWF: Ag levels. VWF:Ag levels reflect both active and inactive VWF.
There are over 20 different commercial options for the measurement of VWF: Ag, and
publications do not always report the method used [10]. ADAMTS13 can also be measured
as an antigen assay using enzyme-linked immunosorbent assays [13], or as an activity
assay, with FRETS-based assays being common [13], or by using chemiluminescence [14]
among other procedures [13]. However, in the main, studies reporting a single ADAMTS13
parameter report activity levels. In total, there are over 20 different commercial options for
measurement of ADAMTS13, and publications do not always report the method used [10].

Decreased ADAMTS13 and increased VWF levels have been shown to be contributory
drivers in myocardial infarction [15]. Circulating endothelial cells have been shown to
predict vascular events in patients with established coronary artery disease and affect
myocardial infarct size following a myocardial ischaemic event [16–18]. Alterations in both
VWF and ADAMTS13 levels have also been implicated in patients with atrial fibrillation
(AF) [19,20]. This can be identified as a disturbance of the VWF/ADAMTS13 axis or an
increase in the relative VWF/ADAMTS13 ratio [21]. ADAMTS13 is most commonly known
for its deficiency state as part of thrombotic thrombocytopenic purpura (TTP), a prothrom-
botic disorder [13]. Although rare, acquired TTP has been described following cardiac
surgery [22,23]. In this review, we aim to describe the associations of VWF, ADAMTS13,
and cardiac disease in some detail.

2. Endothelial Dysfunction and Cardiac Disease

Normal vascular endothelium plays a multifaceted regulatory role in blood vessel
function, including blood flow, prevention, and the propagation of thrombus at sites
of vascular injury and both anti- and pro-inflammatory functions when appropriately
stimulated. When the vascular endothelium becomes dysfunctional, this may result in
abnormal coronary microcirculatory flow, impairing myocardial perfusion and therefore
function [24]. The process may also result in more overt arterial thrombus formation,
as seen in cerebrovascular and coronary arterial events [3]. Endothelial dysfunction,
represented by circulating endothelial cells, is predictive of major adverse cardiac events
and cardiac remodeling in patients after ST elevation myocardial infarction [25]. Endothelial
dysfunction has been reported as an independent predictor of morbidity and mortality in
patients with cardiac failure [26,27]. Endothelial dysfunction has been associated with a
higher rate of cardiovascular events in patients with cardiac failure and a greater risk of
atrial fibrillation in patients with non-obstructive coronary artery disease [28,29]. This may
be a result of loss of nitric-oxide dependent vasodilatory signals, proinflammatory states
that resulting from cardiac failure, as well as its prothrombotic properties [30].

VWF is a large multimeric glycoprotein selectively expressed in endothelial cells and
megakaryocytes, and present in the subendothelial matrix, platelets and plasma. VWF
is stored in cigar-shaped vesicles called Weibel–Palade bodies in endothelial cells [31].
Endothelial injury results in stimulation of Weibel–Palade bodies to secrete their contents
including VWF into circulation. Due to blood shear, VWF then unfolds, binding the GPIb
receptor of platelets to the A1-domain of VWF [32].

The involvement of VWF in local vascular injury and homeostasis lends itself to being
a key determinant of endothelial dysfunction, and thus cardiac failure pathogenesis [33]. In
a cohort of non-ischaemic, dilated cardiac failure patients with average symptom duration
of 19 months, VWF RNA expression by real-time PCR on endomyocardial biopsy was
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demonstrated to be upregulated, suggesting that over time patients continue to present
with progressive endothelial dysfunction despite treatment optimisation [3]. Plasma
VWF:Ag levels have also been found to be substantially increased in patients with acute or
recent decompensated cardiac failure [34]. If these elevations in VWF are persistent, this
may result in a higher risk of thrombosis [35]. Increased plasma VWF:Ag has also been
demonstrated as an independent predictor of long-term outcome in these patients [36].

In contrast, animal models have demonstrated that VWF deficiency is protective
against atherosclerosis and arterial thrombotic risk [37]. Cohort data from patients with
VWD have been conflicting, demonstrating that arterial thrombotic events still occur
in patients with VWD. However, these seem to occur with a lower incidence than the
general population [38,39]. Additionally, in patients with VWD, the risk of hypertension, a
well-known risk factor of cardiovascular events, is reduced [40].

3. ADAMTS13, VWF and Cardiac Dysfunction

The multimeric size of VWF, and therefore its platelet binding activity, is regulated by
cleavage by ADAMTS13. As noted above, ADAMTS13 deficiency is most associated with
the rare condition of TTP. TTP is a thrombotic microangiopathy caused by severely reduced
ADAMTS13 leading to platelet-rich thrombi, thrombocytopenia, and haemolytic anaemia.
Acquired TTP after significant endothelial injury is now well recognized but considered a
distinct clinical syndrome in the surgical field, particularly in cardiothoracic surgery [22].
The etiology of post-operative TTP may be secondary to autoimmune-mediated antibodies
against ADAMTS13 [22,41]. Post-operative TTP following cardiothoracic surgery is associ-
ated with high patient morbidity and mortality [41,42]. Additionally, Le Besnerais et al. [42]
showed that injecting ADAMTS13 knockout mice with recombinant VWF, leading to a TTP-
like state, resulted in reduced left ventricular function, fractional shortening, and reduced
cardiac output by day 2 after injection. This was associated with a decreased endothelial
response to acetylcholine, indicative of early severe endothelial dysfunction [43].

ADAMTS13 has also been proposed as another biomarker of endothelial damage
and dysfunction [19]. Low plasma ADAMTS13 activity has been shown to predict cardiac
and cerebrovascular events in patients with established coronary artery disease [15,16,18].
Plasma ADAMTS13 activity has also been associated with myocardial infarct size and
cardiac function after a myocardial ischaemic event [17]. Decreased activity of ADAMTS13
with concomitant high VWF:Ag levels has also been demonstrated as an independent
predictor of clinical events in patients with cardiac failure [33]. Both VWF levels and
ADAMTS13 activity have been correlated in older patients with atrial fibrillation (AF)
and an increasing stroke risk calculator scoring system, the CHA2DS2-VASc (congestive
heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke/transient ischemic
attack/thromboembolism, vascular disease, age 65–74 years, female) [44]. The mechanisms
behind cerebral thrombo-embolism in patients with AF are not completely defined. How-
ever, it is clear that AF is associated with a prothrombotic state and higher VWF:Ag levels
compared to healthy controls [45]. Zhang et al. further demonstrated that elevated VWF:Ag
levels were independently associated with an elevated CHA2DS2-VASc score for stroke
in patients with and without AF [19]. They also found that, in patients aged 65–74 years,
patients with AF had elevated VWF levels and decreased ADAMTS13 activity compared
to those without AF. This difference was not seen in patients aged ≥ 75 years, suggesting
that AF is one of many factors affecting VWF levels and ADAMTS13 activity, and that age
is an important factor affecting endothelial function. Decreased ADAMTS13 activity has
also been implicated in the recurrent risk of AF in those undergoing cardioversion [20].

Plasma VWF:Ag levels are increased in coronary artery disease, ischaemic stroke,
and venous thromboembolism, whereas ADAMTS13 activity levels are reduced [46]. This
relationship between VWF and ADAMTS13 can be described as the VWF-ADAMTS13 axis
and is indicative of vascular endothelial function [21]. The VWF-ADAMTS13 axis has been
shown to be dysregulated in chronic thromboembolic pulmonary arterial hypertension,
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whereby increases in VWF, particularly compared to the level or activity of ADAMTS13,
are seen, including following invasive intervention [47].

4. Angiogenesis and Acquired von Willebrand Disease

Although VWF is best known for its role in hemostasis, it has also recently been shown
to be a key regulator of angiogenesis [48]. VWF is present in endothelial cells, plasma, and
subendothelium, whereby its release leads to the initial adhesion of platelets to collagen.
VWF also binds to factor VIII in circulation in its inactive state. The binding activity of
VWF is determined by both its multimeric size and conformation [49]. In vitro studies of
endothelial cells have shown that the inhibition of VWF expression by siRNA resulted in
angiogenesis [48]. In VWF deficient mice, angiogenesis and vascular density were increased
in several in vivo models [48]. A loss of balance between blood vessel proliferation and
stabilization by surrounding extracellular matrix can lead to dysfunctional vessel formation,
such as that found in angiodysplastic lesions. Up to 20% of patients with VWD, the most
common inherited bleeding disorder in humans, commonly present with gastrointestinal
bleeding from such lesions [50]. This can be severe and non-responsive to VWF replacement
therapies. VWF deficiency has also been shown to enhance VEGFR-2 mediated endothelial
migration and proliferation [48].

VWD can be classified as inherited, which can be further categorized into six different
types (1, 2A, 2B, 2M, 2N, 3), and which results from a variety of mutations occurring
throughout the VWF gene, or acquired, from a variety of conditions, including malignant
disorders, aortic valve stenosis, or left ventricular assist devices [6,11,51,52]. Acquired VWD
is more commonly called acquired von Willebrand syndrome (AVWS). Although mentioned
as a rare disorder in the literature, AVWS is likely more common than recognized, given
that milder forms may not manifest until a significant haemostatic challenge [52]. Acquired
VWD has multifactorial etiological mechanisms based on the underlying disorder driving
it [52]. This is summarized in Table 1.

Cardiovascular disorders form the largest group of disorders among the underlying
pathogenic conditions associated with acquired VWD, with the two major groups being
aortic stenosis associated gastrointestinal dysplasia and patients with left ventricular assist
device (LVAD) or extracorporeal life support [52–55]. Shear stress-induced reduction of
HMW VWF multimers and proteolysis of VWF as it passes through the stenotic valve,
increased cleavage by ADAMTS13 and shear-induced VWF binding to platelets are the
proposed mechanisms for AVWS in this setting [56]. This has been demonstrated in in vivo
models [56]. Aortic valve replacement, both surgical and transcatheter-based, is often a
definitive treatment for gastrointestinal bleeding, particularly from angiodysplastic lesions,
leading to recovery of HMW VWF multimers [57]. Rarely, the association with regurgi-
tant valvular lesions is seen including reported regurgitation secondary to (infectious)
endocarditis [58]. In the instance of LVAD or extracorporeal life support, it is the device-
related increase in shear stress, resulting in similar conditions of aortic stenosis [55]. Other
proposed mechanisms of ventricular assist device induced AVWS include proteolytic degra-
dation of VWF and excess platelet activation leading to adsorption of HMW VWF [8,59].
Patients with ventricular assist devices and AVWS who undergo cardiac transplantation
and LVAD removal are cured of their bleeding phenotype [9]. Re-engineering of devices
may be able to mitigate this problem to some extent.

Table 1. Underlying disorders associated with acquired von Willebrand Disease.

Lymphoproliferative Disorders

Monoclonal Gammopathy of Undetermined Significance

Multiple Myeloma

Non-Hodgkin’s Lymphoma

Waldenstrom’s Macroglobulinemia

Hairy Cell Leukemia
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Table 1. Cont.

Myeloproliferative Disorders

Essential Thrombocythemia

Polycythemia Vera

Chronic Myeloid Leukemia

Tumours
Wilms’ Tumor

Ewing’s Sarcoma

Cardiac Disorders

Aortic Stenosis

Left Ventricular Assist Devices

Heart Transplantation

Coronary Artery bypass Surgery

Paravalvular Leak

Hypertrophic Obstructive Cardiomyopathy

Congenital Heart Disease

Autoimmune
SYSTEMATIC Lupus Erythematosus

Other Autoimmune Disorders

Drug Induced

Cefotaxime

Levofloxacin

Ciprofloxacin

Valproic Acid

Hydroxy Ethyl Starch

High-dose Recombinant Factor VIII

Miscellaneous

Gaucher’s Disease

Renal Transplantation

Hypothyroidism

Extracorporeal Membrane Oxygenation Devices
Adapted from Colonne et al. [6] and Shetty et al. [52].

5. Potential Therapeutic Targets

VWF is an attractive therapeutic target in the treatment of acute vascular events as well
as secondary prophylaxis in select groups. VWF, including its production and binding to
GPIb, collagen and Glycoprotein IIbIIIa, as well as ADAMTS13, have been well recognized
as potential therapeutic targets within management of vascular events and endothelial
dysfunction. Targeting a reduction in the size of Weibel–Palade bodies, the production
site of VWF, has been shown to inhibit VWF pro-haemostatic potential [60]. This may
be a potential adjunctive therapy to anti-thrombotic therapies in arterial vascular events,
or also for the anti-thrombotic therapy of disseminated intravascular coagulation, which
has also been found to be associated with high levels of VWF [61]. In vitro analysis of
VWF antagonist therapies demonstrated a time-dependent and dose-dependent effect on
VWF activity and platelet aggregation studies, which was then shown to prevent arterial
occlusive events in monkey models [62,63]. Recombinant ADAMTS13 administration has
been shown to reduce infarct volume when used in combination with thrombolysis in
mice models [64]. However, further research of such targets is needed within the field of
cardiology in conjunction with current antithrombotic therapies, as well as in non-ischemic
cardiac dysfunction.

6. Conclusions

As shown in this review, and as summarized in Figure 1, both VWF and ADAMTS13
can be implicated in the pathophysiology of cardiac disease and cardiac failure. This may
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lead to an increased risk of thrombosis where the VWF–ADAMTS13 axis is increased,
reflecting a relative increase of VWF and/or a relative decrease in ADAMTS13 activity,
with acquired TTP being the most extreme example. In contrast, disturbances whereby
the VWF–ADAMTS13 axis reflects a relative decrease of VWF also reflect a risk factor for
bleeding, with AVWS being the most extreme example [13]. We recommend that workers
in the field of cardiac disease take a greater interest in both VWF and ADAMTS13 [21], to
both identify the opposing risks of bleeding and thrombosis, and to potentially consider
supportive therapies or curative approaches, as the case may require. Such strategies may
include targeting the upregulated VWF or decreased ADAMTS13 activity in patients with
cardiac failure, in order to halt persistent endothelial dysfunction and disease progression.
In patients with AVWS, a different approach is needed, including supportive therapies
with VWF [6,8].
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